
Object-Centric Process Mining (and More) Using a
Graph-Based Approach With PromG⋆

Ava Swevels, Eva L. Klijn and Dirk Fahland

Eindhoven University of Technology, The Netherlands

Abstract
PromG is an extensible Python library for managing and enriching object-centric event data (OCED) and
for developing object-centric process mining (OCPM) techniques. It does so by using Event Knowledge
Graphs, which model process-related concepts as a property graph in a Neo4j database. The library
automatically generates Cypher queries to transform, enhance, and manipulate object-centric event data,
giving analysts a straightforward way to explore and analyze object-centric processes. To enable others
to develop OCPM techniques, the library is available as a Python package on PyPi and has been tested
with real-life examples.

Keywords
Object-Centric Process Mining, Object-Centric Event Data, Event Knowledge Graphs, Neo4j

1. Introduction

Analysis of real-life processes with multiple interrelated objects has revealed the limitations
of traditional case-centric process mining techniques [1, 2, 3]. As a result, classical process
mining techniques such as control-flow discovery and conformance checking must be adapted,
and new techniques must be developed addressing the multi-object interactions of the process.
These techniques are collectively referred to as object-centric process mining (OCPM) [4]. Some
techniques have already been proposed by academia [5, 6, 7, 8, 9] and process mining vendors
(notably MyInvenio/IBM and Celonis).

However, an open-source ecosystem that enables development and application of OCPM
in the broader process mining community has yet to form. It should offer extensible, easy-
to-use functionality for (1) managing object-centric event data (OCED), e.g., import, storage,
preprocessing, export, (2) exploring OCED from various angles, (3) routine analysis of OCED,
e.g., discovery, performance, and (4) one-off analysis specific to a particular use case.

Toward this goal, we developed the open-source Python library PromG which uses the Neo4j
graph DB system to store data and analysis in a multi-layered knowledge graph. PromG imple-
ments a recent community proposal for standard OCED1 and provides standard functionality
for importing, managing, and analyzing OCED (by automatically generating queries against
Neo4j). Additionally, it allows users to script custom OCPM analyses and implement newly

ICPM 2023 Doctoral Consortium and Tool Demonstration Track
⋆
The research underlying this paper was supported by AutoTwin EU GA n. 101092021
Envelope-Open a.j.e.swevels@tue.nl (Ava Swevels); e.l.klijn@tue.nl (Eva L. Klijn); d.fahland@tue.nl (Dirk Fahland)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1cf. ICPM 2022, https://icpmconference.org/2022/program/xes-symposium/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:a.j.e.swevels@tue.nl
mailto:e.l.klijn@tue.nl
mailto:d.fahland@tue.nl
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://icpmconference.org/2022/program/xes-symposium/

Figure 1: PromG architecture

developed OCPM techniques. By leveraging on industrial GUIs for Neo4j, we relieve analysts
and researchers of engineering efforts for interactively querying, exploring, and visualizing
OCED.

2. Overview and Design

PromG is a Python library that realizes OCPM by using a Neo4j graph database as data store.
Its architecture is illustrated in Fig. 1. The Neo4j database stores OCED and process mining
analysis results in multiple layers of an Event Knowledge Graph [3], a specific labeled property
graph, that describes (qualified) relations between events, objects, relations, and their attributes
(over time).

PromG translates process mining tasks into Cypher queries that are run against the Neo4j
instance. It consists of modules that capture the logic to store and analyze the data, and core
functionalities that provide a query library, a database connection to the Neo4j instance and the
data schema. The latter is implemented in the core, as Neo4j (or any graph database) lacks a
schema implementation.

Users can build a process mining analysis using existing modules. Additionally, since the data
is stored in a Neo4j instance, it can be accessed through Cypher queries and industrial GUIs,
allowing further processing, exploration, and analysis to be built on top of PromG. Therefore, we
provide users with a template to create their own modules that interact with the core features,
thus enabling them to realize their own OCPM analysis techniques.

3. Functionalities Available

While PromG is designed to be easily extended with additional features, we discuss the current
capabilities along the currently available layers, allowing users to take advantage of the tool
immediately.

(a) Raw Records to OCED Event Layer. The OCED-PG module enables the automatic import

Figure 2: Multi-layered event knowledge graph of BPIC’17 generated by PromG and explored in Neo4j
Bloom.

of legacy data records as nodes in raw record layer (at the “bottom” of the graph). Based on
a user-provided semantic header (a JSON document describing the data’s domain semantics),
OCED-PG generates queries that automatically transform the raw record nodes into nodes of
related events, objects, and attribute forming the domain-level event layer in OCED format [10];
each node of the event layer is linked to the nodes of the raw record layer it originates from.

(b) Object-path inference. Per object chosen by the user, OCED-PG infers the directly-follows (df)
path of events per object (enhancing the event layer), resulting in a partial order over all events
that can be analyzed [3].

(c) Event Layer to Process Model layer. The process discovery module enables the automated
discovery of object-centric process models as multi-object DFGs [3]. The user specifies activity
features and objects (or relations) for which the model should be discovered, PromG generates
queries that aggregate event nodes and df-relations of the event layer into activity nodes and
flow relations per object together – forming a process model layer. Each activity node is linked
to the event nodes in the event layer it models.

(d) Task Layer. PromG supports OCED analysis beyond classical OCPM use cases. The task
identification module infers df-paths per resource, uses these to detects sub-graphs where a
resource continuously worked on related objects. Queries then abstract the entire event layer
into a task layer by aggregating sub-graphs into task execution nodes (linked to the underlying
events); giving insights into how actors collaborate across executions [11]. Fig. 2 visualizes
the interconnected layers on BPIC’17: a task instance node (purple) linked to the underlying
event nodes (green) along their DF-paths, and how (some) events link to the multi-object DFG
(blue/orange nodes) of BPIC’17.

(e) Custom Modules. We provide a template for users to create their own module that generates
queries against Neo4j, enabling user to create custom routine and one-off analyses that enrich
existing layers or introduce new layers. Through the template architecture, routine analysis
modules can be included in PromG facilitating open-source contributions.

4. Installation, Usage, and Maturity

The PromG library is hosted on PyPi2 and open-source3 with example analyses, a demo video
and documentation. PromG can be used in any Python project as long as a Neo4j instance4 (with
the APOC plugin5 installed) is available. PromG provides example projects for constructing
EKGs of 5 public real-life event logs of different sizes (BPIC14, BPIC15, BPIC16, BPIC17, BPIC19).
Graph construction is a one-time operation that depends on the number of relationships to
construct [12, Tab.4]. Improving PromG query performance is planned future work.
PromG’s approach and queries have been used in developing custom analyses in multiple

industrial case studies in baggage handling systems [13], semiconductor [14] and ship manufac-
turing [15], and configuration management [16] with consistently positive feedback that the
graph-based approach enables insights and analytics not obtainable previously. Incorporating
relevant analysis functions into PromG is planned future work.

5. Comparison to Related Software

Next to closed-source implementations of OCPM, only the open-source Python library OCPA [9]
addresses the same objective as PromG. OCPA currently offers more analytics functionality
than PromG, and serves as “backbone” for the GUI-based analysis tools OCPM [7] and OC𝜋 [8].
PromG’s strengths lie in the multi-layered Event Knowledge Graph (EKG) within a stan-

dardized data store (Neo4j): the EKG implements standard OCED with domain semantics; the
extensible layers persist analysis results linked to the source data (see Fig. 2); Neo4j’s query
language Cypher and GUIs enables advanced, interactive data exploration and visualization
crucial for OCPM analysis.

6. Conclusion

PromG is an open-source Python library designed to manage and explore OCED and to perform
OCPM analyses. Although its current functionality is limited compared to some academic coun-
terparts, PromG’s architecture prioritizes ease of extension and future development, positioning
it as a valuable tool in the growing field of OCED and OCPM.

Particularly, PromG’s multi-layered knowledge graph promotes the development of a number
of extensions: next to realizing further OCPM capabilities [9, 8] an inference engine for inferring
missing or latent information [14] building on an integration of event data with system design

2https://pypi.org/project/promg/
3https://github.com/PromG-dev
4https://neo4j.com/product/neo4j-graph-database/
5https://neo4j.com/labs/apoc/

https://pypi.org/project/promg/
https://github.com/PromG-dev
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/labs/apoc/

and context data [13]; analysis of actor behavior and organizational routines [11, 15]; and
detecting emergent behavior and its propagation across cases [17].

References

[1] W. M. P. van der Aalst, Object-centric process mining: Dealing with divergence and
convergence in event data, in: SEFM 2019, volume 11724 of LNCS, Springer, 2019, pp. 3–25.

[2] M. Dumas, F. Fournier, L. Limonad, et al., AI-augmented business process management
systems: A research manifesto, ACM Trans. Manag. Inf. Syst. 14 (2023) 11:1–11:19.

[3] D. Fahland, Process mining over multiple behavioral dimensions with event knowledge
graphs, in: Process Mining Handbook, volume 448, Springer, 2022, pp. 274–319.

[4] W. M. P. van der Aalst, Twin transitions powered by event data - using object-centric
process mining to make processes digital and sustainable, in: ATAED 2023, volume 3424
of CEUR-WS.org, 2023.

[5] X. Lu, M. Nagelkerke, D. van de Wiel, D. Fahland, Discovering interacting artifacts from
ERP systems, IEEE Trans. Serv. Comput. 8 (2015) 861–873.

[6] W.M. P. van der Aalst, A. Berti, Discovering object-centric petri nets, Fundam. Informaticae
175 (2020) 1–40.

[7] A. Berti, W. M. van der Aalst, Oc-pm: analyzing object-centric event logs and process
models, International Journal on Software Tools for Technology Transfer 25 (2022) 1 – 17.

[8] J. N. Adams, W. M. van der Aalst, Oc𝜋: Object-centric process insights, in: Applications
and Theory of Petri Nets, 2022.

[9] ocpa: A python library for object-centric process analysis, Software Impacts 14 (2022)
100438.

[10] A. Swevels, D. Fahland, M. Montali, Implementing object-centric event data models in
event knowledge graphs, in: Process Mining Workshops. ICPM 2023, Lecture Notes in
Business Information Processing, 2023. Accepted, to appear.

[11] E. L. Klijn, F. Mannhardt, D. Fahland, Classifying and detecting task executions and routines
in processes using event graphs, in: BPM’21 Forum, volume 427 of LNBIP, Springer, 2021,
pp. 212–229.

[12] S. Esser, D. Fahland, Multi-dimensional event data in graph databases, Journal on Data
Semantics (2021).

[13] V. Chu, Using event knowledge graphs to model multi-dimensional dynamics in a baggage
handling system, 2022.

[14] A. Swevels, R. Dijkman, D. Fahland, Inferring missing entity identifiers from context using
event knowledge graphs, in: BPM 2023, volume 14159 of LNCS, 2023.

[15] Y. Wang, Event graph model discovery for waiting time and workflow analysis in damen’s
process, 2022.

[16] K. Marangoz, Capturing multi-dimensional dynamics in a configuration management
process through event knowledge graphs, 2023.

[17] B. Bakullari, J. van Thoor, D. Fahland, W. M. P. van der Aalst, The interplay between
high-level problems and the process instances that give rise to them, in: BPM 2023 Forum,
volume 490 of LNBIP, 2023, pp. 145–162.

	1 Introduction
	2 Overview and Design
	3 Functionalities Available
	4 Installation, Usage, and Maturity
	5 Comparison to Related Software
	6 Conclusion

