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Abstract
Automatic theory repair systems help identify and repair faults in a knowledge base, which has useful
applications in artificial intelligence such as decision systems. The ABC system is a state-of-the-art
implementation of such systems which combines three existing techniques: abduction, belief revision
and conceptual change, but with a limitation that it only accepts Datalog logic. To enhance its expressive
power, this study extends the ABC system to first-order logic (ABC_FOL), by augmenting the fault
detection module and adding new repair plans to the system. The resultant extended system is able to
correctly identify faults and generate sensible repairs across a diverse set of first-order logic examples
that cannot be expressed in Datalog logic.

Keywords
automated theory repair, abduction, belief revision, conceptual change, reformation, first-order logic

1. Introduction

Automated theory repair is a subfield of AI focused on rectifying errors in logical theories or
knowledge bases. These theories are crucial for AI tasks like reasoning, planning, and learning
[1]. Automated reasoning is gaining importance in applications like autonomous vehicles,
where safety and accuracy are vital. Unlike machine learning models, reasoning systems are
preferred for their reliability and explainability [2].

Logical theories represent an agent’s environment, such as traffic rules for autonomous
vehicles. These theories can become faulty, for instance, due to changes in the environment or
new objectives [3], like when new traffic laws are introduced that requires the agent to reason
and behave differently than before.

The ABC repair system by Li and Bundy [4, 3] addresses these issues by integrating abduction,
belief revision, and conceptual change in Prolog to repair theories. ABC takes a 𝑇ℎ𝑒𝑜𝑟𝑦 (T) and
a 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (PS) consisting of a true set and false set as input. If the theory fails in
proving any proposition in the true set, it is insufficient. If the theory proves any proposition in
the false set, it is incompatible. ABC system repairs these two kinds of faults and outputs a set
of fault-free theories (which might be empty). PS contains true and false sets, which represents
the propositions that should be provable or unprovable by the theory respectively. The pipeline
is shown in Figure 1.

However, ABC was initially designed only for Datalog-like theories, which excludes negations,
functions and existential quantification. Rules are also restricted to be Horn clauses. When
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Figure 1: Pipeline of the ABC model [4].

considering real-world scenarios, some complex rules (such as Government laws and regulations)
simply cannot be encoded in Datalog logic. It is hence important to consider first-order logic
(FOL), a more expressive logic that allows translation of almost any natural language statement
to FOL statements [5]. This project aims to extend ABC to support FOL while retaining domain-
independence. The hypothesis is that ABC techniques can be adapted to repair FOL theories,
offering some potential repairs, though not all of them.

Referring to figure 1, the project focuses on modifying C2 and C3 of ABC, as follows: 1.
Developing an ABC theorem prover for FOL, generating partial proofs for repairs (C2). 2.
Extending existing repair strategies to accommodate FOL (C3). 3. Creating new FOL-specific
repair strategies (C3).

2. Extension of Fault Detection (C2)

2.1. Ancestor Resolution

Ancestor resolution involves resolving the current clause with one of its own ancestors [6]. This
concept is used in SL-resolution, where ancestors refer to intermediate goal clauses derived
through resolution steps (RS). Incorporating ancestor resolution in FOL is essential due to its
ability to handle non-Horn clauses, enabling new rules and theorems to emerge during the
resolution process. This adaptability proves crucial in correctly deriving desired goals.

Consider the following example:

𝑙𝑖𝑘𝑒(𝑋,ℎ𝑖𝑘𝑖𝑛𝑔) =⇒ 𝑙𝑖𝑘𝑒(𝑋, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔).

𝑙𝑖𝑘𝑒(𝑋, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔) =⇒ 𝑙𝑖𝑘𝑒(𝑋,ℎ𝑖𝑘𝑖𝑛𝑔).

=⇒ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔) ∨ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, ℎ𝑖𝑘𝑖𝑛𝑔)

Figure 2 shows the inference result of 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔). The final resolution step, as
highlighted in green, reuses the derivation result of the initial step (red) to prove the desired
result. Without ancestor resolution, we would not be able to prove the result.



𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔) =⇒
=⇒ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, ℎ𝑖𝑘𝑖𝑛𝑔)

=⇒ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔) ∨ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, ℎ𝑖𝑘𝑖𝑛𝑔)

=⇒ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔)
𝑙𝑖𝑘𝑒(𝑋,ℎ𝑖𝑘𝑖𝑛𝑔) =⇒ 𝑙𝑖𝑘𝑒(𝑋, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔)

=⇒ 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔) =⇒
Figure 2: The inference of 𝑙𝑖𝑘𝑒(𝑔𝑒𝑜𝑟𝑔𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔)

2.2. Occurs Check

The occurs check is crucial for inference soundness, preventing cyclic substitutions where a
variable is bound to a term containing itself, e.g., 𝑓(𝑌 )/𝑌 [6]. Unlike the prior ABC version,
the new FOL context introduces functions, rendering the occurs check necessary. This issue
arises only when binding a variable to a function-containing a term, not a constant.

Consider the illustrative example:

𝑑𝑎𝑡𝑎(𝑋,𝑋) ≡ 𝑑𝑎𝑡𝑎(𝑌,𝑚𝑜𝑑𝑒𝑙(𝑌 ))

The sign ≡ represents a unification problem. Here, unifying the second argument encounters
the challenge 𝑌 ≡ 𝑚𝑜𝑑𝑒𝑙(𝑌 ), causing the occurs check to fail due to cyclic substitution.

The project reinstates the occurs check into the unification algorithm. The condition 𝑥 ∈ 𝒱(𝑠)
is verified within the 𝑂𝑐𝑐𝑢𝑟𝑠 case of the standard unification. Readers can refer to [6] for details
of the occurs check.

3. Extension of Repair Generation (C3)

A summary of old and new repair plans in ABC_FOL are listed in table 1, appendix A. The
description of the changes are as follows.

3.1. Extension of ABC’s Framework

ABC’s framework needs to be modified for FOL, including a new trace-back, incorporating
functions, and removing restrictions of Datalog.

A repair is generated to block an unwanted unification or unblock a wanted unification in
a resolution process, which has to modify a source axiom that is originally from the input
theory rather than a theorem that is derived during resolution. Otherwise, the fault will still be
derivable from the source axioms.

Thus, a trace-back algorithm is pivotal in pinpointing the source axiom for a targeted uni-
fication from a proof. This necessity arises from ancestor resolution. The accurate change
propagation to the pertinent axiom hinges on the trace-back process.

In order to incorporate functions, we adapted ABC’s framework to accept functions and be
able to accurately identify constants, variables, predicates and functions.

Finally, a number of restrictions are modified in each specific old repair plan, that targets
FOL’s distinction from Datalog - non-Horn clauses, allowing orphan variables (variables that
are solely present in the head but not the body), predicates with function arguments.



3.2. New Repair Plans

A brief summary of each of the repair plans is provided as follows. The first three fix an
incompatibility that a proposition in the false set of preferred structure is derived so that we
want to break a unification in its proof. The last is for an insufficiency that a proposition in the
true set of the preferred structure cannot be derived, where we want to fix the failed unification
to build a proof for it. Readers are directed to the project’s github repository [7] for a detailed
description of the repair plans.
CR7-10: Break unification of a function: These repairs break unification of two functions by
renaming functions, renaming constant arguments, weakening variables or adding different con-
stants, which inherently breaks the predicate-level unification. The repair plans accommodate
functions with various nesting depths.
CR11: Break 𝑝1(�⃗�

𝑛
) ≡ 𝑝(�⃗�

𝑛
) by adding a variable 𝑌 to 𝑘: This repair breaks unification

by failing the occurs check, which is achieved by adding a variable that would cause cyclic
substitution.
CR12: Break 𝑝1(�⃗�

𝑛
) ≡ 𝑝(�⃗�

𝑛
) by adding an unprovable alternative 𝑞(�⃗�

𝑤
): Appends an

unprovable positive literal 𝑞 to the original axiom that satisfies certain conditions, effectively
breaking the unification.
SR6: Fix the failed unification 𝑠𝑖 ̸= 𝑡𝑖 by removing all occurrences of a variable 𝑋 :
Fixing a failed occurs check by removing all occurrences of the variable that leads to a cyclic
substitution.

An example scenario that utilizes the new repair plans is a repair of an erroneous mathematical
equation. Consider the equation: ∃𝑍, ∀𝑌. 𝑌 ̸= 𝑍 . This equation can be formulated in ABC_FOL
in the following form: ¬𝑒𝑞(𝑌, 𝑐). This causes a contradiction with the fact 𝑒𝑞(𝑋,𝑋), which
is also added as an axiom in ABC_FOL. The new repair plan, CR11, is able to remedy this by
introducing a new variable to the constant 𝑐, changing equation ¬𝑒𝑞(𝑌, 𝑐) to the following:

¬𝑒𝑞(𝑌, 𝑑𝑢𝑚𝑚𝑦𝑐1(𝑌 )) (1)

This reorders the quantifiers into ∀𝑌,∃𝑍. 𝑌 ̸= 𝑍 , which now holds true.
Note that 𝑑𝑢𝑚𝑚𝑦𝑐1 is a function yet to be assigned any meaning, as in any functions which

arise from skolemization. In many applications, we need to assign values to the new functions
for the logical system to behave correctly. Suppose that, based on other observations, a new
rule 𝑑𝑢𝑚𝑚𝑦𝑐1(𝑍) = 𝑍 is added to the theory - this raises yet another contradiction with the
rule (1).

Now, CR7 is able to rename the function 𝑑𝑢𝑚𝑚𝑦𝑐1 in (1) further into 𝑑𝑢𝑚𝑚𝑦𝑑𝑢𝑚𝑚𝑦𝑐1:

¬𝑒𝑞(𝑌, 𝑑𝑢𝑚𝑚𝑦𝑑𝑢𝑚𝑚𝑦𝑐1(𝑌 )) (2)

This makes sure the function in equation (1) stands different from other occurences of
𝑑𝑢𝑚𝑚𝑦𝑐1 in the theory.



4. Case Study

A precise definition of a general polyhedron has long been argued as there are multiple prevailing
ones [8]. A common definition requires a polyhedron to be formed of four or more polygons.
Consider the following (faulty) definition of a polygon (𝑣𝑠 and 𝑙𝑠 are the set of vertices and
lines respectively):

(∀ 𝑣 ∈ 𝑣𝑠.∃ 𝑙1, 𝑙2 ∈ 𝑙𝑠. 𝑙1 ̸= 𝑙2 ∧𝑚𝑒𝑒𝑡(𝑣, 𝑙1, 𝑙2)) =⇒ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑛, 𝑙𝑠, 𝑣𝑠) (3)

Equation 1 allows the “𝑒𝑔𝑔𝑡𝑖𝑚𝑒𝑟“, as defined in Appendix B, to be a polygon. Suppose we do not
want the 𝑒𝑔𝑔𝑡𝑖𝑚𝑒𝑟 to count as a polygon as it cannot be properly extended to form a polyhedron
- Lakatos [8] introduced a concept termed “𝑚𝑜𝑛𝑠𝑡𝑒𝑟 𝑏𝑎𝑟𝑟𝑖𝑛𝑔“ to exclude counter-examples like
this. In ABC_FOL, we can mimic monster barring by the following formulation in clausal form:

¬𝑣𝑠(𝑥) ∨ ¬𝑙𝑠(𝐴) ∨ ¬𝑙𝑠(𝐵) ∨𝐴 = 𝐵 ∨ ¬𝑚𝑒𝑒𝑡(𝑥,𝐴,𝐵) ∨ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑒𝑔𝑔𝑡𝑖𝑚𝑒𝑟) (4)

¬𝑚𝑒𝑒𝑡(𝑃,𝐿1, 𝐿2) ∨ 𝑣𝑠(𝑃 ) (5)

Equation (4) is the clausal form of equation (3), which was not possible to be formulated with
ABC_Datalog. Equation (3) is a wrong formulation which causes the point 𝑥, a point that is not
in the vertex set, to be wrongly included in the vertex set. The remaining equations that are not
shown include the definition of all 𝑚𝑒𝑒𝑡 points and all lines in the set 𝑙𝑠, as referenced from
Appendix B. The only item in the false set of this example is 𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑒𝑔𝑔𝑡𝑖𝑚𝑒𝑟), which is the
target proposition to block, while the true set is empty.

Passing this formulation to FOL_ABC, a total of 56 repair plans are generated, spanning the
use of various repair plans in repairing incompatibility. One of the solution uses the repair CR6
to add an unprovable precondition to (3), as follows:

¬𝑑𝑢𝑚𝑚𝑦𝑃𝑟𝑒𝑑(𝑃 ) ∨𝑚𝑒𝑒𝑡(𝑃,𝐿1, 𝐿2) ∨ 𝑣𝑠(𝑃 ) (6)

Given that the above formulation has no other reasonable candidates for the unprovable precon-
dition, the predicate 𝑑𝑢𝑚𝑚𝑦𝑃𝑟𝑒𝑑 is used. This could be linked to some specific mathematical
definitions that establish point 𝑝 as a vertex.

5. Conclusion

This paper extends the theory repair system ABC from Datalog to accommodate first-order logic.
The proposed enhancements involve introducing ancestor resolution, an occurs check to the
fault detection module and some framework adaptions for incorporating functions. Furthermore,
novel repair strategies are devised to handle FOL’s specific characteristics, including functions
and non-Horn clauses.

The extension is successfully integrated into the ABC codebase1. The evaluation of ABC_FOL
supports the research hypothesis. The system generates numerous potential repairs to rectify
identified faults while ensuring semantic coherence. ABC_FOL is poised for diverse applications

1Github Link: https://github.com/tpmmthomas/ABC_FOL

https://github.com/tpmmthomas/ABC_FOL


in decision systems, law enforcement, and knowledge graphs, offering broader usability than
ABC_Datalog.

The project encountered several limitations, including the limited literature on automated
theory repair techniques, inadequate data availability for FOL theorems, and evaluation con-
straints due to the subjective nature of repair output assessment. Future work suggestions
include allowing non-ground assertions in PS to handle more complex statements, designing
tailored heuristics for FOL theories to improve efficiency, exploring sorted logic extension for
better proof search guidance, and conducting a more thorough evaluation of ABC_FOL.
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B. Definition of Eggtimer

The 𝑒𝑔𝑔𝑡𝑖𝑚𝑒𝑟, which is the target polygon to block, can be formalized by the set 𝑙𝑠 =
{𝑙1, 𝑙2, 𝑙3, 𝑙4}, 𝑣𝑠 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and the meeting points 𝑚𝑒𝑒𝑡(𝑣1, 𝑙1, 𝑙2), 𝑚𝑒𝑒𝑡(𝑣2, 𝑙2, 𝑙3),
𝑚𝑒𝑒𝑡(𝑣3, 𝑙3, 𝑙4), 𝑚𝑒𝑒𝑡(𝑣4, 𝑙4, 𝑙1), 𝑚𝑒𝑒𝑡(𝑥, 𝑙1, 𝑙3). A graphical illustration is provided as follows.

Figure 3: Visualization of eggtimer [9]
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