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Abstract
This study delves into the exploration of pupillometry as a modality for affect state recognition. It examines the propensity
for bias in both feature-based and learning-based machine learning models that interpret affect through pupil responses.
Our research lies at the intersection of affective computing and mental health, recognizing the paramount importance of
accurately identifying affect states for effective mental health interventions. We rigorously evaluate the performance of
these pupillometry-based models across diverse demographic groups, including variables such as ethnicity, gender, age,
vision problems, and iris color. Our findings reveal notable disparities, particularly in gender and ethnicity. Bias levels are
pronounced in both feature-based and learning-based models, with F1 score differentials reaching up to 36.28%. Additionally,
our analysis uncovers a slight bias related to iris color, significantly impacting the efficacy of affect state recognition models
that rely on pupil responses. This underscores the critical need for fairness and accuracy in developing machine learning
models within affective computing. By highlighting these areas of potential bias, our study contributes to the broader
discourse on creating equitable AI systems and advancing mental health care, education, and social robotics. It emphasizes
the ethical imperative of developing unbiased, inclusive technologies in healthcare systems.
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1. Introduction
In the emerging field of affective computing and men-
tal health, the intricate relationship between affect state
recognition and cognitive and mental health outcomes
presents a domain of significant research interest [1, 2].
Affect state recognition, central to understanding and
managing various mental health disorders, encompasses
the complex process of identifying and interpreting emo-
tional states [3]. This process is crucial in disorders
such as depression and anxiety, where impairments in
emotional awareness and regulation are prevalent [4].
The advancement of cognitive and mental health thera-
pies, including cognitive-behavioral therapy (CBT) and
mindfulness-based strategies, hinges on the nuanced un-
derstanding and regulation of affect states [5, 6]. These
emotional states profoundly influence core cognitive
processes, including attention, memory, and decision-
making [7]. This underscores the importance of affect
state recognition in therapeutic interventions. Further-
more, the predictive nature of affect state recognition in
mental health conditions paves the way for early and
more effective intervention strategies [8].

The advent of technological solutions, such as recog-
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nition software and mood-predicting algorithms, has
opened new avenues in the monitoring and treatment of
mental health conditions [9]. However, this brings forth
the challenge of bias in machine learning models [10].
The accuracy and reliability of these models in affect
state recognition are paramount, as biases can lead to
misinterpretations, potentially worsening mental health
conditions or leading to inappropriate treatment method-
ologies.

Pupil response has been employed in diverse stud-
ies within psychiatry and psychology, particularly in
assessing cognitive load for memory-based tasks [11].
It has also been utilized in analyzing the emotional im-
pact of stimuli on individuals [12]. One investigation
focused on the confounding effects of eye blinking in
pupillometry and proposed remedies [13]. Additionally,
the utility of pupillometry in psychiatry was reviewed,
highlighting its role in understanding patients’ informa-
tion processing styles, predicting treatment outcomes,
and examining cognitive functions [14]. A separate study
employed pupillometry to assess atypical pupillary light
reflexes and the LC-NE system in Autism Spectrum Dis-
order (ASD)[15]. The potential clinical use of pupil-
lometry in diagnosing nonconvulsive status epilepticus
(NCSE) has also been explored[16]. Although physiolog-
ical responses such as pupillometry are generally con-
sidered less biased than other modalities, hidden biases
can emerge from factors like stimuli selection and de-
mographic influences [17, 18]. For instance, responses
to visual stimuli may vary significantly across different
cultural backgrounds, orientations, and age groups.
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This work aims to investigate the bias that exists in
affect state recognition models based on physiological
signals, specifically pupillometry, which plays a signifi-
cant role in understanding cognitive and mental health
applications. The main goal of this study is to shed light
on the potential bias that may exist in common learn-
ing methods. The structure of the paper is as follows:
first, the methodology, which includes preprocessing and
learning models, is explained. Then, the experiments
and results are presented and validated using a dataset
collected for this work. Finally, we discuss the findings
and conclude at the end.

2. Methodology
The framework focuses on the use of pupillary responses
and approaches the task of affect state recognition as
a binary classification problem based on the targeted
group. The first step is preprocessing the pupillometry
data to mitigate the effect of noisy samples. Then, the
data is used to develop the classification model either
from handcrafted features specific to the pupillometry
data or using a learned model. Finally, model training
and testing are described at the end to investigate the
different cases.

2.1. PreProcessing
The initial processing of the pupillometry data is
paramount to remove any irrelevant and noisy samples
that may impact pupil size analysis. The raw data can
be contaminated with various outliers like system errors,
blinks, eye-tracker glitches, and eyelid occlusion, which
can be identified and eliminated during this stage. Pre-
vious studies [19, 20] have proposed a robust method
for detecting such invalid samples, which we have used
in our study. The method uses dilation speed as a met-
ric to determine whether a data point is an outlier. If
a data sample exhibits a dilation speed greater than a
pre-defined threshold, it is removed as an anomaly. After
that, to ensure the continuity of the data, the filtered data
is modeled using a Gaussian process.

2.2. Feature-Based Models
The feature-based method is a common approach in ma-
chine learning where specific features are extracted from
the data and used to train a the algorithm. In this study,
the pupil responses for each participant were divided into
150 sets of sequences, with each sequence corresponding
to the pupil response for each image. Each sequence has
a length of 300 samples, which were used to extract the
features.

Several features can be extracted from the pupil re-
sponse, including mean and variance of the pupil re-
sponse, maximum dilation, minimum contraction, dila-
tion speed, dilation duration, contraction duration, and
the difference between dilation and contraction. In total,
30 features were manually extracted and used to train
a kernel SVM classifier. Different kernels were tested,
and the Gaussian Kernel showed the best performance
in general.

2.3. Learned-Based Model
The long short-term memory (LSTM) [21] model is com-
monly used in machine learning for modeling sequential
data. In this approach, the LSTM model has been im-
plemented as seen in Figure1 with 128 LSTM units, a
dropout rate of 0.5, a 128-unit dense layer, and a rectified
linear unit (ReLU) activation function. Finally, a dense
layer at the end is added with a SoftMax function to pro-
duce the classification output. The cross-entropy loss
function and RMSprop optimizer are used for training
the model.

The use of deep learning methods such as LSTM for
feature learning and affect state recognition is effective
in various machine learning tasks. This approach can
improve the performance of the model, as it can capture
temporal dependencies and relationships in the data that
might be missed by manual feature extraction.

Figure 1: The LSTM structure used for modeling the
learned-based approach.

2.4. Model Training
In both approaches, feature-based and learned-based, we
divided the data into training and testing datasets, allocat-
ing 80% to training and 20% to testing, respectively. While
constructing the model, we utilized data from all demo-
graphic groupswith the intention of creating amodel that



captures feature representations from all these groups.
To assess the model’s fairness and prevent bias towards
any particular group, we further divided the testing data
into subgroups during the evaluation phase and assessed
the model’s performance for each subgroup.

Due to the limited number of samples, we introduced
augmentation to enhance the training data. This augmen-
tation was applied later in the evaluation, allowing us to
assess its impact on the results. The pupil data sequences
were augmented using noise injection and time-shifting
methods [22]. Specifically, we added white noise to the
original pupil data and performed 50 sample shifts. Im-
portantly, the augmentation was applied to samples from
the non-dominant group to ensure that our findings were
not influenced by this imbalance.

3. Experiments and Results
Bias can be seen as the disparity in performance met-
rics across different groups for a given task. Assuming
we have 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛} be the set of groups for bias
investigation. For each group 𝑔𝑖, we compute the per-
formance metrics of a recognition model 𝑀(𝑔𝑖). Then,
the bias 𝐵 is identified for a pair of groups (𝑔𝑖, 𝑔𝑗) as the
absolute difference in their metrics:

𝐵(𝑔𝑖, 𝑔𝑗) = |𝑀(𝑔𝑖) − 𝑀(𝑔𝑗)|

3.1. Data
To conduct a thorough assessment of bias in pupillom-
etry affect state recognition, we collected a dataset that
encompasses pupillometry data in response to visual stim-
uli, taking into account a diverse range of demographics.
The study involved 35 university students aged between
18 and 40 years, with a mean age of 24.6 and a standard
deviation of 5.17. Participants were required to have
no history of vision disorders, and they were also asked
about any medications they might be taking that could af-
fect their responses, such as depression medication. The
data collected from the participants is categorized into
different cases based on various demographic factors:

• Gender : This case examines the algorithm’s abil-
ity to fairly recognize emotional states in females
versus males.

• Ethnic Group: This case assesses the model’s
ability to impartially detect emotional states
based on participants’ ethnic groups, including
Asian (Chinese), White (North American or Eu-
ropean), Black (African American or Caribbean),
and South Asian (Pakistani or Indian) [6].

• Age: This case explores the impact of age on the
model’s ability to detect emotional states, consid-
ering age groups [17-24] versus [25-55].

• Iris Color : The eye color case is a unique factor
relevant to models using pupillometry data for
their applications. Eye color affects the precision
of detecting pupils and measuring their dilation
and contraction. Thus, we categorize the data
into light (light brown, green, blue, hazel) versus
dark (black, brown, dark brown) iris colors.

• Vision: This case evaluates the model’s effective-
ness in capturing emotional states in data from in-
dividuals wearing glasses versus those not wear-
ing glasses.

3.2. Experimental Protocol
The proposed system was evaluated using a dataset col-
lected at the University of Toronto. In the experiment,
participants viewed a series of visual stimuli intended to
elicit emotions spanning different valence and arousal
values. The visual stimuli were selected from the Interna-
tional Affective Picture System (IAPS) dataset [23]. The
IAPS database provides normative ratings of emotional
valence and arousal for a large set of images. The rating
scales are based on the Self-Assessment Manikin (SAM),
a 9-point rating scale where a score of 9 represents a
high rating (i.e., high pleasure, high arousal), a score of 5
indicates a neutral rating, and a rating of 1 represents a
low rating (i.e., low pleasure, low arousal).

The selected visual stimuli elicit the emotions of in-
terest, which include the two quadrants of the VA di-
mensional model (i.e., HA, LA, or HV, LV). Each of the
aforementioned emotional states is achieved by display-
ing 30 images of the same emotional target for 5 seconds
each. The images were selected to statistically produce
the same response for different groups of people. All
images were presented on a screen with a resolution of
1920 by 1080 pixels. Following the recommendations of
the device manufacturers, the Gazepoint eye-tracking
system was placed approximately 45 cm in front of the
participant at an angle of around 30 degrees. The total
number of participants was 35.

The data collection process was approved by the re-
search ethics committee at the University of Toronto. All
participants signed a consent form that clearly explained
the data collection procedure and the privacy of their data.
Furthermore, all participants received compensation in
the form of a gift card.

3.3. Metrics:
In the evaluation process, two common metrics were
employed: accuracy and F1 score. Accuracy gauges the
proportion of correct predictions made by the algorithm.
The F1 score, on the other hand, assesses the balance
between precision and recall. It offers a more nuanced



evaluation of the algorithm’s performance, especially
when dealing with imbalanced datasets.

3.4. Results from the Feature-Based
Model

We employed a feature-based algorithm for emotion
recognition and assessed the presence of bias among dif-
ferent demographic groups, focusing on valence-based
and arousal-based classifications. Our evaluation yielded
results presented in Tables 1 and 2, along with Figures 2
and 3.

Notably, our findings reveal significant performance
differences between males and females in both arousal
and valence. Specifically, our analysis indicated that
males scored 20.28% higher in arousal and 17.46% higher
in valence compared to females. The F1 score exhibited
a similar gender-based pattern of differences.

Further examination of the model based on ethnicity
factors showed significant variations in accuracy and
F1 scores across different groups. Notably, the Asian
group, despite having the highest number of samples,
displayed the lowest accuracy and F1 scores in terms of
arousal classification. In contrast, the South Asian group,
with the second-lowest number of samples, demonstrated
the highest performance. The percentage difference be-
tween the highest-performing group (South Asian) and
the lowest-performing group (Asian) was 28.93% in accu-
racy and 21% in F1 score for arousal classification. These
findings suggest that obtaining accurate feature repre-
sentations for the Asian group in terms of arousal classi-
fication may be more challenging based on the provided
stimuli.

Regarding valence classification, our analysis revealed
similar performance among the Asian, White, and South
Asian groups, while the Black group exhibited signifi-
cantly lower accuracy and F1 scores. Specifically, the
percentage difference between the Black group and the
group with the highest performance was 26.99% in accu-
racy and 46.71% in F1 score, respectively.

Table 1
Arousal Result of SVM for the different Ethnic Groups.

Ethnic Group Testing % Accuracy F1 Score
Asian 44.24% 51.48% 0.667
White 35.86% 67.88% 0.790

South Asian 11.78% 68.89% 0.816
Black 8.12% 64.5% 0.784

3.5. Results from the LSTMModel
We employed an LSTM-based approach to investigate
bias across different demographic groups. The results of

Table 2
Valence Result of SVM for the different Ethnic Groups.

Ethnic Group Testing % Accuracy F1 Score
Asian 45.28% 52.4% 0.615
White 37.47% 51.1% 0.600

South Asian 9.43% 54.3% 0.667
Black 7.82% 41.4% 0.414

Figure 2: SVM F1 results for the remaining groups

Figure 3: SVM Accuracy results for the remaining groups.

our analysis are presented in Tables 3 and 4, and Figures
4 and 5.

Consistent with the findings of the feature-based
model, we observed significant performance differences
between genders and ethnic groups. Specifically, our
results revealed a significant 24.12% bias toward females



in arousal accuracy and a 10.15% bias toward males in
valence accuracy. Concerning ethnic groups, accuracy
exhibited substantial variations across different ethnic-
ities, as depicted in Tables 3 and 4. In terms of arousal,
the Asian group had the lowest performance, while the
White group achieved the highest accuracy, resulting in
a significant 20.90% advantage favoring the White group.
The other ethnic groups showed similar performance.
In terms of valence, the Black group displayed the low-
est performance, while the South Asian group achieved
the highest, with a difference of 36.28%. In the remain-
ing cases, there were no significant differences between
individual groups, suggesting that these factors share
common representations that can be captured by the
algorithms.

Table 3
LSTM Arousal Result for different Ethnic Groups.

Ethnic Group Accuracy F1 Score
Asian 52.7% 0.413
White 65.0% 0.581

South Asian 62.2% 0.546
Black 64.5% 0.506

Table 4
LSTM Valence Result for different Ethnic Groups.

Ethnic Group Accuracy F1 Score
Asian 54.7% 0.404
White 50.4% 0.345

South Asian 54.3% 0.382
Black 37.9% 0.209

Figure 4: F1 results for the LSTM model for the remaining
demographic groups.

Figure 5: LSTM Accuracy results for the remaining
demographic groups

3.6. Bias and Fairness
Based on the results presented above, it is evident that
both models exhibit significant differences in accuracy
and F1 scores concerning ethnic groups and gender. This
indicates that these two factors play a pivotal role in
the development of affect recognition from pupillometry
data, as the models struggled to find effective representa-
tions for them. In contrast, the other four cases displayed
minor differences in terms of accuracy and F1 scores, sug-
gesting that these factors share common representations
across all groups and do not adversely affect the data’s
quality. For example, iris color had a limited impact on
recognition performance, albeit not as pronounced as
with gender and ethnic groups.

Despite the dataset including diverse groups during
model training, the quality of the representations failed
to adequately capture the diverse group responses within
the studied population. We acknowledge that the unbal-
anced number of samples in each group might contribute
to the bias observed in the results. To address this poten-
tial issue, we implemented data augmentation techniques
(see 2.4) for the non-dominant groups (groups with fewer
samples) to increase their sample size. Subsequently,
we followed the same procedure as in the original case.
However, our results demonstrated that even with the
implementation of data augmentation, the performance
did not change significantly. The bias in performance per-
sisted in both the ethnic groups and gender-based cases,
while the remaining cases exhibited similar performance.



4. Conclusion
In this study, we investigated the performance of feature-
based and learned-based affect recognition models across
various group factors, including ethnicity, gender, vision,
iris color, and age, focusing on pupillometry as a the
modality. Our research, involving a dataset from 35 di-
verse participants, revealed significant gender and ethnic
biases in standard affect recognition algorithms, impact-
ing both arousal and valence-based classifications. We
also identified minor biases related to other factors, such
as iris color. These findings emphasize the potential bias
in affect recognition systems, highlighting the need for
more inclusive and representative training data, rigorous
fairness evaluation, and enhanced transparency in model
development. Our study not only sheds light on the in-
herent biases in affective computing but also underscores
the importance of considering demographic factors in
the development of more equitable and effective affect
recognition technologies, particularly given their direct
relation to cognitive and mental health.
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