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Abstract  
The article deals with the topical issues of quantum phase logic application for solving practical 

problems of Boolean formulas satisfiability. The use of QPU allows to significantly increase 

the speed of solving SAT problems as one of the most important research areas that influence 

the development of such sections of artificial intelligence as brain modeling and cognitive 

science and their applied areas: formal logic, rules and analogies, problems of satisfiability of 

logical formulas, theorem proving. The article presents a general algorithm for modeling SAT 

tasks using QPU and a real-life example of solving the problem of a logical formula 

satisfiability, discusses topical issues of modeling a quantum system and interpreting the 

results. 
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1. Introduction 

Science and technology have entered the era of new computing platforms built on the fundamental 
laws of the universe, which will lead to a revolutionary acceleration of solving practical applied 

problems from the point of view of the computational complexity theory. We are talking about quantum 

computing, which is part of the field of quantum information science (QIS). The prospects of quantum 
computers are primarily related to their ability to significantly expand the computing horizons of 

conventional computing tools, using their own "natural" parallelism of computation in the form of 

superposition and entanglement of qubits. 

Obtaining a quantum superiority is considered for a certain range of tasks, which does not diminish 
the importance of quantum computers, given that some of these tasks are beyond the computational 

capabilities of any hypothetical computing device. 

The use of quantum computing for solving applied problems is still in its formation and intensive 
development. According to experts, the most promising areas for the use of quantum computers are 

chemistry, the study of the properties of new materials, and financial services [1]. Artificial intelligence 

will also be able to increase the speed of some computing algorithms, for example, in the field of 

machine learning. Quantum cryptography methods will have been widely developed [2]. The list of 
applications of quantum computing is constantly growing and expanding due to the research and 

development of new quantum algorithms and hardware that is becoming available for scientific 

research. 
Among the existing quantum algorithms, we can distinguish the following [3,4]: 

 quantum phase estimation; 

 complex amplitude amplification; 
 quantum Fourier transform (QFT); 

 quantum search (QS); 

 factorization of integers; 

 finding the period of a function; 
 eigenvalue estimation; 
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 quantum machine learning; 
 quantum over-sampling. 

The listed algorithms and approaches are not exhaustive, but even this list gives an idea of the 

practical application of quantum computing, which is usually associated with big data processing, where 

processing time is critical. 
One of the classes of problems that quantum search allows to solve includes problems that must 

obtain a yes/no answer, that is, derive the value of a traditional logical command and belong to NP-

complete problems. 
Traditional tasks of this class are searching for a specific value in a database or solving satisfiability 

problems of Boolean formulas (SAT problems). The search for methods to solve problems of this class 

is very important in terms of their impact on the development of such areas of artificial intelligence as 
whole brain emulation (WBE) and cognitive science (CGS). In turn, these areas of AI research and 

development cover a wide range of tasks: formal logic (FL), rules and analogies (rules), Boolean 

satisfiability problems (SAT), automated theorem proving (ATP), deep learning (DL) as a basis for 

natural language processing (NLP) and computer vision (CV), etc. [5]. 
Due to the exceptional importance and relevance of these subject areas of knowledge for the 

development of integrated cognitive architectures, the article discusses the peculiarities of the practical 

implementation of quantum phase logic for solving actual problems of a logical formula satisfiability.  
The object of the study is a quantum processor unit (QPU) as an environment for modeling logical 

algorithms within the framework of the study. The subject of the study is quantum phase logic as a tool 

for solving the problem of satisfiability of a logical formula (function). The aim of the study is to 
increase the speed of solving SAT problems by using quantum phase logic implemented in QPU. 

2. General formulation of SAT problems, existing approaches     

Let us consider a general formulation of satisfiability problems of Boolean formulas in conjunctive 

normal form (CNF). There is a set 𝑋  of 𝑛 Boolean variables that can take one of two values 0 or 1 (or 

false \ true). A literal on 𝑋 is one of the variables 𝑥𝑖 or its negation 𝑥�̃� [6]. The condition 𝐶𝑘   is the 
disjunction of literals (1): 

𝑥𝑖 = {0,1} ∈ 𝑋, 𝑖 = [1 ÷ 𝑁] 
𝐶𝑘 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3̃ ∨ … ∨ 𝑥𝑛 , 𝑘 = [1 ÷ 𝐾] 

(1) 

Logical assignment for 𝑋 is the assignment of values 0 or 1 to each literal in a condition.  

The standard propositional 2,3 satisfiability (2,3-SAT) problem involves formulating a propositional 

logic formula that consists of a conjunction of literals disjunctions (conditions), where each condition 
consists of 2,3 literals that make the formula true. That is, the satisfiability problem is to find the values 

of literals that make the formula true (2): 

С1 ∧ С2 ∧ … ∧ 𝐶𝑘 = 𝑇𝑟𝑢𝑒 ,                                                 (2) 

Satisfiability problems are fundamental problems of combinatorial search, which are among the 

most difficult computational tasks. It is necessary to find 𝒏 independent solutions, fulfilling the truth 

constraints of a Boolean formula. Such problems belong to the class of NP-complete problems and can 

be solved in polynomial time. As a test example, consider the 3-SAT problem (3): 

(𝑎 ∨ 𝑏) ∧ (𝑎 ̃ ∨ 𝑐) ∧ (𝑏 ∨ �̃�),                                                     (3)  

In accordance with the statement of the satisfiability problem, it is necessary to find, if they exist, 

such values of the literals 𝑎, 𝑏, 𝑐 that will make the logical formula (3) true. 

The implementation of the logic described by formula (3), using logic gates that perform basic logic 

operations according to the IEC 60617-12:1997 standard, is shown in Fig. 1. There are a number of 

methods for solving the problems of the satisfiability of logical formulas based on classical deductive 

methods of proving theorems [6,7]. The DPLL (Davis-Putnam-Logemann-Loveland) algorithm is 

based on return search and distributed deterministic computing (unit-propagation) [8]. DPLL is 

a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic 

formula in conjunctive normal form, i.e. for solving the CNF-SAT problem. 
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Figure 1: Representation of a SAT problem using basic elements of a digital circuit   

The algorithm considers the value of some literal to be true and calculates all the deterministic 

consequences of this assumption, performing cyclic calculations until it finds a solution. In article [9] 
is reported that the performance of an enhanced version of the 

“Davis-Putnam” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived 

from real world problems in planning, scheduling, and circuit diagnosis and synthesis. The results show 

that incorporating CSP lookback techniques – especially the relatively new technique of 
relevance-bounded learning – renders easy many problems, which otherwise are beyond DP’s reach. 

Frequently they make DP, a systematic algorithm, perform as well or better than stochastic SAT 

algorithms such as GSAT. 
GSAT (Greedy SAT) is local, as it makes decisions about the values of literals based on local 

information only. At the beginning of the algorithm, literals are assigned arbitrary values and the value 

of the variable is changed if it gives the largest increase in completed sentences.  

Methods for solving SAT problems involve their parallelization using CDCL solvers (conflict-
driven clause learning) [10,11]. Similar to DPLL, the algorithm makes decisions on literal values and 

performs deterministic calculations, on the other hand, it keeps the implication graph in memory and 

remembers some combinations that do not lead to a solution, which increases search efficiency. 
Common to the above methods of solving SAT problems is the search by enumerating the values of 

literals using implication graphs. It is clear that an increase in the number of literals will lead to a 

quadratic increase in computational complexity, and at a certain number of them, calculations using 
classical computers will become almost impossible. 

3. Quantum phase logic. Algorithm for solving SAT problems using QPU  

Let's look at the difference between the different types of logic used in computing systems [12]. 
Hardware built on the classic von Neumann architecture, which uses bits of information and stores them 
in short-term and long-term memory, is characterized by the use of traditional binary logic that applies 
logic gates (Fig.1) to input data to produce a result.   

Quantum computing, based on the principles of superposition and qubit entanglement, uses 
amplitude and phase logic. Quantum amplitude logic applies logic gates to the state of an input register 
to produce a superposition of results. Quantum phase logic inverts the phase of each qubit of the input 
register, which yields a 1 as a result of the measurement. In other words, the quantum circuit inverts the 
relative phases of all input values for which the logic operation is performed. 

The construction of quantum algorithms for solving SAT problems is performed using basic digital 
logic gates built from quantum CNOT gates and QPU operations realizing phase logic and involves a 
number of consecutive steps [13]: 

1. Transformation of the formula from a satisfiability problem to a form consisting of a number of 
conditions 𝐶𝑘  and involving their simultaneous fulfillment, i.e., the conjunction operation (2). This 
approach reduces the number of service qubits, since the phase conjunction operation can be performed 
simultaneously for any number of qubits (i.e., literals) using a single CPHASE operation.  
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2. Represent each condition 𝐶𝑘  using amplitude logic. As a rule, one service qubit is created for 
each condition. As a practical example, consider the preparation of a gate that implements amplitude 
OR logic (Fig. 2). Such a gate uses two working qubits and one service qubit to obtain the result of an 
operation. Fig. 2 shows a code fragment of the gate implementation program, its detailed graphical 
representation and as a subschema ("black box"), as well as the corresponding element of the digital 
circuit of the Boolean formula (Fig. 1). 
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Figure 2: OR gate implemented using quantum operations NOT and CCNOT, code example in Python, 
Qiskit module (IBM) 

On the basis of the gate (Fig. 2), it is possible to implement all three elements of Boolean logic OR 
(Fig. 1): for the first digital circuit, the inputs 𝑞[0], 𝑞[1] are supplied with the literals 𝑎, 𝑏 respectively, 
for the second circuit, the literals, 𝑎 ̃ ∨ 𝑐 for the third circuit, the literals 𝑏 ∨ �̃�, respectively. The 
development of such gates should be done from the point of view of their universality for typical logical 
operators with the possibility of using them for all the same type of formula conditions. As a rule, such 
gates are developed as sub circuits and converted into a general scheme for implementing a logical 
formula, as will be shown in Section 4, using the [subcircuit_name] command.to_instruction() 

3. Initiate a full QPU register with the number of qubits equal to the number of literals in a uniform 
superposition using the J. Adamar valve and initiate all service qubits in the state |0⟩. 

4. After realizing all the conditions 𝐶𝑘  in the amplitude logic, perform the conjunction operation in 
the phase logic. 

5. Cancel the calculations of all operations in amplitude logic. The operations are canceled in the 
reverse order from the last to the first condition.   

6. Perform a mirror subscheme of the complex amplitude amplification (AA) circuit to select the 𝑚 
states of the input data that ensure making the logical formula to be truth. Due to the need to use the 
mirror subscheme several times  𝑁𝐴𝐴 (4) to ensure the amplification of the amplitude of the required 
combination of 𝑛 literals in order to clearly detect them, it is also necessary to prepare the subscheme 
as a typical block (Fig. 3) and convert it into a general scheme for implementing the formula. 

𝑁𝐴𝐴 =
𝜋

4
√

2𝑛

𝑚
 (4) 

The implementation of the mirror subscheme of the AA circuit (Fig. 3) involves the use of Adamar, 
NOT and CCPHASE gates. Phase inverting allows you to select a register value and highlight its phase 
against the background of others, and the mirror operation converts the phase difference into an 
amplitude difference.  

This combination of operations in quantum computing is called the complex amplitude amplification 
(AA) iteration.  

4. Practical implementation of the 3-SAT problem in the quantum computing 
environment  

The practical implementation of the logical formula (3) was carried out in the Python environment 
using the Quiskit quantum computing module from IBM [14]. A view of the complete quantum 
computing scheme is shown in Fig. 4. The quantum circuit consists of [15]: 

 quantum input data register, represented by 3 working qubits (a, b, c) - upper register for 
recording the values of three literals, three service qubits (s[0], s[1], s[2]) - lower register for 
intermediate calculations;  
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 groups of quantum gates (gates) that perform operations of amplitude and phase quantum logic, 
cancellation of calculations of operations, mirror subscheme of the amplitude amplification (АА) 
circuit; 

 three measurements, the results of which are written to the corresponding classical bits 
(m1,m2,m3) to save the results of calculations from working qubits. 

 

 

 

Figure 3: Mirror subcircuit of the amplitude amplification (AA) circuit  

The scheme expanded by the [scheme_name].decompose() command gives an idea of the depth and 
width of the quantum scheme. The depth is 34, i.e., 34 operations are performed from the base state of 
the register to the moment of measurement. The width of the scheme is 6, which is the number of qubits 
involved in the calculations, including service qubits. Let's consider several options for modeling the 
logical formula (3). 

Option 1. Modeling is performed without using the mirror subscheme of the amplitude 
amplification (AA) circuit.  

The result of modeling the formula using the 'statevector_simulator' in the register phases is 
presented both in the standard notation of P. Dirac's state vector of a quantum system and in graphical 
form on the Bloch sphere (Fig. 5). 

After analyzing the results, we can distinguish three states 3, 6, 7: |000010⟩, |000110⟩, |000111⟩, 
which differ from the others in the relative phase 𝜋, as indicated by the «-» sign before their amplitude 
and the color on the Bloch sphere. That is, the phase has been inverted. The first three digits are not 
taken into account, they describe the state of the service qubits after canceling the calculations. 

These states encode the logical assignment 𝑎 = 0, 𝑑 = 1, 𝑐 = 0), (𝑎 = 0, 𝑑 = 1, 𝑐 = 1), (𝑎 =
1, 𝑑 = 1, 𝑐 = 1) respectively, which indicates that the given logical formula can be realized and the 
obtained sets of literals ensure the satisfiability of the original logical formula. Simple measurement of 
the results using the 'qasm_simulator' will not solve the SAT problem, since all possible initial states of 
the system are described by the same amplitude, and the probability of their occurrence does not depend 
on the sign and is equal to 1/8 (fig.6). 

Option 2. Modeling using the mirror subcircuit of the AA circuit. 
The result of modeling formula (3) using 'statevector_simulator' in register phases is represented in 

the standard P.Dirac notation by the state vector of the quantum system (Fig.7). What is obvious, apart 
from the appearance of the relative phase π, is the increase in the amplitude of the system states 
encoding the logical assignment after a single application of amplitude amplification. 

It should also be noted that the AA circuit inverted the phase of the qubits before amplifying the 
amplitude and set it to 0, leaving the relative phase 𝜋 unchanged. Since the AA circuit in this case 
amplified the amplitude, the simulation results using the 'qasm_simulator' already allow us to make 
conclusions about the states in which the logical assignment is encoded with a certain probability 

((−0.53033)2 ≈ 0.282; 2825 ÷ 10000 ≈ 0.283) (Fig. 8). Using formula (4), we obtain the number 
of iterations of using the mirror subscheme of the AA circuit: 

𝑁𝐴𝐴 =
𝜋

4
√

23

3
≈ 1,28 

Thus, for formula (3), one iteration of the mirror subscheme of the AA circuit is sufficient to obtain a 
result that will allow us to unambiguously identify the states of the quantum system in which the logical 
assignment for formula (3) is encoded. 
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Figure 4: Quantum scheme for calculation of the logical formula (3) 

 

 

Figure 5: Simulation results without AA scheme 
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Figure 6: Probability of system states after modeling 
 

 

 
Figure 7: Modeling results with a single application of the AA scheme 

5. Summary and Conclusion  

As shown, simulations using the mirror subcircuit of the amplitude amplification circuit allow us to 
identify with high probability (Fig.8), after qubit measurements, the logic assignments encoded in the 
system states that make the logic formula true. It is also possible to identify the necessary encoded states 
without performing measurements by analyzing the relative phase, which is equal to π (Fig.5). The 
proposed simplified algorithm for constructing a logic function model with QPU using standardized 
sets of gates to implement amplitude and phase logic allows to implement a logic formula of any 
complexity. Since the quantum phase logic operation for the conjunctive normal form can be performed 
simultaneously for any number of qubits (i.e., literals) using a single CPHASE operation, the 
computation speed will significantly exceed existing algorithms.  The search for the solution of SAT 

problems with a certain probability, for traditional algorithms is carried out in time 𝑂(𝑘𝑛𝑝𝑜𝑙𝑦(𝑛)), 
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because it is necessary to implement the procedure of searching for the values of literals 𝑘 times for 𝑛 
literals. To speed up the traditional algorithms it is necessary to fulfill them with the help of quantum 
computing, replacing the probabilistic search procedure with the complex amplitude amplification 
algorithm, which will allow to solve the problem in 𝑂(1.1(53𝑛𝑝𝑜𝑙𝑦(𝑛))) time. 

 
Figure 8: Probability of system states after modeling 
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