
215

Quantum Phase Logic in Boolean Formula Satisfiability Problems

Oleksandr Korchenko and Oleh Zaritskyi

National Aviation University, av. L.Guzara, 1, Kyiv, 03124, Ukraine

Abstract
The article deals with the topical issues of quantum phase logic application for solving practical

problems of Boolean formulas satisfiability. The use of QPU allows to significantly increase

the speed of solving SAT problems as one of the most important research areas that influence

the development of such sections of artificial intelligence as brain modeling and cognitive

science and their applied areas: formal logic, rules and analogies, problems of satisfiability of

logical formulas, theorem proving. The article presents a general algorithm for modeling SAT

tasks using QPU and a real-life example of solving the problem of a logical formula

satisfiability, discusses topical issues of modeling a quantum system and interpreting the

results.

Keywords 1
Quantum phase logic, quantum amplitude logic, 3-SAT, 2-SAT, propositional logic

formulae, conjunctive normal form

1. Introduction

Science and technology have entered the era of new computing platforms built on the fundamental
laws of the universe, which will lead to a revolutionary acceleration of solving practical applied

problems from the point of view of the computational complexity theory. We are talking about quantum

computing, which is part of the field of quantum information science (QIS). The prospects of quantum
computers are primarily related to their ability to significantly expand the computing horizons of

conventional computing tools, using their own "natural" parallelism of computation in the form of

superposition and entanglement of qubits.

Obtaining a quantum superiority is considered for a certain range of tasks, which does not diminish
the importance of quantum computers, given that some of these tasks are beyond the computational

capabilities of any hypothetical computing device.

The use of quantum computing for solving applied problems is still in its formation and intensive
development. According to experts, the most promising areas for the use of quantum computers are

chemistry, the study of the properties of new materials, and financial services [1]. Artificial intelligence

will also be able to increase the speed of some computing algorithms, for example, in the field of

machine learning. Quantum cryptography methods will have been widely developed [2]. The list of
applications of quantum computing is constantly growing and expanding due to the research and

development of new quantum algorithms and hardware that is becoming available for scientific

research.
Among the existing quantum algorithms, we can distinguish the following [3,4]:

 quantum phase estimation;

 complex amplitude amplification;
 quantum Fourier transform (QFT);

 quantum search (QS);

 factorization of integers;

 finding the period of a function;
 eigenvalue estimation;

Information Technology and Implementation (IT&I-2023), November 20-21, 2023, Kyiv, Ukraine

EMAIL: icaocentre@nau.edu.ua (A.1); oleh.zaritskyi@npp.nau.edu.ua (A.2)

ORCID: 0000-0002-6116-4426 (A.1); 0000-0003-3376-0631 (A.2)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

216

 quantum machine learning;
 quantum over-sampling.

The listed algorithms and approaches are not exhaustive, but even this list gives an idea of the

practical application of quantum computing, which is usually associated with big data processing, where

processing time is critical.
One of the classes of problems that quantum search allows to solve includes problems that must

obtain a yes/no answer, that is, derive the value of a traditional logical command and belong to NP-

complete problems.
Traditional tasks of this class are searching for a specific value in a database or solving satisfiability

problems of Boolean formulas (SAT problems). The search for methods to solve problems of this class

is very important in terms of their impact on the development of such areas of artificial intelligence as
whole brain emulation (WBE) and cognitive science (CGS). In turn, these areas of AI research and

development cover a wide range of tasks: formal logic (FL), rules and analogies (rules), Boolean

satisfiability problems (SAT), automated theorem proving (ATP), deep learning (DL) as a basis for

natural language processing (NLP) and computer vision (CV), etc. [5].
Due to the exceptional importance and relevance of these subject areas of knowledge for the

development of integrated cognitive architectures, the article discusses the peculiarities of the practical

implementation of quantum phase logic for solving actual problems of a logical formula satisfiability.
The object of the study is a quantum processor unit (QPU) as an environment for modeling logical

algorithms within the framework of the study. The subject of the study is quantum phase logic as a tool

for solving the problem of satisfiability of a logical formula (function). The aim of the study is to
increase the speed of solving SAT problems by using quantum phase logic implemented in QPU.

2. General formulation of SAT problems, existing approaches

Let us consider a general formulation of satisfiability problems of Boolean formulas in conjunctive

normal form (CNF). There is a set 𝑋 of 𝑛 Boolean variables that can take one of two values 0 or 1 (or

false \ true). A literal on 𝑋 is one of the variables 𝑥𝑖 or its negation 𝑥�̃� [6]. The condition 𝐶𝑘 is the
disjunction of literals (1):

𝑥𝑖 = {0,1} ∈ 𝑋, 𝑖 = [1 ÷ 𝑁]
𝐶𝑘 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3̃ ∨ … ∨ 𝑥𝑛 , 𝑘 = [1 ÷ 𝐾]

(1)

Logical assignment for 𝑋 is the assignment of values 0 or 1 to each literal in a condition.

The standard propositional 2,3 satisfiability (2,3-SAT) problem involves formulating a propositional

logic formula that consists of a conjunction of literals disjunctions (conditions), where each condition
consists of 2,3 literals that make the formula true. That is, the satisfiability problem is to find the values

of literals that make the formula true (2):

С1 ∧ С2 ∧ … ∧ 𝐶𝑘 = 𝑇𝑟𝑢𝑒 , (2)

Satisfiability problems are fundamental problems of combinatorial search, which are among the

most difficult computational tasks. It is necessary to find 𝒏 independent solutions, fulfilling the truth

constraints of a Boolean formula. Such problems belong to the class of NP-complete problems and can

be solved in polynomial time. As a test example, consider the 3-SAT problem (3):

(𝑎 ∨ 𝑏) ∧ (𝑎 ̃ ∨ 𝑐) ∧ (𝑏 ∨ �̃�), (3)

In accordance with the statement of the satisfiability problem, it is necessary to find, if they exist,

such values of the literals 𝑎, 𝑏, 𝑐 that will make the logical formula (3) true.

The implementation of the logic described by formula (3), using logic gates that perform basic logic

operations according to the IEC 60617-12:1997 standard, is shown in Fig. 1. There are a number of

methods for solving the problems of the satisfiability of logical formulas based on classical deductive

methods of proving theorems [6,7]. The DPLL (Davis-Putnam-Logemann-Loveland) algorithm is

based on return search and distributed deterministic computing (unit-propagation) [8]. DPLL is

a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic

formula in conjunctive normal form, i.e. for solving the CNF-SAT problem.

217

Figure 1: Representation of a SAT problem using basic elements of a digital circuit

The algorithm considers the value of some literal to be true and calculates all the deterministic

consequences of this assumption, performing cyclic calculations until it finds a solution. In article [9]
is reported that the performance of an enhanced version of the

“Davis-Putnam” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived

from real world problems in planning, scheduling, and circuit diagnosis and synthesis. The results show

that incorporating CSP lookback techniques – especially the relatively new technique of
relevance-bounded learning – renders easy many problems, which otherwise are beyond DP’s reach.

Frequently they make DP, a systematic algorithm, perform as well or better than stochastic SAT

algorithms such as GSAT.
GSAT (Greedy SAT) is local, as it makes decisions about the values of literals based on local

information only. At the beginning of the algorithm, literals are assigned arbitrary values and the value

of the variable is changed if it gives the largest increase in completed sentences.

Methods for solving SAT problems involve their parallelization using CDCL solvers (conflict-
driven clause learning) [10,11]. Similar to DPLL, the algorithm makes decisions on literal values and

performs deterministic calculations, on the other hand, it keeps the implication graph in memory and

remembers some combinations that do not lead to a solution, which increases search efficiency.
Common to the above methods of solving SAT problems is the search by enumerating the values of

literals using implication graphs. It is clear that an increase in the number of literals will lead to a

quadratic increase in computational complexity, and at a certain number of them, calculations using
classical computers will become almost impossible.

3. Quantum phase logic. Algorithm for solving SAT problems using QPU

Let's look at the difference between the different types of logic used in computing systems [12].
Hardware built on the classic von Neumann architecture, which uses bits of information and stores them
in short-term and long-term memory, is characterized by the use of traditional binary logic that applies
logic gates (Fig.1) to input data to produce a result.

Quantum computing, based on the principles of superposition and qubit entanglement, uses
amplitude and phase logic. Quantum amplitude logic applies logic gates to the state of an input register
to produce a superposition of results. Quantum phase logic inverts the phase of each qubit of the input
register, which yields a 1 as a result of the measurement. In other words, the quantum circuit inverts the
relative phases of all input values for which the logic operation is performed.

The construction of quantum algorithms for solving SAT problems is performed using basic digital
logic gates built from quantum CNOT gates and QPU operations realizing phase logic and involves a
number of consecutive steps [13]:

1. Transformation of the formula from a satisfiability problem to a form consisting of a number of
conditions 𝐶𝑘 and involving their simultaneous fulfillment, i.e., the conjunction operation (2). This
approach reduces the number of service qubits, since the phase conjunction operation can be performed
simultaneously for any number of qubits (i.e., literals) using a single CPHASE operation.

218

2. Represent each condition 𝐶𝑘 using amplitude logic. As a rule, one service qubit is created for
each condition. As a practical example, consider the preparation of a gate that implements amplitude
OR logic (Fig. 2). Such a gate uses two working qubits and one service qubit to obtain the result of an
operation. Fig. 2 shows a code fragment of the gate implementation program, its detailed graphical
representation and as a subschema ("black box"), as well as the corresponding element of the digital
circuit of the Boolean formula (Fig. 1).

>=10

0

0

Figure 2: OR gate implemented using quantum operations NOT and CCNOT, code example in Python,
Qiskit module (IBM)

On the basis of the gate (Fig. 2), it is possible to implement all three elements of Boolean logic OR
(Fig. 1): for the first digital circuit, the inputs 𝑞[0], 𝑞[1] are supplied with the literals 𝑎, 𝑏 respectively,
for the second circuit, the literals, 𝑎 ̃ ∨ 𝑐 for the third circuit, the literals 𝑏 ∨ �̃�, respectively. The
development of such gates should be done from the point of view of their universality for typical logical
operators with the possibility of using them for all the same type of formula conditions. As a rule, such
gates are developed as sub circuits and converted into a general scheme for implementing a logical
formula, as will be shown in Section 4, using the [subcircuit_name] command.to_instruction()

3. Initiate a full QPU register with the number of qubits equal to the number of literals in a uniform
superposition using the J. Adamar valve and initiate all service qubits in the state |0⟩.

4. After realizing all the conditions 𝐶𝑘 in the amplitude logic, perform the conjunction operation in
the phase logic.

5. Cancel the calculations of all operations in amplitude logic. The operations are canceled in the
reverse order from the last to the first condition.

6. Perform a mirror subscheme of the complex amplitude amplification (AA) circuit to select the 𝑚
states of the input data that ensure making the logical formula to be truth. Due to the need to use the
mirror subscheme several times 𝑁𝐴𝐴 (4) to ensure the amplification of the amplitude of the required
combination of 𝑛 literals in order to clearly detect them, it is also necessary to prepare the subscheme
as a typical block (Fig. 3) and convert it into a general scheme for implementing the formula.

𝑁𝐴𝐴 =
𝜋

4
√

2𝑛

𝑚
 (4)

The implementation of the mirror subscheme of the AA circuit (Fig. 3) involves the use of Adamar,
NOT and CCPHASE gates. Phase inverting allows you to select a register value and highlight its phase
against the background of others, and the mirror operation converts the phase difference into an
amplitude difference.

This combination of operations in quantum computing is called the complex amplitude amplification
(AA) iteration.

4. Practical implementation of the 3-SAT problem in the quantum computing
environment

The practical implementation of the logical formula (3) was carried out in the Python environment
using the Quiskit quantum computing module from IBM [14]. A view of the complete quantum
computing scheme is shown in Fig. 4. The quantum circuit consists of [15]:

 quantum input data register, represented by 3 working qubits (a, b, c) - upper register for
recording the values of three literals, three service qubits (s[0], s[1], s[2]) - lower register for
intermediate calculations;

219

 groups of quantum gates (gates) that perform operations of amplitude and phase quantum logic,
cancellation of calculations of operations, mirror subscheme of the amplitude amplification (АА)
circuit;

 three measurements, the results of which are written to the corresponding classical bits
(m1,m2,m3) to save the results of calculations from working qubits.

Figure 3: Mirror subcircuit of the amplitude amplification (AA) circuit

The scheme expanded by the [scheme_name].decompose() command gives an idea of the depth and
width of the quantum scheme. The depth is 34, i.e., 34 operations are performed from the base state of
the register to the moment of measurement. The width of the scheme is 6, which is the number of qubits
involved in the calculations, including service qubits. Let's consider several options for modeling the
logical formula (3).

Option 1. Modeling is performed without using the mirror subscheme of the amplitude
amplification (AA) circuit.

The result of modeling the formula using the 'statevector_simulator' in the register phases is
presented both in the standard notation of P. Dirac's state vector of a quantum system and in graphical
form on the Bloch sphere (Fig. 5).

After analyzing the results, we can distinguish three states 3, 6, 7: |000010⟩, |000110⟩, |000111⟩,
which differ from the others in the relative phase 𝜋, as indicated by the «-» sign before their amplitude
and the color on the Bloch sphere. That is, the phase has been inverted. The first three digits are not
taken into account, they describe the state of the service qubits after canceling the calculations.

These states encode the logical assignment 𝑎 = 0, 𝑑 = 1, 𝑐 = 0), (𝑎 = 0, 𝑑 = 1, 𝑐 = 1), (𝑎 =
1, 𝑑 = 1, 𝑐 = 1) respectively, which indicates that the given logical formula can be realized and the
obtained sets of literals ensure the satisfiability of the original logical formula. Simple measurement of
the results using the 'qasm_simulator' will not solve the SAT problem, since all possible initial states of
the system are described by the same amplitude, and the probability of their occurrence does not depend
on the sign and is equal to 1/8 (fig.6).

Option 2. Modeling using the mirror subcircuit of the AA circuit.
The result of modeling formula (3) using 'statevector_simulator' in register phases is represented in

the standard P.Dirac notation by the state vector of the quantum system (Fig.7). What is obvious, apart
from the appearance of the relative phase π, is the increase in the amplitude of the system states
encoding the logical assignment after a single application of amplitude amplification.

It should also be noted that the AA circuit inverted the phase of the qubits before amplifying the
amplitude and set it to 0, leaving the relative phase 𝜋 unchanged. Since the AA circuit in this case
amplified the amplitude, the simulation results using the 'qasm_simulator' already allow us to make
conclusions about the states in which the logical assignment is encoded with a certain probability

((−0.53033)2 ≈ 0.282; 2825 ÷ 10000 ≈ 0.283) (Fig. 8). Using formula (4), we obtain the number
of iterations of using the mirror subscheme of the AA circuit:

𝑁𝐴𝐴 =
𝜋

4
√

23

3
≈ 1,28

Thus, for formula (3), one iteration of the mirror subscheme of the AA circuit is sufficient to obtain a
result that will allow us to unambiguously identify the states of the quantum system in which the logical
assignment for formula (3) is encoded.

220

Figure 4: Quantum scheme for calculation of the logical formula (3)

Figure 5: Simulation results without AA scheme

221

Figure 6: Probability of system states after modeling

Figure 7: Modeling results with a single application of the AA scheme

5. Summary and Conclusion

As shown, simulations using the mirror subcircuit of the amplitude amplification circuit allow us to
identify with high probability (Fig.8), after qubit measurements, the logic assignments encoded in the
system states that make the logic formula true. It is also possible to identify the necessary encoded states
without performing measurements by analyzing the relative phase, which is equal to π (Fig.5). The
proposed simplified algorithm for constructing a logic function model with QPU using standardized
sets of gates to implement amplitude and phase logic allows to implement a logic formula of any
complexity. Since the quantum phase logic operation for the conjunctive normal form can be performed
simultaneously for any number of qubits (i.e., literals) using a single CPHASE operation, the
computation speed will significantly exceed existing algorithms. The search for the solution of SAT

problems with a certain probability, for traditional algorithms is carried out in time 𝑂(𝑘𝑛𝑝𝑜𝑙𝑦(𝑛)),

222

because it is necessary to implement the procedure of searching for the values of literals 𝑘 times for 𝑛
literals. To speed up the traditional algorithms it is necessary to fulfill them with the help of quantum
computing, replacing the probabilistic search procedure with the complex amplitude amplification
algorithm, which will allow to solve the problem in 𝑂(1.1(53𝑛𝑝𝑜𝑙𝑦(𝑛))) time.

Figure 8: Probability of system states after modeling

6. References

[1] J.D. Hidary. Quantum computing: An applied approach. Springer. – 2019. – 370 p.
[2] V. Silva. Practical Quantum computing for developers. Apress. – 2020. – 352 p.
[3] P.Kaye, R.Laflamme, M.Mosca. In introduction to Quantum computing. Oxford University Press.

– 2007. – 284 p.
[4] R.S. Sutor. Dancing with qubits. How quantu, computing works and how it can change the world.

Packt Publishing. – 2019. – 512 p.
[5] O.Zaritskyi, O.Ponomarenko. Quantitative assessment of technological singularity. The

International Scientific and Technical Journal Problems of control and informatics, 2022. - №1. -
P.93 – 111. DOI: http://doi.org/10.34229/1028-0979-2022-1-9.

[6] J. Lkeinberg, Eva Tardos. Algorithm design.Cornell University. – 800 p.
[7] Biere, Heule, Van Maaren, Walsh (February 2009). Handbook of Satisfiability. IOS Press. p. 138.
[8] Nieuwenhuis, Robert; Oliveras, Albert; Tinelli, Cesar (2004), "Abstract DPLL and Abstract DPLL

Modulo Theories", Proceedings Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2004, pp. 36 – 50.

[9] Roberto J. Bayardo Jr.; Robert C. Schrag (1997). "Using CSP look-back techniques to solve real
world SAT instances". Proc. 14th Nat. Conf. on Artificial Intelligence (AAAI). pp. 203–208.

[10] Marques-Silva J. P. GRASP: A search algorithm for propositional satisfiability / J.P. Marques-
Silva, K. A. Sakallah // IEEE Transactions on Computers. – 1999. – Vol. 48, N 5. – P. 506 – 521.

[11] J.P. Marques-Silva; Karem A. Sakallah (May 1999). "GRASP: A Search Algorithm for
Propositional Satisfiability". IEEE Transactions on Computers. 48 (5): 506–
521. doi:10.1109/12.769433.

[12] T.G. Wong. Introduction to classical and quantum computing. Rooted Grove, Omaha, Nebraska.
– 2022. – 400 p.

[13] E.R.Jonsston, N.Harrigan, M.Gimeno-Segova. Programming Quantum computers. Essential
algorithms and code samples. O’Reilly. – 2021. – 336 p.

[14] S.Kaiser, C.Granade. Learn quantum computing with Python and Q#. A hands-on approach.
Manning Publication. – 2012. – 430 p.

[15] M. Nielsen, I.Chuang. Quantum computation and quantum information. Cambridge University
Press. – 2011. – 824 p.

http://doi.org/10.34229/1028-0979-2022-1-9
http://satassociation.org/articles/FAIA185-0131.pdf
http://www.lsi.upc.edu/~roberto/papers/lpar04.pdf
http://www.lsi.upc.edu/~roberto/papers/lpar04.pdf
https://en.wikipedia.org/wiki/Logic_for_Programming,_Artificial_Intelligence,_and_Reasoning
https://en.wikipedia.org/wiki/Logic_for_Programming,_Artificial_Intelligence,_and_Reasoning
http://cse-wiki.unl.edu/wiki/images/0/06/Using_CSP_Look-Back_Techniques_to_Solve_Real-World_SAT_Instances.pdf
http://cse-wiki.unl.edu/wiki/images/0/06/Using_CSP_Look-Back_Techniques_to_Solve_Real-World_SAT_Instances.pdf
http://www.broadinstitute.org/~ilya/area/grasp.pdf
http://www.broadinstitute.org/~ilya/area/grasp.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2F12.769433

	1. Introduction
	2. General formulation of SAT problems, existing approaches
	3. Quantum phase logic. Algorithm for solving SAT problems using QPU
	4. Practical implementation of the 3-SAT problem in the quantum computing environment
	5. Summary and Conclusion
	6. References

