
Optimizing network slice placement using Deep
Reinforcement Learning (DRL) on a real platform
operated by Open Source MANO (OSM)
Alexandre Sabbadin1,*, Abdel Kader Chabi Sika Boni1, Hassan Hassan1 and
Khalil Drira1

1LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract
Optimizing network slice placement in 5G networks requires efficient algorithms. Deep Reinforcement
Learning (DRL) has been used to solve this problem successfully. However, few works have tackled the
deployment of these algorithms in a real environment. In this paper we present a DRL based algorithm
aiming to optimally place network slices in IoT networks. We evaluate the performance of this algorithm
in a real network deployed on Grid’5000 platform, operated by an Open Source MANO (OSM) middle-
ware. The simulation results show a good convergence of the algorithm and the deployment in the real
environment gives us some insights about a potential slicing architecture using OSM, the processing of a
DRL agent in real conditions, and limitations due to consequent instantiation times for Virtual Network
Functions (VNF).

Keywords
Deep Reinforcement Learning, Slicing, IoT systems, Open Source MANO

1. Introduction

In the current evolving landscape of modern telecommunications, the concept of network

slicing has emerged as a groundbreaking paradigm that promises to revolutionize how we
manage and optimize network resources [1]. Network slicing allows network operators to
divide their physical infrastructure into virtualized, dedicated, and isolated networks. Each
slice (e.g. virtualized network) is tailored to specific service requirements, such as low latency
for augmented reality services, massive bandwidth for video streaming or ultra-reliability for
autonomous cars. As the deployment of network slices becomes more complex, it brings us a
consequent challenge: the slicing optimization problem. This problem revolves around efficiently
allocating network resources, such as compute and storage, across various slices while ensuring
that each slice meets its specific quality-of-service (QoS) requirements. This optimization
problem becomes even more challenging in dynamic, real-time environments where network
conditions fluctuate, users make requests and resources need to be continuously adjusted.
To address the slicing optimization problem, innovative approaches have been introduced

TACC 2023: Tunisian-Algerian Joint Conference on Applied Computing, November 6 - 8, Sousse, Tunisia
*Corresponding author.
$ alexandre.sabbadin@laas.fr (A. Sabbadin); akchabisik@laas.fr (A. K. Chabi Sika Boni); hassan.hassan@laas.fr
(H. Hassan); khalil@laas.fr (K. Drira)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alexandre.sabbadin@laas.fr
mailto:akchabisik@laas.fr
mailto:hassan.hassan@laas.fr
mailto:khalil@laas.fr
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

using Deep Reinforcement Learning (DRL) algorithms. DRL algorithms have demonstrated
remarkable learning and adaptation capabilities to complex environments, making them a
promising tool for network operators who wish to optimize resource allocation in a dynamic
slicing context. We decided to evaluate the performance of the DRL algorithm in both simulation
and a real-world environment (using Grid’5000 infrastructure [2]), Our choice is driven by
the will to ensure the reliability and practical applicability of our research. Simulations offer
a controlled setting to fine-tune algorithms, due to low-time runs, but they often simplify
the complexity of real-world networks. On the other hand, deploying DRL algorithms in the
Grid’5000 infrastructure allows us to confront the unpredictability, noise, and dynamic nature
of actual network environments. By undertaking this comparative analysis, we seek to validate
the algorithm’s performances beyond theoretical expectations and lay a robust foundation for
its practical deployment.

The rest of the paper is organized as follows: in Section 2, we present related work about
deployment of network slicing management systems, then we introduce the architecture that we
used in this study in Section 3. A brief introduction to DRL algorithms is given in Section 4 and,
in Section 5, we present the result of our evaluation in simulation and real-world environment.
Finally we conclude by giving some directions of our future research.

2. Related work

Most network slicing implementations in practical scenarios primarily target 5G networks. One
such example is the 5GCity initiative, as outlined in [3], which aims to provide 5G services to
both citizens and businesses in a smart city environment. Another example is presented in
[4], where the authors have developed a 4G/5G testbed to explore network slicing capabilities.
Network slicing is based on two principles, namely Network Function Virtualization (NFV)

and Software-Defined Networking (SDN). These principles play a central role in enabling
the dynamic and efficient deployment of network slices.

The NFV architecture of the European Telecommunications Standards Institute (ETSI) pro-
vides a standardized approach to virtualizing network functions, enabling network operators to
virtualize and operate network functions as software on hardware devices. This architecture
consists of three layers. Firstly, the virtualized infrastructure (NFVI) : this layer provides the
infrastructure to host virtualized network functions. It can include servers, storage devices,
network devices, and other hardware and software elements necessary for network function vir-
tualization. Then, we have the ETSI standard MANO (Management and Orchestration), which
controls the creation, deployment, and management of VNFs on the virtualized infrastructure.
In [5], two MANO solutions are examined alongside others, namely Open Source MANO (OSM)
[6] and Open Network Automation Platform (ONAP). It encompasses resource management,
service orchestration, monitoring, and notification functions. The ETSI NFV standard operates
with Virtual Infrastructure Managers (VIM), of which two are evaluated in [7]: OpenStack
[8] and OpenVIM. Additionally, OSM is compatible with major cloud providers such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform. Multiple VIMs can be
employed simultaneously, as exemplified in [9]. Finally, Virtualized Network Functions

(VNF) provide the network functions that can be deployed on the virtual infrastructure. Within

2

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

the context of 5G network slicing, VNFs that use OpenAirInterface (OAI) as discussed in [10]
and [4] serve to emulate a 5G network.

SDN complements NFV by offering centralized control and programmability over network
resources, thereby allowing dynamic allocation of bandwidth, routing, and other network
elements to optimize the performance of individual slices in real-time. The utilization of an
SDN controller is evocated in [9], where the authors present a comprehensive architecture and
experimental validation. Collectively, NFV and SDN furnish the agility and flexibility necessary
to create, manage, and adapt network slices effectively.

This paper’s primary focus is on the implementation of a DRL algorithm for optimizing VNF
placement within a real infrastructure managed by OSM. Our cloud infrastructure is based on
OpenStack, specifically MicroStack [11]. It is important to note that the implementation of
dynamic routing utilizing an SDN controller is a topic left for future research works. Also, our
work exclusively deals with resource allocation, and as such, our VNFs do not engage in real
network function operations.

3. Architecture concepts

3.1. Open Source MANO

Open Source MANO (OSM) [6] is an open-source project that delivers a comprehensive network
management and virtualization service platform for telecommunications networks, based on
the principles of Network Function Virtualization (NFV). OSM offers a software infrastructure
for creating, orchestrating, managing, and supervising virtualized network services. OSM’s
primary objective is to ease the adoption of NFV architecture among telecommunications
service providers by providing an open and flexible platform aligned with industry standards
and compatible with various vendors’ equipment. This initiative is sustained by a community
of developers and contributors representing various organizations and companies, operating
under ETSI. OSM has gained widespread adoption within the telecommunications industry for
network function virtualization and cloud service management for the past years.

OSM provides a comprehensive solution for implementing network slicing: NetSlices. In
OSM, a slice is instantiated by defining a Network Slice Template (NST), which is divided into
netslice-subnets and netslice-vld, that can be duplicated as depicted in Figure 1. The
former corresponds to the network services (NS) within the slice, while the latter represents the
virtual links (VLs) that interconnect them. It’s worth noting that OSM employs a management
network for the deployment and management of slice instances. The NS, previously mentioned,
serve as the network services to be deployed within our infrastructure. They act as wrappers
for our VNFs and establish connection points for linking them through VLs. Not all NS have
the same number of connection points, with an extra connection point for those in the "middle"
of the slice. Within an NS, there is one or more VNFs, each defining the network function
used, such as a firewall or router. Finally, at the level of each VNF, characteristics of one or
more Virtual Deployment Units (VDUs) must be specified to define the properties of the virtual
machine (image, number of CPUs, RAM, disk space, etc.). All these configurations are done
using YAML-format descriptors, allowing connections between the various layers mentioned
earlier through an identification and referencing system. To simplify the creation of slices, we

3

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

developed generic template descriptors files1, which can be customized for diverse cases. It
is important to emphasize that all the descriptors that compose a slice must be determined in
advance before initiating the instantiation request to OSM. As a result, our algorithms need to
consider what we refer to as "oneshot" placement, where the placement of all VNFs must be
determined simultaneously.

Figure 1: NetSlice template architecture in OSM

3.2. Grid’5000

Grid’5000 [2] is a dedicated computer research infrastructure designed for large-scale exper-
imentation and validation of technologies and applications in the fields of Cloud computing,
High Performance Computing (HPC), Big Data, and Artificial Intelligence (AI). It consists of
a network of high-performance computing clusters distributed across nine university sites
in France: Grenoble, Lille, Luxembourg, Lyon, Nancy, Nantes, Rennes, Sophia Antipolis, and
Toulouse. Each cluster consists of interconnected compute nodes, storage resources and high-
speed networking, providing a highly configurable and isolated test environment for researchers.
Grid’5000 facilitates large-scale experiments on distributed computing and storage infrastruc-
tures, allowing the assessment of the performance of new architectures, algorithms, applications,
scheduling policies, and more. Users can access Grid’5000 through a command-line interface,
an API, or specific tools. Grid’5000 is widely used within the computer research community in
France and internationally.

To access Grid’5000 resources, users need to make a reservation from a frontend server.
Once access to these resources is granted, users are free to use superuser privileges on the
reserved machines. This means they can install whatever they need for their experiments, as
the machines will be automatically reinstalled at the end of their reservation period.

1Based on OSM Information Model : https://osm.etsi.org/docs/user-guide/latest/11-osm-im.html

4

https://osm.etsi.org/docs/user-guide/latest/11-osm-im.html

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

3.3. Proposed architecture

We propose an architecture to address resource allocation challenges in the context of NFV and
cloud computing environments. In this architecture, we define key terms as follows:

• Slice: A slice represents a sequential chain of VNFs, each with specific CPU, RAM, and
storage requirements.

• Iteration: An iteration corresponds to the instantiation of a single slice, with VNFs
initialized with randomly generated resource values.

• Episode: An episode is a loop of iterations that ends when a slice can not be instantiated.
Essentially, it answers the question: "How many slices can we create?"

• Test Environment: We conduct tests on both a simulation and a real environment
using the same sequence of slices to ensure comparability across environments. Each
slice maintains a consistent number of VNFs. It is subject to change in future research
works.

• VIM: In our architecture, each VIM corresponds to a distinct datacenter. All VIMs must
be accessible by a central node which hosts OSM.

We employ MicroStack [11], which offers us a single or multi-node OpenStack [8] deployment.
While initially designed for developers to prototype and test, MicroStack is also suitable for edge
computing, IoT applications, and appliances. This technology packages all OpenStack services
and supporting libraries into a single, easily installable, upgradable, or removable package,
simplifying deployment. In our specific use case, each VIM corresponds to a single machine
equipped with a single-node MicroStack installation. However, MicroStack also supports multi-
node clustering configurations. In this multi-node case, the VIM’s amount of resources is the
total of all nodes’ resources (in CPU, RAM and storage). We developed a collection of Python
scripts to facilitate communication between an environment (either simulated or real) and an
agent. In the real environment, we employ the osmclient library to establish communication
with an OSM server instance hosted on Grid’5000.

Our reinforcement learning (RL) model operates within a dynamic environment characterized
by the allocation of VIMs resources to satisfy the requirements of different network slices. Slices
requirements are randomly generated by the part Values generator in Figure 2 at each
iteration. An observation is generated at the beginning of each iteration. This observation
combines the available resources within the VIMs with the slice resource requirements. It
provides a comprehensive view of our current network to the agent. With this observation, our
agent’s objective is to decide where to instantiate a VNF. The agent uses its learned policy (i.e.
behaviour) to make a decision. Our choice of a an agent is detailed in Section 4. The environment
responds to the agent’s decision by applying the chosen action. In other words, it initiates
the instantiation of the network slice, but only if the chosen VIM has the necessary resources
available. Then, a new observation, reflecting the new state of the network, is generated
alongside a reward for the agent. The reward is based on the agent performance on its action
choice and its purpose is to improve the agent’s policy.

The major difference between the simulated and real implementation comes with the en-
vironment’s modification. In our real environment displayed Figure 2a, OSM is responsible

5

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

for orchestrating VNFs and VLs instantiation, using OpenStack (MicroStack) API to create
Virtual Machines (VMs) and networks based on descriptors mentioned in Section 3.1. For this,
descriptors are generated based on slice resources requirements and placement decisions. In our
simulation environment, the resources are "emulated" within the Mock Environment shown
in Figure 2b. A slice placement amounts to subtract the required resources to the available
resources.

(a) Grid’5000 real environment (b) Simulation environment

Figure 2: Developed architectures

4. DRL algorithm description

4.1. DRL

DRL establishes an interaction between an agent equipped with neural networks and an en-
vironment. The latter is characterized by states whose transitions occur through actions. In
the Network Slice Placement problem, the physical infrastructure (comprising VIMs) and slice
placement requests are either present or received within the environment, and the number of
possible actions is equal to the number of VIMs where VNFs can be placed. The various pieces
of information exchanged between the agent and the environment are as follows:

• State: When a slice placement request is received by the environment, a real-time de-
scription (i.e., state or observation) of the physical infrastructure’s VIMs and the elements
of the request (VNFs) is transmitted to the agent. We define our set of VIMs by𝒩 and VNFs
by ℱ . The description of VIMs (respectively VNFs) includes the available (respectively
required) CPU, RAM, and storage space 𝑐𝑟𝑖 , ∀𝑖 ∈ 𝒩 (respectively 𝜈𝑟𝑘, ∀𝑘 ∈ ℱ).

• Action: The agent takes the observation as input and outputs a VIM identifiant (action)
it believes to be most suitable for placing the current VNF under processing. This action is
sent back to the environment for execution and evaluation of its optimality. It’s important
to note that in DRL, only the environment executes the actions and has the ability to
assess their optimality. This assessment is reflected in a value provided to the agent to
reward or penalize it.

6

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

• Reward: The reward function aims to incentivize the agent to improve its future actions.
For each VNF placement, there is an associated value, i.e., a reward calculated by the
environment. The higher the reward, the better the placement suggested by the agent is.
The agent’s objective is precisely to maximize the cumulative sum of rewards it receives
from the placements. In this paper, we have introduced and employed a reward function
for VNF 𝑘 ∈ ℱ defined by (1), where 𝜂 is a small constant used to avoid division by zero.

• Next state: Following the application of the action, the VIMs’ amounts of available
resources in the physical infrastructure change, and a new slice placement request can
now be processed. This new real-time description of the environment become the next
state.

• Experience: The combination of state 𝑠𝑡, action 𝑎𝑡, reward 𝑟𝑡, and next state 𝑠𝑡+1 is
referred as an experience, denoted 𝑒 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). Experiences are used by the
agent for self-improvement, as elaborated in the following section.

𝑅(𝑘) =

⎧⎪⎨⎪⎩
−

∑︀
𝑟∈ℛ

∑︀
𝑖∈𝒩

𝑥(𝑖, 𝑘) * 1
𝑐𝑟𝑖−𝜈𝑟𝑘+𝜂 for a successful VNF placement

−
|ℛ|+

∑︀
𝑟∈ℛ

∑︀
𝑖∈𝒩

𝑥(𝑖,𝑘)*𝑦𝑟(𝑖,𝑘)*(𝑐𝑟𝑖−𝜈𝑟𝑘)

𝜂 otherwise
(1)

with

𝑥(𝑖, 𝑘) =

{︃
1 if VNF 𝑘 ∈ ℱ is placed on VIM 𝑖

0 otherwise.
and 𝑦𝑟(𝑖, 𝑘) =

{︃
1 if 𝑐𝑟𝑖 < 𝜈𝑟𝑘
0 otherwise.

(2)

4.2. DDQN

The Double Deep Q-Network (DDQN) [12] is a value-based DRL algorithm that computes
Q-values representing an estimation of expected future rewards. This algorithm is primarily
designed for discrete environments, i.e., those with a finite action space. Each action is associated
with a Q-value that gets updated as the DDQN agent learns from its environment.

The agent’s objective is to maximize the cumulative rewards obtained throughout episodes.
Achieving this goal is closely tied to the use of Q-values because whenever the agent selects the
action with the highest Q-value, it aims to maximize an estimate of the cumulative reward. This
estimation plays a critical role in the algorithm’s behavior. DDQN employs two neural networks
to better estimate Q-values: an evaluation network and a target network following equation
(3). Action selection relies on Q-values from the evaluation network, while the update of these
Q-values is based on former Q-values from the target network, which is an older version of
the evaluation network. In DRL, the targets are not known in advance and are not fixed, hence
the need for the target network, which, for a certain number of iterations, freezes the Q-values
used in target calculations, effectively "freezing" the targets. Periodically, the target network is
updated by copying the weights from the evaluation network.

𝑌 𝐷𝐷𝑄𝑁 = 𝑟𝑡 + 𝛾𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑡+1, argmax
𝑎
𝑄𝑒𝑣𝑎𝑙(𝑠𝑡+1, 𝑎)) (3)

The trial-and-error nature of DDQN is managed through an exploration-exploitation trade-off.
To ensure the selection of actions that yield the maximum reward, various actions are tested

7

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

in different states (exploration), even if this means occasionally choosing actions with lower
Q-values. However, to truly maximize cumulative rewards and achieve the ultimate objective,
actions with the highest estimated Q-values must be selected (exploitation). To strike a balance,
we have chosen the linear decay epsilon-greedy policy, which involves selecting an action
based on the maximum Q-value with a probability of 𝜖 and choosing a random action with a
probability of 1−𝜖. DDQN is an off-policy algorithm, meaning that it leverages past experiences
to update its policy. To achieve this, it utilizes a replay buffer where experiences are stored, and
samples are periodically drawn from it to train the evaluation network, thereby improving the
estimation of its Q-values. We provide the pseudo-code of DDQN in algorithm (1).

Algorithm 1 Double Deep Q-Network (DDQN) pseudo-code

1: INPUTS : 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 (number of episodes), 𝑇 (number of steps per episode), 𝐶 (target
network update frequency)

2: OUTPUT : trained DDQN agent
3:

4: Initialize R (replay buffer)
5: Initialize 𝑄𝑒𝑣𝑎𝑙 (evaluation network)
6: Initialize 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (target network)
7: Set 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 weights to be same as 𝑄𝑒𝑣𝑎𝑙 weights
8:

9: For episode = 1 to 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do

10: Initialize state 𝑠
11: For timestep = 1 to 𝑇 do

12: Choose action 𝑎 with 𝜖-greedy policy based on 𝑄𝑒𝑣𝑎𝑙

13: Execute action 𝑎, observe reward 𝑟 and next state 𝑠′

14: Store (𝑠, 𝑎, 𝑟, 𝑠′) in replay buffer 𝑅
15: Sample a random minibatch from 𝑅
16: Compute target 𝑌 𝐷𝐷𝑄𝑁 using equation (3)
17: Update evaluation network using gradient descent: 𝜃 ← 𝜃 − 𝛼∇𝜃 [𝑄𝑒𝑣𝑎𝑙(𝑠, 𝑎)− 𝑦]2

18: Every 𝐶 timesteps, update target network weights: 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑄𝑒𝑣𝑎𝑙

19: Set 𝑠← 𝑠′

20: return DDQN agent

4.3. Real deployment considerations

Deploying our algorithm within a real environment requires us to consider several key factors.
Firstly, our observation space include infrastructure state and current slice requirements (CPU,
RAM and storage). All these measurements are emulated in simulation and easily retrievable
with OSM. One noteworthy advantage is that the agent receive observations independently of
the environment type. This means that we have no need to develop separate agents for each
environment. Consequently, we can use the same model for both environments evaluations,
which not only minimizes potential errors but also ensure consistent behaviour across environ-
ments. The model’s training is conducted within the simulation environment, justified by the

8

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

significant time needed to instantiate a slice in a real environment, which could extend training
times to several months. By training in simulation, we can significantly reduce the learning
time of our algorithm.

5. Results

In this section, we introduce the configuration of our experimental testbed, which serves as
the foundation for our research and evaluation. The testbed includes six VIMs deployed on
separate Grid’5000 nodes. Each VIM is equipped with 32 virtual CPUs (vCPUs), 128 GB of RAM,
and 256 GB of disk space. We use a Ubuntu 20.04 LTS distribution for each node. For our cloud
infrastructure, we have deployed MicroStack instances with the OpenStack Ussuri version. To
orchestrate and manage network services and resources, we have integrated OSM on a separate
node with the same characteristics as the MicroStack nodes. We use OSM Release THIRTEEN
for our experiment. Each generated slice contains exactly 10 VNFs whose values are randomly
selected within ranges defined in Table 1.

Table 1
Random functions and ranges used for slice requirements generation

Resource Type Random function Range Unit
CPU Integer numpy.random.choice2 {1, 2} with probabilities {0.7, 0.3} -
RAM Float numpy.random.uniform2 [0, 10[GB
Disk Float numpy.random.uniform2 [0, 20[GB

In the initial phase of our experiments, we monitored the resources state of both simulation
and real environments at each iteration, with CPU in Figure 3, RAM in Figure 4 and storage in
Figure 5. We successfully instantiated 12 slices, equivalent to 120 VNFs in both the simulation
and real environments. The last slice (12) could not be created in either environment because
of a lack of resources. We observed that differences in the allocation of resources appears just
before the middle of the episode. These disparities may be attributed to variations in the agent’s
behavior.

Therefore, to delve deeper into the agent’s behavior, we examined its choice of VNF placement
at each iteration. We plotted in Figure 6 the number of VNFs assigned to each VIM, whether
or not the slice can be created. Initially, there was not any difference between the decision
graphs for both environments in the early iterations. However, differences started to manifest
around slice 5. Most of the differences observed in the previous figures were primarily caused
by variations in the agent’s decisions. During evaluation, exploration was deactivated, meaning
that any small changes in the agent’s actions should be attributed to disparities in the two
observations.

We still needed to assess the overall impact of these disparities, so we plotted in Figure 7a
the total amount of available resources for both the simulation and real environments at each
iteration. The objective was to investigate whether there was a consequent difference in the
overall available resources of the infrastructure. Our observations revealed that the behavior of

2Based on numpy.random functions : https://numpy.org/doc/stable/reference/random/legacy.html

9

https://numpy.org/doc/stable/reference/random/legacy.html

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

resource utilization appeared to be linear for both experiments and across the three resource
types (CPU, RAM, and Disk space). While there were some differences between the real and
simulation curves, these disparities did not appear excessively significant.

As a final aspect of our analysis, we examined the relative differences (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑑𝑖𝑓𝑓 =
𝑆𝑖𝑚−𝑅𝑒𝑎𝑙

𝑅𝑒𝑎𝑙) between the total amount of resources allocated in the real and simulation environ-
ments for each iteration. Notably, we observed in Figure 7b that the simulation appeared to
prioritize RAM consumption over storage consumption. Interestingly, the relative difference in
CPU resources remained consistently zero throughout all iterations. These results are likely
due to the use of integer values for CPU and float for the others. Then, our investigations
pointed towards a potential issue with OSM, which appeared to round RAM and Disk space
values. Specifically, OSM returned RAM values with three decimal numbers and provided Disk
space values without any decimal precision, whereas it uses decimal precision for slice storage
requirements.

(a) Simulation environment (b) Real environment

Figure 3: Number of available vCPUs per VIM at each iteration

(a) Simulation environment (b) Real environment

Figure 4: Amount of available RAM (in GB) per VIM at each iteration

Our experiments revealed that there were no major differences in the performance (i.e.
number of slices instantiated), between the simulation and real environments. However, the
disparities identified in the OSM observation of the infrastructure were significant enough to
impact the overall behavior of the agent.

10

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

(a) Simulation environment (b) Real environment

Figure 5: Amount of available Disk space (in GB) per VIM at each iteration

(a) Simulation environment (b) Real environment

Figure 6: Agent’s placement decisions per VIM at each iteration

(a) Total amount of available resources (CPU,
RAM, Disk space) per environment at each
iteration

(b) Relative difference between total amounts
of resources in real and simulation experi-
ments at each iteration

Figure 7: Computation of differences between real and simulation experiments

6. Conclusion and perspectives

In this paper we presented a DRL based algorithm to solve the problem of optimizing network
slice placement in future networks. The algorithm was trained in a simulated environment

11

Alexandre Sabbadin et al. CEUR Workshop Proceedings 1–12

and then evaluated in a real environment deployed on the Grid’5000 platform and managed
by OSM. The results show good performances of the algorithm in real conditions with minor
differences due to the collected observations in the infrastructure. However, the consequent
delays required to instantiate VNFs in the infrastructure make it difficult to continue the training
in real conditions once the algorithm has been deployed. In future work, we would like to
introduce mechanisms to accelerate the generation of experiences, either by augmenting the
training experience dataset or by using analytical models.

References

[1] N. Alliance, Description of network slicing concept, NGMN 5G P 1 (2016) 1–11.
[2] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lèbre,

D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez, F. Quesnel, C. Rohr,
L. Sarzyniec, Adding virtualization capabilities to the Grid’5000 testbed, in: I. I. Ivanov,
M. van Sinderen, F. Leymann, T. Shan (Eds.), Cloud Computing and Services Science, vol-
ume 367 of Communications in Computer and Information Science, Springer International
Publishing, 2013, pp. 3–20. doi:10.1007/978-3-319-04519-1_1.

[3] 5GCity - A distributed cloud & radio platform for 5G Neutral Hosts, https://www.5gcity.eu/,
2023. [Online].

[4] A. Esmaeily, K. Kralevska, D. Gligoroski, A cloud-based sdn/nfv testbed for end-to-end
network slicing in 4g/5g, in: 2020 6th IEEE Conference on Network Softwarization
(NetSoft), 2020, pp. 29–35. doi:10.1109/NetSoft48620.2020.9165419.

[5] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, X. Costa-Perez, Benchmarking open source
NFV MANO systems: OSM and ONAP, Computer Communications 161 (2020) 86–98.
URL: https://www.sciencedirect.com/science/article/pii/S0140366420305946. doi:https:
//doi.org/10.1016/j.comcom.2020.07.013.

[6] Open Source MANO (OSM), https://osm.etsi.org/, 2023. [Online].
[7] M.-I. Csoma, B. Koné, R. Botez, I.-A. Ivanciu, A. Kora, V. Dobrota, Management and

orchestration for network function virtualization: An open source mano approach, in:
2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet),
IEEE, 2020, pp. 1–6.

[8] O. Sefraoui, M. Aissaoui, M. Eleuldj, et al., OpenStack: toward an open-source solution for
cloud computing, International Journal of Computer Applications 55 (2012) 38–42.

[9] P. Karamichailidis, K. Choumas, T. Korakis, Enabling multi-domain orchestration using
open source MANO, OpenStack and OpenDaylight, in: 2019 IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN), IEEE, 2019, pp. 1–6.

[10] T. Dreibholz, A 4g/5g packet core as vnf with open source mano and openairinterface, in:
2020 International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), IEEE, 2020, pp. 1–3.

[11] OpenStack on Kubernetes | Ubuntu, https://microstack.run/, 2023. [Online].
[12] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning,

in: Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016, p. 1.

12

http://dx.doi.org/10.1007/978-3-319-04519-1_1
https://www.5gcity.eu/
http://dx.doi.org/10.1109/NetSoft48620.2020.9165419
https://www.sciencedirect.com/science/article/pii/S0140366420305946
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2020.07.013
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2020.07.013
https://osm.etsi.org/
https://microstack.run/

	1 Introduction
	2 Related work
	3 Architecture concepts
	3.1 Open Source MANO
	3.2 Grid'5000
	3.3 Proposed architecture

	4 DRL algorithm description
	4.1 DRL
	4.2 DDQN
	4.3 Real deployment considerations

	5 Results
	6 Conclusion and perspectives

