
ModelDefenders: A novel gamified mutation testing
game for model-driven engineering
Felix Cammaerts

1
, Monique Snoeck

1

1Research Center for Information System Engineering, Leuven, KU, Belgium

Abstract
Recently, there has been a surge in Model-Driven Engineering (MDE), where code is automatically

generated from a model. While this has certainly enabled non-technical people to become something

of a programmer, it doesn’t necessarily make them good testers or good modelers. In mutation testing

syntactic variations (mutants) are created from the source code and run against a test suite. Mutants that

pass all the test cases in the suite are called alive, while mutants that fail are called dead. Good testers are

able to develop test suites that kill all mutants. This can also be applied to MDE, where the mutants are

created on the models used for code generation. This paper presents a gamified approach for mutation

testing on models and discusses the specific challenges and caveats encountered when defining mutants

and setting up such a gamified approach.

Keywords
Mutation testing, MDE, Education

1. Introduction

Mutation testing is a code-based testing technique in which syntactic deviations of the system

under test (SUT) are generated, under the assumption that programmers write near-correct

code. The mutants are run against the test suite used for the SUT. Mutants that pass all test

cases are said to be alive, while mutants that fail one or more test cases are said to be dead.

The ratio of live mutants gives an indication of how well the SUT has been tested. The living

mutants can be used as feedback for the programmer, as they are different from the SUT, but

have still managed to pass all the test cases, indicating a possible incomplete testing of the SUT

or required changes to the code.

Mutation testing can also be applied to MDE, in two different ways. A first approach is to

create mutants on the generated code to check whether the transformations work correctly

[1]. A second approach is to create mutants on the models. Here, deviations in the modelling

constructs of a model cause different outputs of the generated source code [2]. Since our focus

is on improving the modelling skills of non-technical students, we will concentrate on the latter

approach in this paper with the goal of proposing a gamified educational tool.

Companion Proceedings of the 16th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modeling and the 13th
Enterprise Design and Engineering Working Conference, November 28 – December 1, 2023, Vienna, Austria
$ felix.cammaerts@kuleuven.be (F. Cammaerts); monique.snoeck@kuleuven.be (M. Snoeck)

� https://www.kuleuven.be/wieiswie/nl/person/00143708 (F. Cammaerts);

https://www.kuleuven.be/wieiswie/nl/person/00012755 (M. Snoeck)

� 0000-0002-0037-3865 (F. Cammaerts); 0000-0002-3824-3214 (M. Snoeck)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:felix.cammaerts@kuleuven.be
mailto:monique.snoeck@kuleuven.be
https://www.kuleuven.be/wieiswie/nl/person/00143708
https://www.kuleuven.be/wieiswie/nl/person/00012755
https://orcid.org/0000-0002-0037-3865
https://orcid.org/0000-0002-3824-3214
https://creativecommons.org/licenses/by/4.0


This paper presents ModelDefenders, a gamified approach to introducing mutation testing in

MDE. ModelDefenders is intended to be used as an educational tool where students learn to

become better testers and modellers by evaluating and creating mutants on these models.

2. Related work

A similar gamified approach, as the one being introdued in this paper, has been developed for

code-based mutation testing, this gamified approach is called CodeDefenders [3] and was the

main source of inspiration for this paper. CodeDefenders uses the same game mechanics that

we will use. CodeDefenders also aims to teach novice testers how to adequately test a software

program. Research has shown that CodeDefenders is well received by students and has positive

learning effects, with students performing steadily better [4]. It has also been found that the

test suites and mutants developed within the game are stronger than those from automated

tools [5].

For the implementation of ModelDefenders, the MERODE MDE approach was chosen [6]. The

method is supported by a modelling tool that provides different levels of support for developing

models [7] and a companion prototyper that allows students to experiment with their models

[8] which includes a feature that provides students with feedback on their manual actions [9, 10].

The availability of a code generator makes a good basis for implementing a model defender

game. MERODE is actively being taught in two modelling courses in two universities, which

also provides opportunities for experimental evaluation.

This paper presents the dynamics of the ModelDefenders tool, specifically for the artifacts

used in the MERODE MDE approach. It is explained how test cases and mutants can be defined

for those artefacts, and how these developed test cases and mutants can be used to engage

students in the practice of modelling and testing in a gamified approach. We attempt to formulate

an answer to the following research questions:

RQ1. How can test cases be defined on artefacts used within the MERODE MDE approach (i.e.

Finite state machines and class diagrams)?

RQ2. How can syntactic changes (mutants) be defined on artefacts within the MERODE MDE

approach (i.e. Finite state machines and class diagrams)?

RQ3. How can these test cases and mutants provide a gamified approach to teach students the

practice of software testing and modelling?

3. Defining test cases

In code-based testing approaches, test cases are usually written in the same programming

language as the SUT. In MDE, the modelling language constructs are usually only used to

develop the model, without the ability to define test cases using the same modelling constructs.

Therefore, it is necessary to properly define how test cases should be defined for the different

artefacts in MDE. The artefacts used in the MERODE MDE approach are a class diagram (CD)

and statecharts that model the dynamic behaviour of the object types (OT). MERODE uses a

subset of statecharts, namely finite state machines (FSM).



Figure 1: Finite state machine of the Patient model.

Figure 2: Class diagram of the Tuxedo model. The Tuxedo object type has as parameter color and the
Person object type has as parameter name

3.1. Finite state machines

When defining a test case for an FSM, an execution sequence and an expected result should be

provided. The execution sequence is a series of events that are executed sequentially on the FSM.

The events in the test case should all be present in the FSM’s alphabet. The result of the test case

is a state in the FSM, or the error state if the execution sequence cannot be fully executed on

the FSM. In the Patient model (Figure 1), the sequence of events MEcrPatient, upgrade, upgrade,

downgrade would place the patient in the lowPriority state. While MEcrPatient, upgrade, operate
is not possible as patient cannot be operated in the lowPriority state. The expected result is

therefore an error state.

3.2. Class diagram

Similarly, when defining a test case on a CD, an execution sequence and an expected result

should be provided. However, in a CD the sequence constraints are less explicit than in an

FSM as there are no explicitly modelled states. Nevertheless, the sequence of instantiating and

removing objects in the CD can be considered as an execution sequence. For example, an object

p1 of Person must first be created before it can be removed. The expected outcome of such a

sequence of events is either success or failure. Success if the entire sequence of events can be

executed according to the multiplicities and relationships of the CD. Failure if one of the steps

in the sequence is not possible at that point in the sequence, for example, deleting an object

before it exists.

Specific to MERODE is that the relationships between objects express an existential depen-

dency (ED) relationship, where one of the objects is the master and the other is the dependent.

ED means that the master object must exist before the dependent object can be created and that

the master object cannot be deleted until all the child objects have been deleted. In addition, a

dependent can only be related to one master object throughout its life. For example, consider

the Tuxedo model (Figure 2). Here Rental is dependent on Tuxedo and Person. This means

that before a Rental can be initiated, there should already be a Tuxedo and a Person to which

the Rental object can be associated.

When instantiating several objects of one OT, additional object pointers need to be provided to

the events to identify the objects that are subject of the action. The minimum information needed



is the identification of the object that is impacted by the action, as well as the identification

of related objects via object pointers when a new object is created. Object pointers are given

between square brackets [], and paramerters between round brackets (). An execution sequence

for a CD might look like this crTuxedo[](Red): t1, crPerson[](’Felix’): p1,
crRental[p1, t1]: r1. This test case instantiates a Tuxedo t1, a Person p1 and a Rental

r1 which is dependent on Tuxedo t1 and Person p1. The expected result of this execution

sequence would be success. Conversely, the execution sequence crTuxedo[](Red): t1,
crRental[t1, p1]: r1, crPerson[](’Felix’): p1 would fail as the Person object

must be created before the Rental object can be created. When taking into account the parameters

of the object types as well, it is important to check whether the datatype of the given parameter

matches with the data type of the MUT. If the parameter does not match, the test case is

considered invalid.

4. Defining mutants

Mutation testing involves making small syntactic changes to the source code to create mutants,

such as changing < to ≤. These syntactic deviations are run against the test-set, and mutants

that manage to pass all the test-cases in the test-set are an indication of bad or missing test-cases

in the test-set. When defining such mutants in code-based approaches, it is important to note

that these deviations usually keep the skeleton of the code the same (for example, using the

same method calls, and classes keeping the same relationships to other classes). Similarly, when

defining mutants for mutation testing of model-based approaches, it is important to clearly

distinguish between what is considered to be the skeleton of the model and what parts can be

mutated. This section therefore provides an overview of possible mutations.

4.1. Finite state machines

When creating a mutant for an FSM, the states of the MUT must remain unchanged. Mutations

can be modelled by changing the labels of transitions and thus the events that would trigger

those transitions. It is also possible to add and remove transitions. In addition, the following

constraints should be observed to ensure that the test cases remain executable on the mutant:

(1) The mutated FSM must not contain any nondeterminism, as this would make the outcome

of the test case nondeterministic. (2) The mutated FSM must retain the names of the states as in

the Model Under Test (MUT). Failure to do so would make it impossible to correctly verify the

outcome of the test cases on the mutant.

4.2. Class diagram

When creating a mutant for a CD, the OTs of the MUT must remain unchanged. Mutations can

be modelled by changing the multiplicities of the relationships between OTs. It is also possible

to add and remove relationships and changing the datatype of the parameters. In addition, when

modelling a mutant for a CD, the following constraints should be observed to ensure that the

test case remains executable on the mutant: (1) No cyclic dependencies can be introduced in the



Figure 3: Attacker view when attacking an FSM as model under test.

mutant. (2) The mutated CD must retain the names of the OTs as modelled in the MUT. (3) The

number of parameters and their positions must remain the same.

5. Gamification

To encourage students to develop mutants and test cases under the constraints mentioned above,

a gamification approach can be used. This gamification approach is baptised ModelDefenders. In

ModelDefenders, students are assigned one of two roles: attacker or defender. Defenders are

tasked with creating test cases that consist of a sequence of events and an expected outcome

(Section 3). The attacker is tasked with creating mutants on the models (CD and FSMs), according

to the aforementioned rules (Section 4). Similar to mutation testing, the mutants (from the

attacker) are run against the test cases (from the defender). A mutant that successfully passes

all test cases is said to be alive, a mutant that fails at least one test case is said to be killed. If a

mutant survives, the attacker gains one point, while if the defender’s test cases have successfully

killed a mutant, the defender gains one point.

5.1. Attackers

The attacker is given the MUT, which is either a CD or an FSM. Figure 3 shows an example of

an FSM under test (top left). Below it is an overview of the test cases developed by the defender.

The attacker can click on "View" to see the complete test case. This shows the full sequence of

events from the defender and the expected outcome. At the top right, the attacker is given an

editing area in which he can modify the MUT to model a mutant. Once the attacker is finished

modelling the mutant, he can click on ’attack’, which will run the current test cases against

the mutant. If one of the test cases has a different outcome than the expected outcome for the



Figure 4: Defender view when defending an FSM as model under test.

mutant, the mutant is dead; if all the test cases have the expected outcome, the mutant is alive.

On the bottom right the attacker is given an overview of the mutants that have previously been

used as attack, including which are dead and which are alive. The attacker can click "View

Killing Test" if the mutant is dead to see which of the tests the mutant failed. The attacker can

click ’View’ to see the mutant.

5.2. Defenders

The defender is also given the MUT, which is either a CD or an FSM, in the top-left corner

(see Figure 4). The defender can define test cases for this FSM in the top right pane. Here, the

defender can add each of the possible events of the FSM one by one and specify the expected

outcome state (i.e. a state of the FSM or an error). Once a test case is fully defined, the defender

can add it to the test suite. Before the test case is actually added to the test suite, it is checked

whether the expected outcome of the test case actually matches the outcome that would be

expected from the FSM. If this is not the case, the test case is not added to the suite and the

user is informed that his test case has been incorrectly defined. Once the defender feels that he

has fully developed the test suite, he can use it to defend against the mutants modelled by the

attacker. These mutants are shown at the bottom left. Each mutant is labelled as dead or alive.

The defender can look at the mutants to help define the test cases for the test suite. If a mutant

is dead, the defender can also "view killing test" to see which of the test cases killed it.

5.3. Running test cases against a mutant

To check whether a mutant defined by an attacker is dead or alive, the defender’s test cases are

run against the mutant. If all the test cases have the same outcome on the mutant as on the



MUT, the mutant is alive. If at least one test case has a different outcome on the mutant than on

the MUT, the mutant is dead.

For FSMs it is quite straightforward to check the outcome of the test case on the mutant. The

sequence of events can be run on the mutant, the state of the mutant after executing the last

event of the test case is the outcome of the test case on the mutant. This result can be compared

with the result on the MUT. As soon as one of the events of the sequence cannot be executed

on the current state of the mutant, the resulting state of the mutant becomes the error state.

Even though, adhering to the constraints imposed for defining mutants of a FSM would mean

there is no explicit focus on common mistakes when modelling FSMs, such as liveliness aspects,

these are still implicitly present. Namely, if the MUT is valid (i.e. contains no backwards/forward

inaccessible states and this no liveliness problems), a well-defined suite of test cases, would be

able to detect any mutant that does introduce these mistakes. For example, in Figure 1, a mutant

that omits the upgrade transition between mediumPriority to highPriority, would be killed by

the test case MEcrPatient, upgrade, upgrade, upgrade with as expected outcome highPriority.

This should allow a defender to understand that the accessibility of each of the states should be

tested. In this case this is done indirectly by defining a test case with an expected outcome state

on the FSM. For an attacker this should allow to understand that the absence of such test cases

allows for mutants to be designed which do not adhere to the liveliness properties of FSMs.

For CDs, it is not enough just to look at the order of the events; the parameters, object pointers

and associations present in the MUT and the mutant should also be considered. For example,

consider the Tuxedo case in figure 2. A tuxedo can be associated with 0 or 1 rentals, while a

person can be associated with 0 or many rentals. Considering only the order of events, a test

case crTuxedo[](Red): t1, crTuxedo[](Blue): t2, crPerson[](’Felix’): p1,
crRental[t1, p1]: r1, crRental(t2, p1): r1 with expected success, would be able

to kill a mutant in which the relation between Tuxedo and Rental has been changed to a 0 to 1,

since the last crRental is not possible on the mutant. However, this test case would not be able

to detect a mutant in which the relationship between Tuxedo and Rental has been omitted.

For this mutant the sequence of events crTuxedo[](Red): t1, crTuxedo[](Blue):
t2, crPerson[](’Felix’): p1, crRental[t1, p1]: r1, crRental[t2, p1]:
r1 would also be successful. To take the object pointers into account, one should look at

each association to objects present in the event of a test case. Take for example the event

crRental[t1, p1]: r1. This test case creates two relations, one between t1 and r1 and

another between p1 and r1. For each of the OTs that are part of these relations (Tuxedo-Rental

and Person-Rental), the following rules should be checked. X is the master OT, Y is the

dependent OT.

• If there is a direct relation between X and Y in both the MUT and the mutant, then check

with the multiplicity of the mutant if a new object of type Y can be created.

• If there is a direct relation between X and Y in the MUT, but not in the mutant, no check

for this specific relation is needed. However, the other relations still need to be checked.

• If there is no direct relation between X and Y in the MUT, but there is one in the mutant,

check whether there already exists an object of type X at that point in the event sequence



and whether a new object of type Y can be instantiated on the mutant considering the

multiplicity of the relationship.

Concerning parameters, it is sufficient to check whether at each object instantiation, the

parameters used in the test cases are of the same data type as the parameter in the MUT at the

same position. If the data types are the same, even though the values of the data might not

match, then the mutant survives the test case. While if the data types are different, the test case

kills the mutant.

We do acknowledge that most CDs are based on UML and do not restrict the relations into

being existent-dependent relationships. Nonetheless, the way of defining mutants for CDs and

defining test cases remains the same. The rules for comparing a test case against a mutant are

now applicable to any X and Y which are directly related to each other.

6. Evaluation

ModelDefenders is currently under development. Mockups have been created in Figma
1

to

understand the possible user interactions with the tool. These mockups are currently being

translated into a web application. Once the development of ModelDefenders is complete, it can

be evaluated. Firstly, the usability of the tool will be evaluated. Secondly, it will be assessed

whether ModelDefenders motivates student to test more. Finally, we will assess whether this

increased ’exploration’ of models in turn increases students’ understanding of modelling.

Acknowledgments

This paper is being funded by the ENACTEST Erasmus+ project number 101055874.

References

[1] A. Gonzalez, C. Luna, G. Bressan, Mutation testing for java based on model-driven

development, in: 2018 XLIV Latin American Computer Conference (CLEI), IEEE, 2018, pp.

1–10.

[2] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, W. E. Wong, Model-based mutation

testing—approach and case studies, Science of Computer Programming 120 (2016) 25–48.

[3] J. M. Rojas, G. Fraser, Teaching mutation testing using gamification, in: European

Conference on Software Engineering Education (ECSEE), 2016.

[4] G. Fraser, A. Gambi, M. Kreis, J. M. Rojas, Gamifying a software testing course with code

defenders, in: Proceedings of the 50th ACM Technical Symposium on Computer Science

Education, 2019, pp. 571–577.

[5] J. M. Rojas, T. D. White, B. S. Clegg, G. Fraser, Code defenders: crowdsourcing effective tests

and subtle mutants with a mutation testing game, in: 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE), IEEE, 2017, pp. 677–688.

1

https://www.figma.com/file/lJ6HVBH0hmJGz2RSTMQMc6/ModelDefenders?type=design&node-

id=0%3A1&mode=design&t=siCzSe9kKoYsK4oa-1



[6] M. Snoeck, Enterprise information systems engineering, The MERODE Approach (2014).

[7] M. Snoeck, MERLIN: An Intelligent Tool for Creating Domain Models, in: Research

Challenges in Information Science: 14th International Conference, RCIS 2020, Limassol,

Cyprus, September 23–25, 2020, Proceedings 14, Springer, 2020, pp. 549–555.

[8] G. Sedrakyan, S. Poelmans, M. Snoeck, Assessing the influence of feedback-inclusive

rapid prototyping on understanding the semantics of parallel UML statecharts by novice

modellers, Information and Software Technology 82 (2017) 159–172.

[9] B. Marín, S. Alarcón, G. Giachetti, M. Snoeck, Tescav: An approach for learning model-

based testing and coverage in practice, in: Research Challenges in Information Science:

14th International Conference, RCIS 2020, Limassol, Cyprus, September 23–25, 2020,

Proceedings 14, Springer, 2020, pp. 302–317.

[10] F. Cammaerts, C. Verbruggen, M. Snoeck, Investigating the effectiveness of model-based

testing on testing skill acquisition, in: IFIP Working Conference on The Practice of

Enterprise Modeling, Springer, 2022, pp. 3–17.


	1 Introduction
	2 Related work
	3 Defining test cases
	3.1 Finite state machines
	3.2 Class diagram

	4 Defining mutants
	4.1 Finite state machines
	4.2 Class diagram

	5 Gamification
	5.1 Attackers
	5.2 Defenders
	5.3 Running test cases against a mutant

	6 Evaluation

