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Abstract
Access to magnetic resonance imaging (MRI) scans on the same subjects, encompassing various contrasts and field strengths,
is crucial for brain studies involving supervised image translation for predicting missing or unavailable MRI data. However,
there is a scarcity of such datasets covering both low and high fields. To bridge this gap, we propose a semi-synthesized
dataset including PairedMulti-Contrast magnetic resonance (MR) images in T1, T2, and PD contrasts at both 1.5T and 3T
for the same subjects. We also present it in both 2- and 3-dimensional formats, making it compatible with a wide range of
models. We evaluate our proposed dataset using evaluation metrics along with morphology-based methods, and showcase
the performance of a U-Net based architecture in different applications using our dataset. Finally, we release our dataset to
facilitate future research involving multi-contrast MR image translation.
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1. Introduction
Within the domain of brain studies, magnetic resonance
imaging (MRI) provides unrivaled soft tissue contrast and
is now the leading imaging modality for clinical research
and care. It serves as a cornerstone for disease detection,
precise diagnostics, and vigilant treatment monitoring
across diverse age groups [1]. The distinctive feature of
MRI lies in its remarkable capability to generate highly
detailed 3-dimensional (3D) images, with a particular fo-
cus on capturing the intricacies of soft tissues, such as
gray and white matters. This unique attribute positions
MRI as an invaluable tool for delving into the complex-
ities of the brain’s internal structure and function [2].
Magnetic resonance (MR) images are acquired across di-
verse biophysical contrasts (e.g., T1, T2, and PD) and at
different magnetic field strengths (i.e., 0.2 to 7T), each cap-
turing specific characteristics of the underlying anatomy
[3, 4]. Consequently, higher field strengths, along with
higher spatial resolution can reveal richer information
and superior image quality of the brain tissue relative to
images acquired at lower field strength and resolution.
Image-to-image (I2I) is a computer vision technique

employed to enhance image quality and content. Within
the field of MRI, it includes translation tasks such as
one contrast to another within the same field strength
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(i.e., cross-modality) and from low- to high-field MR im-
ages for the same contrast. Although, this technique
can be applied using both supervised and unsupervised
approaches, supervised learning has shown higher per-
formance as it enables the generation of high-quality
images with sharp details and robust quantitative per-
formance [5, 6]. However, the requirement for paired
datasets imposes a significant challenge as there is al-
most no accessible dataset available that includes paired
MR images at both low and high field strengths for the
same subjects and in multiple contrasts. For instance,
the most widely used datasets in previous in the field
of MRI include Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI)1 [7], Information eXtraction from Images
(IXI)2, and datasets sourced from theHumanConnectome
Project (HCP)3, each of which has limitations. For exam-
ple, in all mentioned datsets, only raw 3D MR images are
presented, which necessitates intricate pre-processing
steps including registration and brain extraction. More-
over, they include either MR images of paired subjects
limited to a single contrast, or multiple contrasts but
limited to one field strength.

To address this gap, we leverage the IXI dataset, which
includes unpaired 3D MRI scans in T1, T2, and PD
for different subjects at 1.5T and 3T. We propose a
semi-synthesized dataset, PMC, which includes Paired
Multi-Contrast MR images at 1.5T and 3T for the same
subjects.

1https://adni.loni.usc.edu/data-samples/access-data/
2https://brain-development.org/ixi-dataset/
3https://www.humanconnectome.org
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2. PMC Dataset
The PMC dataset is pre-processed and ready to use for
supervised and semi-supervised learning methods in
tasks, such as cross-modality, high-field MR image pre-
diction, super-resolution, and multi-contrast MR image
translation. This comprehensive dataset comprises MR
images from 181 subjects, preciously crafted in both 2-
dimensional (2D) and 3D to accommodate a diverse range
of models compatible with each of these formats. As Fig-
ure 1 represents, the dataset includes paired images in
T1, T2, and PD contrasts at both 1.5T and 3T for each
subject generated from the IXI dataset.

T1 T2 PD

1.
5T

3T

Figure 1: Examples of T1-, T2-, and PD-weighted MR images
at 1.5T and 3T for the same pseudo-subjects in PMC dataset.

In the 3D format, the total number of images in each
contrast at each field strength is 181. All MR images
across contrasts and field strengths for each subject are
registered and have the same orientation. Additionally,
the brain is extracted and the skull is removed.
In the 2D format, there are a total of 6576 images in

each contrast at each field strength. These images are
pre-processed and have the same size of 256×150. Similar
to the 3D counterparts, they have undergone registration
for a consistent orientation, brain extraction with skull
removal, and augmentation using techniques such as
flipping, rotation, scaling, and adding noise.

Furthermore, we provide a split version of the dataset
for the 2D format. The entire dataset is divided into
three subsets: the training set, the validation set, and the
test set, with an as-close-as-possible ratio of 80% - 10%
- 10%. Consequently, the data size for each contrast at
each field strength is 5268, 648, and 660 for the training,
validation, and test sets, respectively. To prevent models
from exploiting subject-specific patterns in predictions,
we ensure that no image from the same subject (including

its augmentations) is distributed across different subsets.
All versions of our proposed dataset will be released
through our GitHub repository4.

2.1. Data Synthesis Pipeline
To create a dataset consist of MR images in multiple con-
trasts at both 1.5T and 3T for the same pseudo-subjects,
a series of processing steps are undertaken as illustrated
in Figure 2.
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Figure 2: Pipeline for data synthetization.

Firstly, by leveraging demographic information from
the IXI dataset, we meticulously select 181 subjects from
the 1.5T set and 181 subjects from the 3T set, aiming
for the closest possible match in terms of demographic
details. Subsequently, subjects at 1.5T and 3T are paired
based on matching sex, age, and ethnicity as closely as
possible. The reason for pairing based on these demo-
graphic information is that aging, sex and ethnicity affect
the brain overall structure and gray and white matter con-
tributions [8].
Following this, MR images are reoriented to the stan-

dard orientation, cropped to dimensions of 256×150 to
ensure uniform size, and reduce neck parts in the image
with the aim of improving the brain extraction step. Sub-
sequently, the brain is extracted and the skull is removed.
We employ the FMRIB Software Library (FSL)5 software
for these tasks as it provides a comprehensive set of tools
for image analysis and statistical analysis for functional,
structural, and diffusion MRI brain imaging data [9].

Next, to generate MR images for the same subjects we
follow two main steps: Firstly, T2- and PD-weighted MR
images of each subject are registered to corresponding
T1-weighted MR images at each field strength using rigid
registration. It is worth mentioning that rigid registra-
tion is necessary for MR images of the same subject, due

4https://github.com/FaatemehBaagheri/PMC-Paired-Multi-Contrast-
MRI-Dataset-at-1.5T-and-3T-for-Supervised-Image2Image-
Translation
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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to the difference in the angle and position of the head
during acquisition of the data. Secondly, 1.5T MR images
are taken as reference and 3T MR images at each contrast
are registered to their respective contrast at 1.5T using
non-linear registration. For the registration steps, we uti-
lize Advanced Normalization Tools (ANTs)6 software as
it is widely recognized as an advanced medical image reg-
istration and segmentation toolkit that effectively man-
ages, interprets, and visualizes multidimensional data
[10]. Also, it should be noted that all aforementioned
processing steps are applied to the 3D MR images, result-
ing in PMC dataset in 3D format.
Moreover, to extend the data generalizability to net-

works solely employing 2D data and increase the number
of samples, 3D MR images are transformed to 2D. Specif-
ically, we select slices that predominantly contain the
brain (i.e., 10 slices per 3D MR image) while avoiding
slices with minimal or no brain content. Additionally,
to increase the size and generalizability of the dataset,
data augmentation techniques, including flipping, rota-
tion (with an angle of ±5 degrees), noise addition (e.g.,
Gaussian with random standard deviation in range of
[5,10] and salt-and-pepper with a probability uniformly
sampled from the interval of [0.05,0.1]), and scaling (with
a factor of 1.2) are applied. As a result, the data size for
each contrast at each field strength increased to 6576.

2.2. Data quality assessment
To assess the quality of the synthesized MR images at
3T compared to the reference images at 1.5T, we first
employ evaluation metrics including mean squared error
(MSE), peak signal-to-noise ratio (PSNR), Pearson cor-
relation (CORR), and mutual information (MI) [11]. We
compare the synthesized 3T images with corresponding
reference images at 1.5T as there are no labels available
at 3T for checking the synthesis quality. Thus, utilizing
these metrics, we assess how close 3T images are syn-
thesized compared to 1.5T ones in terms of contrast and
overall structure as reported in Table 1.

Table 1
Synthesized MR images at 3T compared with the reference
images at 1.5T evaluated using MSE, PSNR, CORR, and MI
metrics (The directions of vertical arrows indicate higher im-
age quality. Results are reported as the mean±standard devia-
tion).

Contrast MSE↓ PSNR↑ CORR↑ MI↑
T1 0.014±0.006 20.3±1.02 0.97±0.005 0.88±0.035
T2 0.015±0.006 21.3±1.77 0.90±0.020 0.77±0.032
PD 0.012±0.004 20.5±1.57 0.96±0.008 0.80±0.034

However, it should be noted that in MR images ac-
quired at 1.5T and 3T even for the same contrast, there are

6http://stnava.github.io/ANTs/

differences in the relative signal intensities in gray and
white matter and accordingly in the resulting output con-
trast [12]. Consequently, to investigate the quality of the
synthesized images and minimize the impact of contrast
differences during evaluation, we conduct morphology-
based comparative analyses which have been proven to
be reliable in the state-of-the-art studies in related fields
[13]. We extract the morphological patterns of images
(using edge detection techniques) at both 1.5T and 3T for
each contrast as shown in Figure 3 to assess whether the
patterns and morphology of the synthesized data at 3T
align with the reference data at 1.5T. Next, we evaluate
the extracted patterns using MSE and structural index
similarity measure (SSIM) [14] as reported in Table 2.
Also, to compare the synthesized images with references
within different spatial frequency ranges and accordingly
different levels of details, we perform 2Dwavelet analysis
on the synthesized images and corresponding references
to decompose them into four different frequency com-
ponents and select the three most high frequency ones
named as Subband 1, 2, and 3, respectively [15] as Figure
4 illustrates. Table 3 displays the subband-wise compara-
tive results.

Image Extracted Pattern

1.
5T

3T

Figure 3: Example of extracted patterns from reference MR
image at 1.5T and its corresponding synthesized MR image at
3T for the T2 contrast.

http://stnava.github.io/ANTs/
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Figure 4: Example of the selected subbands for reference MR
image at 1.5T and its corresponding synthesized MR image at
3T for the PD contrast.

Table 2
Patterns extracted from synthesized MR images at 3T com-
pared with the ones extracted from reference images at 1.5T
evaluated using MSE and SSIM metrics (The directions of
vertical arrows indicate higher image qualities. Results are
reported as the mean±standard deviation).

Contrast MSE↓ SSIM↑
T1 0.12±0.012 0.62±0.033
T2 0.11±0.033 0.60±0.037
PD 0.12±0.013 0.60±0.036

Table 3
Subbands of synthesized MR images at 3T compared with the
reference images at 1.5T evaluated using MSE and SSIM met-
rics (The directions of vertical arrows indicate higher image
qualities. Results are reported as the mean±standard devia-
tion).

Contrast Metric Subband 1 Subband 2 Subband 3

T1
MSE↓ 0.005±0.004 0.01±0.010 0.009±0.010
SSIM↑ 0.74±0.028 0.70±0.032 0.62±0.033

T2
MSE↓ 0.005±0.003 0.007±0.006 0.007±0.007
SSIM↑ 0.70±0.034 0.66±0.034 0.62±0.037

PD
MSE↓ 0.004±0.004 0.008±0.009 0.008±0.009
SSIM↑ 0.74±0.035 0.70±0.037 0.65±0.037

3. Application
The PMC dataset can be applied in a wide range of tasks
involving MR image translation, in particular, image gen-
eration, different stages of model development, and pre-
training models for small target dataset sizes. In the
following, we investigate the capability of our dataset in
supervised methods for the aforementioned tasks.

U-Net is one of the most commonly used neural net-
works for tasks such as cross-modality, super-resolution,
and multi-contrast MR image translation [16, 13, 17, 18].
Thus, to further investigate the application of the pro-
posed dataset, a U-Net based architecture, which was
previously proposed in [17] and has shown high perfor-
mance in the mentioned applications, is implemented in
this paper for the following tasks:

1. Cross-modality MR image translation
2. 3T MR image prediction from the same contrast

at 1.5T
3. 3TMR image prediction using 1.5Tmulti-contrast

MR images

Table 4 displays the results for image generation in
each task using the PMC dataset, indicating the highest
performance in Task 1 and 1.5T T1 to 1.5T T2 translation.

Table 4
Quantitative results of generated MR images using U-Net
compared with the ground truth images, using PMC dataset
(The directions of vertical arrows indicate higher image quali-
ties. Results are reported as the mean±standard deviation).

Task Translation MSE↓ PSNR↑

1
1.5T T2→ 1.5T T1 0.0022±0.001 26.97±1.89
1.5T T1→ 1.5T T2 0.0019±0.001 27.93±2.38

2
1.5T T1 → 3T T1 0.0028±0.002 25.83±1.71
1.5T T2 → 3T T2 0.0046±0.002 23.78±1.95
1.5T PD→ 3T PD 0.0047±0.002 23.55±1.76

3
1.5T T1, T2, PD→ 3T T1 0.0033±0.002 25.16±1.87
1.5T T1, T2, PD→ 3T T2 0.0043±0.002 23.97±1.72
1.5T T1, T2, PD→ 3T PD 0.0047±0.002 23.49±1.73

Moreover, to investigate the effectiveness of the PMC
dataset in developing models based on cross-dataset eval-
uation scenarios, we utilize the latest release of the Open
Access Series of Imaging Studies (OASIS)7, known as OA-
SIS3 dataset [19], which includes MR images at 1.5T and
3T in T2, for Task 2 (3TMR image prediction from the same
contrast at 1.5T ). First, we train and test the model on the
OASIS3 dataset. Then, to compare the effectiveness of us-
ing the PMC dataset, we use it to train the model and test
the model on the OASIS3 dataset. The results for both
approaches shown in Table 5, suggest that our dataset
demonstrates acceptable performance. Specifically, the
U-Net, demonstrates higher efficacy when trained on
PMC for 1.5T T2 to 3T T2 MR image translation.

4. Conclusion
In this study, we introduced the PMC dataset, which con-
sists of paired MR images in multiple contrasts of T1,
T2, and PD and at both 1.5T and 3T field strengths for

7https://www.oasis-brains.org/#data
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Table 5
Quantitative results on OASIS3 dataset, using U-Net model
trained by OASIS3 vs. PMC dataset (The directions of vertical
arrows indicate higher image qualities. Results are reported
as the mean±standard deviation).

Trained on Translation MSE↓ PSNR↑

OASIS3
1.5T T1→ 3T T1 0.007±0.002 21.73±1.47
1.5T T2→ 3T T2 0.009±0.003 20.93±1.33

PMC
1.5T T1 → 3T T1 0.011±0.004 19.73±1.31
1.5T T2 → 3T T2 0.007±0.002 21.3±1.44

the same subjects. The dataset is pre-processed and pre-
sented in 3D, 2D, and a split version of 2D, ensuring com-
patibility with a wide range of models and application
in image translation tasks within MRI. Quality evalua-
tion of the proposed dataset involved the use of MSE,
PSNR, CORR, SSIM, and MI evaluation metrics, along
with morphology-based methods. We also demonstrated
the applicability of the data for supervised methods, par-
ticularly in cross-modality MR image translation, 3T MR
image prediction from the same contrast at 1.5T, and
3T MR image prediction using 1.5T multi-contrast MR
images. Moreover, we highlighted its extendability to
cross-dataset evaluation scenarios.
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