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Abstract
This demo introduces Declare MoGeS, an automated approach for generating and specializing Declare

process models that can be employed as input for log generation. The specialization of Declare models

is particularly interesting to produce event logs that encompass a subset of the behavior of other logs.

Declare MoGeS seamlessly integrates with existing log generators, streamlining the log generation

process.
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1. Introduction

Comparative evaluations have become increasingly important in assessing the strengths and

weaknesses of process discovery algorithms (cf. [1]). Synthetic event logs are important for

advancing research, with their primary utility lying in the creation of logs that exhibit specific

characteristics, facilitating the evaluation of process discovery algorithms.

To generate synthetic logs, process models are required as input. In a declarative context,

this translates to the availability of declarative process models [2]. Currently, log generators are

fed with manually designed process models. If one wants to create event logs with different

characteristics, different input models are required. Manually creating or adapting process

models is a time-consuming, and consequently, costly task.

This demo proposes Declare MoGeS, a first-of-its-kind tool that enables the automatic gen-

eration and specialization of declarative process models. The first objective of the demo is

to generate artificial models while having control over the models’ main characteristics. Fur-

thermore, to ensure control over subsets of process behaviors, it becomes essential that these

process models can be crafted in a manner where some models are considered as specializations

of others. Specialization refers to restricting the allowable behavior of a process model. Model

A which is a specialization of model B, allows for less behavior than model B. Presently, model
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specialization primarily involves adding constraints to an initial model, resulting in limited

variations of process models. To address this limitation, the second objective of the demo is to

propose an automated approach to generate specializations by adapting constraints from an

initial model, thereby enabling controlled variations [3, 4]. For instance, a constraint stating that

activity a should be followed by activity b (i.e. Response(a,b)) can be specialized by requiring

immediate occurrence of activity b after a (i.e. ChainResponse(a,b)).

2. Innovations and Main Features

Given that the demo has to be able to (1) generate artificial declarative process models and

(2) specialize declarative process models that can serve as input to generate event logs, the

developed declare Model Generator and Specializer (Declare MoGeS) adheres to the following

requirements.

• Declarative Modeling Language – describe business processes in a flexible declarative

language (declare).

• Consistency – the generated and specialized models only consist of non-contradictory

constraints.

• Specialization of Process Models – enable refinement and tailoring of model behavior.

• Balance Between Randomness and User Control – allow for variations of process

models, and, at the same time, enough control over the generated models.

• Compatibility Output Models with Existing Log Generators – The output model is

a declare model saved in a file format
1

suitable as input for existing log generators.

In the following subsections, we describe the algorithms behind Declare MoGeS.

2.1. Generating a Random Declare Model

Algorithm 1 shows that a desired number of activities and constraints (𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡_𝑠𝑖𝑧𝑒 and

𝑠𝑒𝑡_𝑠𝑖𝑧𝑒), a set of declare templates that can be selected to generate a model (𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑙𝑖𝑠𝑡),
and the probability that a particular declare template is chosen (𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑟𝑜𝑏) serve as inputs

for model generation.

Model Generation starts with initializing an empty list of declare constraints. This list will

eventually form the created model. Next, a declare constraint is selected by randomly choosing

a template from 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑙𝑖𝑠𝑡, taking into account the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑟𝑜𝑏. Afterward, activities from

an alphabet of size 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡_𝑠𝑖𝑧𝑒 are chosen to obtain a 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡.
The 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is added to the model IF it complies with the following two key condi-

tions. First, the 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 must be consistent with the constraints already present in the

model, i.e., their conjunction must be satisfiable. We refer to the existing set of constraints as

the temporary model. For instance, consider a temporary model consisting of the constraints

1
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Input :Size of the alphabet of 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠: 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡_𝑠𝑖𝑧𝑒
Number of declare constraints: 𝑠𝑒𝑡_𝑠𝑖𝑧𝑒
List of declare constraint templates: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑙𝑖𝑠𝑡
Initial probability of choosing templates: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑟𝑜𝑏
Number of subsequent tries to add a constraint: 𝑥

Output: Set of declare constraints: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
Initialize:
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = []

𝑗 ← 0
𝑛← 0
while 𝑗 < 𝑠𝑒𝑡_𝑠𝑖𝑧𝑒 do

𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = random(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑙𝑖𝑠𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑟𝑜𝑏,
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠)
if 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is consistent w.r.t. 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 and
𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is not redundant w.r.t. 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 then

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠← 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∪ 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑗 ← 𝑗 + 1
𝑛← 0

else
𝑛← 𝑛+ 1
if 𝑛 > 𝑥 then

print No model found with the given parameters

return 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

return 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Algorithm 1: Model Generator

[Response(a,b), ChainResponse(b,c)]. The constraint ChainResponse(b,d) would be inconsistent

because it contradicts ChainResponse(b,c). Second, the new constraint should not be redundant.
For example, ChainResponse(b,d) (i.e. if b occurs, then d should occur in the next position)

implies Response(b,d) (i.e. if b occurs, then d should occur eventually after b). In this case,

adding Response to the model when a ChainResponse is already included is redundant.

Both conditions, i.e. consistency and non-redundancy, are checked with BLACK [5] by using

the Linear Temporal Logic over finite traces (LTLf) encoding of the declare constraints. If both

conditions are met, the 𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is added to the model, or discarded otherwise.

The algorithm keeps track of how many subsequent times a constraint is discarded (𝑛). This

process continues until the 𝑠𝑒𝑡_𝑠𝑖𝑧𝑒 is met (model is returned) or until 𝑥 times in a row, a

𝑛𝑒𝑤_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 cannot be added to the model (a message is shown to the user and the model

(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) is returned).

2.2. Specializing a Declare Model

Algorithm 2 shows the process for specializing a declare process model. To specialize a

model, the user provides an initial model consisting of constraints that need to be specialized



(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠). Optionally, the user can input a set of constraints from the initial model that

should be kept in the specialized model (𝑚𝑜𝑑𝑒𝑙). Furthermore, a specialization percentage

(𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡) that defines the probability a constraint will be specialized is set.

Input : Initial declare model: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
Specialization percentage: 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡
Initial specialized model: 𝑚𝑜𝑑𝑒𝑙

Output: A specialization of 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
for each 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 in 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 do

if 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 can be specialized then
if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 then

Generate 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑
if 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ̸∈ 𝑚𝑜𝑑𝑒𝑙 then

𝑚𝑜𝑑𝑒𝑙← 𝑚𝑜𝑑𝑒𝑙 ∪ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑

else
𝑚𝑜𝑑𝑒𝑙← 𝑚𝑜𝑑𝑒𝑙 ∪ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

else
if 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ̸∈ 𝑚𝑜𝑑𝑒𝑙 then

𝑚𝑜𝑑𝑒𝑙← 𝑚𝑜𝑑𝑒𝑙 ∪ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

return 𝑚𝑜𝑑𝑒𝑙

Algorithm 2: Model Specializer

The process of specialization (algorithm 2) starts with an 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 from

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠. If 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 can be specialized, then a specialization is added to the

𝑚𝑜𝑑𝑒𝑙 in some cases. The 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is taken into account to determine whether

a specialization should be added or not. Otherwise, the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is added to the

𝑚𝑜𝑑𝑒𝑙. This process ends when all constraints from the initial model are considered. The

specialized model 𝑚𝑜𝑑𝑒𝑙 is a specialization of the initial model 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.

3. Maturity

Declare MoGeS is implemented in Python and stored in a GitHub repository
2
. Additionally,

a comprehensive video tutorial demonstrating the tool’s usage can be found within the same

repository, providing users with an informative resource for getting started with Declare MoGeS.

In computational tests, we tested the Declare MoGeS by conducting a total of 2392 runs, each

aimed at artificially generating and automatically specializing each of the generated declare

process models at four distinct percentages (30%, 50%, 70%, and 100%). Approximately 75% of the

runs resulted in the generation of models containing between 5 to 25 constraints, all achieved

within an 11-minute time frame. Furthermore, it’s worth noting that models with fewer than 16

constraints were generated almost instantly, with a median time of less than a second. However,

2
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for models comprising more than 35 constraints, the execution time could exceed an hour. This

prolonged execution was primarily attributed to the computationally intensive consistency and

non-redundancy checks performed by BLACK.

On the other hand, the Model Specializer displayed efficiency throughout our tests, consis-

tently boasting running times of less than one second for all specialization percentages. These

results highlight the effectiveness of specialization through adapting constraints.

4. Conclusion and Future Work

This paper presents a novel approach for automatically generating and specializing declare

process models to facilitate log generation. The effectiveness of the approach is demonstrated and

evaluated, highlighting its ability to swiftly generate and specialize declare models containing

5 to 25 constraints.

In future research, there are opportunities to expand. One potential avenue involves incorpo-

rating a data-aware aspect. After integration, studies can evaluate data-aware process discovery

algorithms using logs generated from data-aware input models. Additionally, it is interesting

to extend the study beyond the predefined templates offered by the declare language. Future

research will delve into exploring LTL formulas that surpass the existing templates.
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