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Abstract
Protecting the privacy of a user while they interact with an Information Retrieval (IR) system is crucial.
This becomes more challenging when the IR system is not cooperative in satisfying the user’s privacy
needs. Recent advancements in Natural Language Processing (NLP) have demonstrated Differential
Privacy’s (DP) effectiveness in safeguarding text privacy for tasks like spam detection and sentiment
analysis, even under the assumption of a non-cooperative system. Our investigation explores if DP
methods, originally designed for specific NLP tasks, can effectively obscure queries in IR. Our analyses
show that using the Vickrey DP mechanism, employing the Mahalanobis norm with a privacy budget
ranging from 𝜖 = 10 to 12.5, provides cutting-edge privacy protection and enhances effectiveness. Unlike
previous methods, DP allows users to fine-tune their desired level of privacy by adjusting the privacy
budget 𝜖. This flexibility offers a balance between how effective the system is and how much privacy is
maintained, unlike the more rigid nature of previous approaches.

1. Introduction

Information Retrieval (IR) systems are a commodity used for many tasks, including searching
for personal information, such as symptoms and diseases, political opinions, or egosurfing.
Such searches can be used to profile the user and can put at risk their privacy. For example,
an insurance company might try to access the user’s queries to determine if they have any
disease, or a malicious employee of a search engine might access the query log to blackmail
them. To alleviate this, obfuscation approaches hide the sensitive information need by breaking
it down into multiple non-sensitive queries. To this end, some approaches rely on replacing
words with generalizations, i.e., hypernyms [2]. Other strategies use a local corpus to determine
which words, by co-occurring in the documents with those in the query, induce the same
ranked list [3]. We investigate for the first time whether Differential Privacy (DP) mechanisms,
originally designed for specific Natural Language Processing (NLP) tasks, can effectively be
used in IR to obfuscate queries. DP [4] is a state-of-the-art framework meant to release privately
sensitive information. The general idea is to use a randomized mechanism that introduces
noise into the computation. Thanks to this, the user can “plausibly deny” the output: it is
impossible to prove that the output corresponds to the input of the user and is not due to
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the randomness of the mechanism. DP is particularly effective in the NLP domain. A line of
research [5, 6, 7] operationalizes DP to release text by obfuscating each word individually. Such
mechanisms work as follows: i) each word in the text is mapped to a non-contextual embedding
space; ii) the embeddings are perturbed with noise drawn from a specific distribution; iii) each
word is replaced with the word closest to the noisy embedding. A major advantage of DP
is that it allows setting the privacy budget based on the needs of the user. This is different
from current obfuscation mechanisms in IR, which are either active or not and cannot be
tuned based on the user’s needs. In this work, we focus on three of DP mechanisms: the
Calibrated Multivariate Perturbation (CMP) [5], the Mahalanobis [6] and the Vickrey [7]. These
approaches were originally devised and tested for NLP tasks that include text classification
and sentiment analysis. We assume the IR system to not preserve user privacy, and to possibly
be malicious. In our use case, users are the ones concerned about their privacy. They do not
want to reveal their real information needs and prefer to transmit obfuscated queries to the IR
system while still retrieving relevant documents. Therefore, to operationalize our mechanism,
we assume each user to locally obfuscate their query and transmit the obfuscated query, or
possibly multiple queries, to the IR system instead of their real query. Our goal is to determine
if the DP mechanisms introduced above can successfully obfuscate users’ information needs
while still retrieving relevant documents.

2. Approaches

All the approaches described in this work are based on a relaxation of classical DP, called
Metric-DP. To achieve traditional DP in a metric space, an obfuscation mechanism should
have an equal probability of obfuscating any pair of points as the same point, irrespective of
their distance. While this grants the highest level of privacy, it also requires high levels of
noise, decreasing the utility of the data. In the case of metric spaces, it is often sufficient if
the probability of obfuscating two points with the same one is proportional to the distance
between the two points. Alternatively, the proportion of sampling a certain noise is inversely
proportional to the norm of the noise itself. To this end, a relaxation of DP, called Metric-DP,
has been introduced. Metric-DP [8, 9, 10] is defined as follows: given a privacy budget 𝜖 and
a distance measure 𝑑 : R𝑝 × R𝑝 → [0,∞), a randomized mechanism ℳ : R𝑝 → R𝑝 defined
over a geometric space is Metric-DP iff, for any three points in the space 𝑤,𝑤′, �̂� ∈ R𝑝, the
following holds: 𝑃𝑟{ℳ(𝑤)=�̂�}

𝑃𝑟{ℳ(𝑤′)=�̂�} ≤ exp(𝜖𝑑{𝑤,𝑤′}) If the 𝑑{𝑤,𝑤′} is small, 𝑤 and 𝑤′ are more
likely to be obfuscated with the same point. Vice-versa, far apart points might be obfuscated
with different points, without violating privacy constraints.

We describe here the three major DP efforts for obfuscating text in the NLP scenario, which
we evaluate for the IR task. More in detail, these approaches take as input a sequence of
words. Each word is mapped into a non-contextual embedding, such as GloVe [11]. Then,
the embedding is obfuscated by adding some appositely sampled noise to it. To ensure that
Metric-DP is achieved, the noise vector 𝑧 is expected to be sampled from a distribution 𝑓 such
that the probability of observing 𝑧 is 𝑓(𝑧) ∝ exp(−𝜖||𝑧||), i.e., the probability of sampling a
noise with norm ||𝑧|| is inversely proportional to ||𝑧||. Finally, the closest word to the noisy
embedding is used to obfuscate the corresponding word in the original text. We propose to use



these approaches in the IR scenario to perturb the queries instead of the documents, as done for
NLP tasks.

The Calibrated Multivariate Perturbation (CMP) mechanism, defined by Feyisetan et al. [5], is
based on sampling a noise vector for each term in the query following an n-dimensional Laplace
distribution. Such sampling works by sampling two vectors: i) an n-dimensional unitary vector
𝑝 ∈ R𝑛 that represents the direction of the perturbation. ii) the radius of the perturbation
𝑟 ∈ R+ is sampled from a Gamma distribution. To sample 𝑝, a vector 𝑁 ∈ R𝑛 is sampled
from a multivariate normal distribution, with location 0 and identity covariance matrix I𝑛:
𝑁 ∼ 𝒩 (0, I𝑛). Then 𝑝 = 𝑁/||𝑁 ||2. The radius 𝑟 of the noise is sampled from a Gamma
distribution with shape 𝑛 and scale 1

𝜖 as 𝑟 ∼ 𝐺𝑎𝑚(𝑛, 1𝜖 ). It is possible to observe that, the
larger the privacy requirement, i.e., the smaller the 𝜖, the bigger the noise. The noise 𝑧 is defined
as 𝑧 = 𝑝 · 𝑟. To perturb a word 𝑤, the noise vector 𝑧 is added to the original word embedding
𝜑(𝑤) ∈ R𝑛, and the word closest to the noisy word embedding is used as obfuscation. Feyisetan
et al. [5] demonstrate that for any word sequence 𝒲 𝑙 of length 𝑙 ≥ 1 and any 𝜖 > 0, CMP
satisfies 𝜖𝑑-privacy with respect to 𝑑, where 𝑑 is the Euclidean distance.

The second mechanism investigated is the Mahalanobis (Mhl) mechanism. Xu et al. [6] noticed
how the perturbation induced by CMP mechanism tends to be weak, especially for high 𝜖. They
hypothesize that sampling the direction of the perturbation on a circumference (||𝑝||2 = 1)
increases the risk of sampling a point on an empty region. Therefore, Xu et al. adapt the CMP
mechanism by transforming the direction of the noise from a circumference to an ellipsis whose
orientation can be set to be towards the other embeddings. To do so, it is necessary to modify
the sampling mechanism, so that, instead of sampling 𝑝 such that ||𝑝||2 = 1, 𝑝 is sampled so
that ||𝑝||𝑀 = 1 where || · ||𝑀 is the Mahalanobis norm. To ensure that the noise 𝑧 is sampled
such that its probability distribution is 𝑓(𝑧) ∝ exp(−𝑒||𝑧||𝑀 ) a vector 𝑁 is sampled from the
multivariate normal distribution 𝑁 ∼ 𝒩 (0, 𝐼𝑛). Then, 𝑝 is such that 𝑝 = Σ1/2 · (𝑁/||𝑁 ||2),
where Σ ∈ R𝑛×𝑛 is the covariance matrix of all the word embeddings. This forces the noise
towards more populated areas. The sampling of the norm of the noise 𝑟 is the same as for CMP.

Finally, we investigate the Vickrey (Vkr) mechanism. The Mhl still tends to obfuscate a word
with itself for large 𝜖. To reduce the probability of masking a token with itself, Xu et al. [7]
define the Vickrey DP mechanism (we refer to it as Vkr). Vkr is based on two steps. In the
first step, a noisy vector is sampled using any of the mechanisms described above: we can
instantiate Vkr with either Mhl mechanism (Vkr𝑀ℎ𝑙) or the CMP mechanism (Vkr𝐶𝑀𝑃 ). In
the second step, with probability 𝑃𝑟 the word corresponding to the closest embedding to the
noisy vector is used as the obfuscation word. Vice versa, with probability 1 − 𝑃𝑟 the word
corresponding to the second closest embedding is used as obfuscation. The probability 𝑃𝑟 is
defined as 𝑃𝑟(𝑡, 𝑣) = (1−𝑡)||𝜑(𝑢2)−𝑣||2

𝑡||𝜑(𝑢1)−𝑣||2+(1−𝑡)||𝜑(𝑢2)−𝑣||2 , where 𝜑(𝑢1) and 𝜑(𝑢2) are respectively the
closest and second closest word embeddings to 𝑣, the perturbed embedding of 𝑤, and 𝑡 is an
additional free parameter. We set 𝑡 = 0.75, being the best performing [7].

3. Evaluation

We consider two different collections TREC Robust ‘04 and TREC Deep Learning (DL ‘19). As
word embeddings, we used GloVe [11] with 300 dimensions trained on the Common Crawl.



Table 1
Average MiniLM sentence similarity between the original query and 20 obfuscation queries generated with different approaches.

Robust ‘04 DL ‘19
𝜖 1 5 10 12.5 15 17.5 20 50 No DP 1 5 10 12.5 15 17.5 20 50 No DP

CMP 0.074 0.100 0.396 0.672 0.871 0.961 0.987 0.996 0.024 0.032 0.214 0.458 0.681 0.824 0.903 0.952
Mhl 0.077 0.095 0.244 0.427 0.627 0.794 0.907 0.996 0.020 0.034 0.119 0.241 0.427 0.610 0.750 0.951

Vkr𝐶𝑀𝑃 0.077 0.100 0.278 0.412 0.511 0.578 0.622 0.760 0.028 0.032 0.137 0.211 0.308 0.372 0.413 0.565
Vkr𝑀ℎ𝑙 0.076 0.096 0.188 0.282 0.382 0.472 0.533 0.746 0.023 0.026 0.084 0.149 0.215 0.284 0.333 0.553

AED 0.487 0.509
FSH 0.203 0.077

In terms of retrieval models, we consider a sparse bag-of-word model, BM25, and a dense
bi-encoder, Contriever [12]. To set a baseline, we compare the DP approaches aforementioned
with two non-DP obfuscation approaches originally devised explicitly for the IR task. We take
into consideration the seminal work by Arampatzis et al. [2], labeled AED, and the recent
state-of-the-art solution by Fröbe et al. [3], labeled FSH. For each approach and for each query,
we generate 20 obfuscation queries.

Table 1 shows, as a proxy of the privacy achieved by the mechanisms, the average similarity
between the original query and the obfuscation queries generated to hide it. We compute the
similarity as the dot product between the MiniLM [13] representations of the original query
and the obfuscated ones. As expected from a DP mechanism, the higher the 𝜖 the higher the
similarity between the queries – with 𝜖 = 50 for both Robust ‘04 and DL ‘19, CMP and Mhl
achieve similarity higher than 95%. This indicates that overall the generated queries are almost
identical to the original ones and there is no substantial privacy protection. FSH, which explicitly
removes synonyms and hypernyms from the queries, is particularly safe and corresponds to a
DP Vkr𝐶𝑀𝑃 mechanism with 𝜖 ∈ [5, 10] or a Vkr𝑀ℎ𝑙 with 𝜖 ∈ [10, 12.5] for the Robust ‘04, and
DP Vkr𝐶𝑀𝑃 and a Vkr𝑀ℎ𝑙 mechanism with 𝜖 ∈ [5, 10] for the DL ‘19. The privacy achieved
by AED can be achieved with 𝜖 in the range [10; 12.5] by CMP and Mhl on both collections. 𝜖
values that grant a comparable level of privacy are much higher for Vkr-based mechanisms,
especially Vkr𝑀ℎ𝑙, on both collections – this means that the Vkr mechanisms are substantially
more secure from a privacy perspective.

As both CMP and Mhl are less effective from a privacy perspective, we focus the following
analyses on the Vkr mechanism, with 𝜖 ∈ {10, 12.5, 15}. More in detail, we compare these DP
mechanisms with AED and FSH, based on three axes: i) the obfuscation; ii) the pooled recall;
iii) the nDCG@10 observed if we re-rank the documents pooled by the obfuscation queries.
We define the obfuscation as 1 minus the similarity of the original query and the obfuscated
one. The pooled recall is obtained by transmitting to the IR system 20 obfuscated queries: for
each ranked list in response to an obfuscated query, we select the first 100 documents and
merge all the sets of documents obtained. We compute the recall on this new set of documents.
Finally, to compute nDCG@10, we rerank the pooled documents using a different IR model
(we use TAS-B to avoid biasing toward any IR model) and evaluate the quality of this ranked
list. For each approach, these measures are reported on a radar plot where, as a rule of thumb,
a larger area corresponds to more desirable results. Figure 1 reports the radar plots, showing
the performance of different obfuscation approaches over the three axes mentioned above. We
notice that the area corresponding to the AED approach (in red) is encompassed within the
area corresponding to Vkr𝑀ℎ𝑙 with 𝜖 = 15 (green). In fact, on the Robust ‘04 collection, AED
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Figure 1: Performance of different obfuscation mechanisms over three axes: pooled recall, nDCG@10 of the reranked
documents, obfuscation (obf), measured as 1-similarity. Cnt. stands for “Contriever”.

achieves nDCG@10 of 0.410 and 0.424 for BM25 and Contriever respectively, recall of 0.420 and
0.419, and obfuscation of 0.513. Vice versa Vkr𝑀ℎ𝑙 with 𝜖 = 15 obtains nDCG@10 of 0.416 and
0.431, recall of 0.493 and 0.462, and obfuscation of 0.618. The exception is DL ‘19 with Contriever
as the IR system, where AED has higher recall than Vkr𝑀ℎ𝑙 (0.497 against 0.418). Nevertheless,
this larger recall does not correspond to much larger nDCG@10, indicating that Vkr𝑀ℎ𝑙 is
preferable over AED, as it has comparable nDCG@10 (0.604 for Vkr𝑀ℎ𝑙 against 0.607 for AED),
with improved obfuscation (0.785 against 0.491). When it comes to FSH (purple), the behaviour
depends on the collection. In the DL ‘19, using Vkr𝑀ℎ𝑙 with 𝜖 = 10 (blue) provides an edge
over FSH: they have comparable obfuscation (0.916 the former, 0.923 the latter), but Vkr𝑀ℎ𝑙 has
much larger nDCG@10 (0.254 compared to 0.064). On the Robust ‘04 collection, to observe an
improvement in terms of nDCG@10, it is necessary to use Vkr𝑀ℎ𝑙 with 𝜖 = 12.5 (nDCG@10 of
0.349 and 0.355 for BM25 and Contriever respectively) to overcome FSH in terms of nDCG@10
(0.140 and 0.194). While Vkr𝑀ℎ𝑙 with 𝜖 = 12.5 exhibits nDCG@10 performance slightly lower
than AED, it also has obfuscation (0.719) relatively close to FSH, which has obfuscation of
0.797, much closer than AED, with obfuscation 0.513. As a general guideline, we propose to use
Vkr𝑀ℎ𝑙 as the obfuscation mechanism, with 𝜖 chosen in the interval [10, 15], depending on the
optimal trade-off between privacy and effectiveness, as chosen by the user.

4. Conclusion and Future Work

In this work, we analyzed for the first time the performance of three DP mechanisms, originally
designed for NLP, in the proxy query obfuscation IR task. We evaluated these mechanisms on
the IR setting by considering three aspects: their obfuscation capabilities, their effectiveness in
terms of recall, and their ability in allowing to retrieve highly relevant documents. Our findings
highlight that the Vickrey mechanism with 𝜖 ∈ [10, 12.5] achieves higher privacy guarantees,
with improved effectiveness, than current state-of-the-art approaches. Furthermore, lower
or higher levels of 𝜖 allow for better satisfy the user, either in terms of privacy or accuracy,
depending on their inclinations. As a future work, we plan to investigate how to perturb dense
representations of the queries and combine them with generative language models to produce
obfuscation queries with the same dense representation, but different terms.
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