
declare-js: A Web-Based Viewer and Editor for
Declarative Process Models

Sabine Nagel1, Eric Amann1 and Patrick Delfmann1

1 University of Koblenz, Universitätsstr. 1, Koblenz, Germany

Abstract
In this work, we introduce declare-js, a web-based viewer and editor for declarative process models
(DPMs) in the modeling language Declare, built in JavaScript. This tool enables users to import and
export models while providing visual and textual interfaces for creating and editing declarative
constraints. Moreover, given the complexity of understanding DPMs, declare-js offers features to
enhance comprehension by visually linking textual and visual representations. While the tool is
currently optimized for smaller models, future iterations are set to incorporate features that facilitate
the visualization and comprehension of larger and more complex DPMs, along with features for
detecting and visualizing redundancies and inconsistencies within DPMs.

Keywords
Declare, Declarative Process Models, Declarative Process Specifications, Visualization, Editor, Viewer
1

1. Introduction

As part of business process management (BPM), business processes can be represented by so-
called business process models [1]. This includes formal or textual specifications, as well as the
corresponding graphical notations. Generally, it is distinguished between procedural and
declarative process models (DPMs) [2]. While the former approach explicitly models every
possible execution trace, declarative approaches implicitly model processes using a set of
constraints. All constraints, i.e., the entire declarative process specification, must be satisfied
during process execution [3]–[5]. For both approaches, several process modeling languages exist,
common ones being BPMN (Business Process Model and Notation) for procedural models and
Declare for declarative models. In Declare, constraints are based on linear temporal logic (LTL)
but can be modeled using a set of pre-defined constraint templates. Thus, the underlying logic
remains hidden [3], [4], [6], which allows modelers to work with a graphical or textual
representation of DPMs without having to be familiar with the logic-based formalization [3].
While several applications include features for graphically modeling DPMs (e.g., [7], [8]), a web-
based editor and/or visualizer only exists for procedural models, the most common one being
bpmn-js2. Thus, in this work, we introduce declare-js, a web-based viewer and editor for
declarative process specifications using the modeling language Declare.

The remainder of the paper is structured as follows: In Section 2 we describe the tool and its
functionality in more detail. This includes importing and exporting models, the interfaces to
create and edit textual and visual constraints, as well as functionality to visually link both
representations to enhance model comprehension. In Section 3 we explain how to use declare-js
and briefly discuss the maturity of the tool’s current version. We conclude and discuss future
work in Section 4.

ICPM Doctoral Consortium and Demo Track 2023, October 23-27, 2023, Rome, Italy

 snagel@uni-koblenz.de (S. Nagel); amann@uni-koblenz.de (E. Amann); delfmann@uni-koblenz.de (P. Delfmann)

 0000-0003-4838-8246 (S. Nagel); 0009-0005-6241-6081 (E. Amann)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

2 http://bpmn.io

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/

2. Tool Description

declare-js is fully implemented in JavaScript and does not use any external libraries to allow for
maximum flexibility during development and integration. Currently, our tool supports a standard
set of Declare templates based on [4], [5] and can handle variations of certain templates (e.g.,
AtLeastOne vs. AtLeast1). Figure 1 shows an overview of our tool, which includes possibilities for
import and export (1), an edit menu to visually create and edit the current model (2), a canvas
showing the visual representation of the model (3), and a text editor to also enable creating and
editing the textual representation of the model (4). In the following sections, we will explain these
components and additional functionalities in more detail, a corresponding screencast can be
found here3.

Figure 1: Overview of declare-js and its main components

2.1. Import and Export

In addition to modeling a specification from scratch, declare-js enables importing existing DPMs
in various file formats (e.g., JSON, CSV) to allow seamless integration with other tools or
algorithms. The tool also comes with different possibilities for exporting the current model. This
includes all input formats but also allows downloading the currently visible part of the model
directly as an SVG file, so the created visual DPMs can easily be integrated into other applications
or documents. For testing purposes, we provide exemplary models on our website4.

2.2. Visual Editor

New elements can be created and added to the model using the edit menu on the left of the screen
(B). The design of vertices and edges is based on related works in the area of DPMs [4], [5], [9].
While activities (rounded rectangles) can be directly placed anywhere on the canvas, existence
constraints (small rectangles) must be defined first by choosing a category (position or
cardinality) and then selecting the desired value. Afterward, they can be attached to any activity
on the canvas.

Relation constraints can be added via the arrow button in the edit menu. Here the user can
choose between the following properties, with each (valid) combination representing one of the

3 https://uni-ko.de/declare-js-screencast
4 https://uni-ko.de/declare-js

pre-defined templates. First, a constraint can be directed or undirected. For directed relations, it
is then possible to specify if the constraint is a regular (e.g., Response), alternate (e.g., Alternate
Response) or chain relation (e.g., ChainResponse). Next, the direction of activation can be set by
defining whether the constraint should be activated by its first parameter (e.g., Response), second
parameter (e.g., Precedence), or both parameters (e.g., Succession). Lastly, it is also possible to
negate a constraint (e.g., NotResponse). When predetermining the properties first, the constraint
can directly be placed with its final visualization. However, it is also possible to first place a default
relation constraint and change the properties in the edit menu afterward. This can also be done
throughout the entire modeling process to edit existing constraints.

When importing an existing textual model, all activities are auto-positioned to minimize
overlapping edges. To this aim, we implemented a force-directed graph algorithm that consists of
four parts: (1) a force towards the center, (2) repulsion between activities, (3) attraction of
connected activities, and (4) a force to prevent collisions between existence and relation
constraints of the same activity. This auto-position feature can also be applied at any time during
modeling. More specifically, the user can choose between auto-positioning the entire model or
locking individual activities in place via their context menu and only auto-positioning the
remaining activities. This allows keeping the part of the model that has already been adjusted or
modeled according to the user’s needs as is.

At any point in time, users can move activities around by dragging them to the desired location.
Also, single or multiple activities can be deleted, either using their context menu or the trash can
button in the edit menu on the left.

2.3. Textual Editor

When the edit mode is turned on, it is also possible to edit the textual representation of the
current specification by adding new or changing existing elements. As soon as a valid textual
constraint is entered, the corresponding visual constraint is automatically added to the canvas as
well. A constraint is considered valid if the used template and the number of parameters (one for
existence constraints and two for relation constraints) match one of the pre-defined Declare
templates and if the activities are defined for the current model. Until then, newly entered
constraints are displayed in red. To organize the textual constraints, we implemented
possibilities for sorting activities alphabetically and constraints based on their underlying
template.

2.4. Comprehension

Many works have investigated comprehension of DPMs and concluded that – especially in
contrast to procedural models – DPMs are rather hard to understand, especially in their visual
form [3], [9]–[11]. Therefore, the visual and textual representation of constraints are linked as
follows. When hovering over an activity or constraint in the visual model, its corresponding
textual constraint is shaded in gray and vice versa, so hovering over a textual constraint directly
points towards the respective part of the visual model. This linking also applies to the selection
of single or multiple elements in the visual or textual editor. Additionally, when selecting a visual
or textual constraint, a textual description is provided in the bottom section of the text editor.

3. Usage and Maturity

Our application can either be used directly in the browser4 or by cloning our git repository5 and
integrating the viewer or editor directly into web applications. Here, the desired mode (viewer
or editor) can be selected, so it is possible to just include a viewer without the full editing
functionality. Further documentation on how to use or integrate declare-js into other applications
can be found on our website4.

5 https://uni-ko.de/declare-js-git

As declarative constraints represent circumstantial rather than sequential information,
visualizing large and highly interrelated models will always be challenging. Thus, our tool is
especially useful and efficient for smaller models or subsets of specifications. This includes
inconsistencies (i.e., minimally inconsistent subsets), whose comprehensibility is expected to
benefit from visualizations [12].

To ensure usability for users with prior experience in process modeling, the design and main
functionality were inspired by state-of-the-art web-based modeling tools (e.g., bpmn-js).
However, declare-js still is at an early stage of development and has yet to be validated externally.
Therefore, as an immediate next step, we will empirically investigate the usability of our tool by
conducting an eye-tracking study. This includes assessing ease of use for end users and
developers that aim to integrate declare-js into their own applications. Furthermore, we aim to
validate if visually linking textual and visual model representations in its current form actually
increases comprehensibility and also identify possibilities for improvement here.

4. Conclusion and Outlook

In this work, we introduced declare-js, a web-based viewer and editor for DPMs in the modeling
language Declare. In its current version, declare-js supports several import and export formats,
provides editors for both visual and textual constraints, and links both representations to
facilitate DPM comprehension.

As explained in the previous section, our tool is currently optimized for smaller models, as
visualizing more complex models is a rather challenging task due to the interrelated nature of
activities in DPMs. However, future iterations are set to incorporate features that facilitate the
visualization and comprehension of larger and more complex DPMs. To this aim and to be able to
break down and/or modularize the specification, we will also implement extended sorting and
filtering, which lowers complexity and can also increase understanding [13]. In addition to
conducting usability studies regarding the current functionality of the tool, we also aim to identify
further possibilities for improvement.

In addition to continuously improving the tool and its base functionality, we will also further
extend the tool. While the current set of pre-defined templates is based on related literature [4],
[5] and was chosen to allow seamless integration with other applications and declarative process
mining algorithms, we plan to further extend this set in future versions, for instance by allowing
higher cardinalities for existence templates and implementing additional relation templates.

Furthermore, we are currently developing extensions for model verification by detecting and
visualizing redundancies and inconsistencies. Highlighting such problematic subsets of
constraints directly in the textual or visual model is expected to support inconsistency
understanding in general, as well as future inconsistency resolution and prevention approaches
[11], [12].

References

[1] M. Weske, Business Process Management: Concepts, Languages, Architectures. Springer, 2007.
[2] D. Fahland, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, and S. Zugal, “Declarative versus

Imperative Process Modeling Languages: The Issue of Maintainability,” in Business Process
Management Workshops, in Lecture Notes in Business Information Processing. Berlin,
Heidelberg: Springer, 2010, pp. 477–488.

[3] K. Figl, C. Di Ciccio, and H. A. Reijers, “Do Declarative Process Models Help to Reduce
Cognitive Biases Related to Business Rules?,” in Proceedings of the International Conference
on Conceptual Modeling, in Lecture Notes in Computer Science, vol. 12400. 2020, pp. 119–
133.

[4] C. Di Ciccio, F. M. Maggi, M. Montali, and J. Mendling, “Resolving Inconsistencies and
Redundancies in Declarative Process Models,” Information Systems, vol. 64, pp. 425–446,
Mar. 2017.

[5] C. Di Ciccio and M. Montali, “Declarative Process Specifications: Reasoning, Discovery,
Monitoring,” in Process Mining Handbook, vol. 448, W. M. P. van der Aalst and J. Carmona,
Eds., Cham: Springer International Publishing, 2022, pp. 108–152.

[6] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der Aalst, “Runtime Verification of
LTL-Based Declarative Process Models,” in Proceedings of the International Conference on
Runtime Verification, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 131–146.

[7] A. Alman, C. D. Ciccio, D. Haas, F. M. Maggi, and A. Nolte, “Rule Mining with RuM,” in 2020 2nd
International Conference on Process Mining (ICPM), Padua, Italy: IEEE, Oct. 2020, pp. 121–
128.

[8] F. M. Maggi, “Declarative Process Mining with the Declare Component of ProM,” in
Proceedings of the BPM Demo sessions 2013, Co-located with 11th International Conference on
Business Process Management (BPM 2013), Beijing, China, 2013.

[9] C. Haisjackl et al., “Understanding Declare models: strategies, pitfalls, empirical results,”
Softw Syst Model, vol. 15, no. 2, pp. 325–352, May 2016.

[10] C. Haisjackl and S. Zugal, “Investigating Differences between Graphical and Textual
Declarative Process Models,” in Advanced Information Systems Engineering Workshops, in
Lecture Notes in Business Information Processing. 2014, pp. 194–206.

[11] S. Nagel and P. Delfmann, “Investigating Inconsistency Understanding to Support Interactive
Inconsistency Resolution in Declarative Process Models,” in ECIS 2022 Research-in-Progress
Papers, 2022.

[12] S. Nagel and P. Delfmann, “Exploring Cognitive Effects of Inconsistency Characteristics on
Understanding Inconsistencies in Declarative Process Models,” in Proceedings of the 57th
Hawaii International Conference on System Sciences (HICSS), 2024.

[13] A. A. Andaloussi, P. Soffer, T. Slaats, A. Burattin, and B. Weber, “The Impact of Modularization
on the Understandability of Declarative Process Models: A Research Model,” in Information
Systems and Neuroscience, Cham: Springer International Publishing, 2020, pp. 133–144.

	1. Introduction
	2. Tool Description
	2.1. Import and Export
	2.2. Visual Editor
	2.3. Textual Editor
	2.4. Comprehension

	3. Usage and Maturity
	4. Conclusion and Outlook
	References

