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Abstract
We propose a reinforcement learning (RL)-based system that would automatically prescribe a hypothetical patient medication
that may help the patient with their mental health-related speech disfluency, and adjust the medication and the dosages in
response to zero-cost frequent measurement of the fluency of the patient. We demonstrate the components of the system: a
module that detects and evaluates speech disfluency on a large dataset we built, and an RL algorithm that automatically finds
good combinations of medications. To support the two modules, we collect data on the effect of psychiatric medications for
speech disfluency from the literature, and build a plausible patient simulation system. We demonstrate that the RL system
is, under some circumstances, able to converge to a good medication regime. We collect and label a dataset of people with
possible speech disfluency and demonstrate our methods using that dataset. Our work is a proof of concept: we show that
there is promise in the idea of using automatic data collection to address speech disfluency.
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1. Introduction
Speech disfluency is a common medical issue. It can
be caused by, among other factors, conditions such as
depression, anxiety, and insomnia (see Section 6). Speech
disfluency includes stuttering as well as issues like pauses
that are too long, repetitions, “false starts,” and “repairs”
of previous utterances [1].
In this paper, we propose a hypothetical Reinforce-

ment Learning-based system for helping physicians ad-
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just medications for people with speech disfluency. In
the paper, we focus on a proof-of-concept of the system.
Of course, regulatory and clinical issues would need to be
addressed before actually implementing such a system.
However, we show that such a system can in principle
be implemented, and automatic disfluency detection can
work well enough to support such a system.

On a high level, the system works as follows: the per-
son with a speech disfluency interacts with a system that
measures their speech fluency; the system tries to assign
different medications in different doses to the person, to
minimize their speech disfluency. Using Reinforcement
Learning (RL), the system trades off exploring to find the
best medication combination for the person and exploit-
ing effective medication combinations that have been
found.

We demonstrate two components of the system: a sub-
system for detecting how disfluent the person’s speech is,
and a subsystem for minimizing the speech disfluency by
finding a combination of medications that works using
RL.

We train our disfluency detection system to predict the
labels we assigned to clips in the dataset we collected.

To demonstrate the feasibility of the RL subsystem, we
construct a patient simulation . Wemeasure the precision
with which our speech disfluency detection subsystem
can measure disfluency, and obtain from the literature
the plausible timespans and onset times for the effects of
medications. We then run a patient simulation with plau-
sible parameters and demonstrate that our RL subsystem
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can find strategies to minimize the speech disfluency of
our plausibly-simulated patients.
To evaluate our subsystems, we collect a dataset of

public videos of people with possible disfluencies and
label the dataset using a scalable strategy that allows us
to obtain precise and standardized ratings by having each
video be rated by multiple raters.

The rest of the paper is organized as follows: we ex-
plain our data collection and labelling process. We then
describe our disfluency rating process, and report results
on that subsystem. We then describe our patient sim-
ulation process and report results of the RL system’s
performance on the simulated patients. For the patient
simulation to be plausible, we connect the patient simu-
lation to how precisely speech can be rated for fluency
by our system and to the plausible effects of medications.
(Note that if the measurement of speech fluency is too
noisy and/or the medications’ effect is too subtle or the
onset is too long, learning would likely not be possible.)
Finally, we summarize our literature search results for
medications that could plausibly affect speech fluency.

2. Data Collection

2.1. Methods
The objective of our data collection process is to obtain
a series of audio samples from individuals with possi-
ble mental health-related speech disfluency, across a pe-
riod of time. We collected 19 channels from searching
on YouTube for mental health-related vlog channels by
YouTubers, as well as the D-vlog, a dataset of channels
of YouTubers with depression [2].
For each YouTuber represented in the videos, we

scraped their channel for other videos which contained
significant stretches of unedited spoken audio. Terms
used to query for videos from each channel were subsets
of the following keywords {“depression”, “story”, “vlog”,
“depression vlog”, “anxiety”, “tested”, “figure”, “rambling”,
“issues”, “anxiety vlog”, “webcam”}. For each video, only
the audio was extracted. In total, we obtained 195 audio
clips. There are 9 to 11 audio clips for each channel, with
an average of 10 audio clips per channel.

2.2. Rating System
We devised a rating system to assess the severity of the
disfluency in the video data. The authors acted as raters
for the videos. The 19 YouTuber channels in the dataset
were examined for disfluencies in them. Raters were
tasked with assessing the disfluency severity in each
video on a scale of 1 to 7, which was adapted from the
Stuttering Severity Instrument-Third Edition (SSI-3) [3].
(But note that “disfluency” is a more general term than
“stuttering.”)

The rating process consisted of two stages, each stage
lasting approximately one week. In each stage, raters ran-
domly received several channels and were asked to rate
their audio samples from the dataset. This was arranged
so that each audio sample in the dataset would have up to
3 raters. Each rater received different channels in the dif-
ferent stages. To ensure independent evaluation, raters
were advised against sharing their assessments between
each other.

Data from the initial stage was not used in our experi-
ments. The round was used for acquainting raters with
the variation of disfluency observed in the dataset. At the
end of this phase, each rater was privately given summary
statistics regarding their ratings in the round, including
the mean and standard deviation of their ratings across
audio samples, as well as a spreadsheet containing a mea-
sure of their bias for each audio sample (where bias is the
distance of their rating from the mean rating across all
raters for that audio sample). This process was aimed at
allowing raters to recognize possible inconsistencies and
biases in their “internal model” of disfluency. The rat-
ings from the second stage were the finalized ratings that
would be used for fine-tuning our disfluency-detection
system. The ratings were standardized, as described be-
low.

3. Rater Performance Analysis
In this Subsection, we analyze the rater data, and show
that raters are somewhat consistent in their ratings of
the same clips. This indicates that we can use the stan-
dardized ratings (see below) as targets when estimating
the fluency of speakers in audio clips.

3.1. Data Model
To assess the performance of the raters, we conducted a
regression analysis. The model we utilized was

𝑟𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗

where 𝑟𝑖𝑗 is the rating given to audio clip 𝑗 by rater 𝑖, 𝛼𝑖
is the rater bias, 𝛽𝑗 is the true average disfluency of the
channel, and 𝜀𝑖𝑗 is the random error (see [4] for a simi-
lar model). This model is estimated using least-squares
regression.
Using this model, the performance of the raters was

assessed by randomly splitting the dataset into a 70%
training set, and a 30% validation set.

3.2. Analysis
Below, we perform an exploratory analysis of the non-
standardized ratings.



We compute the Root-Mean-Square Error (RMSE) on
the training set and the validation set when predicting the
disfluency scores using the data model. The RMSE on the
training set was 0.8/6.0 (on a scale of 0 to 6 rather than 1
to 7 as in the input) and the RMSE on the validation set
was 0.9/6.0. The validation RMSE we would obtain if the
data model predicted the average rating every time would
be 1.4/6.0. The 𝑅2 value of the model on the training set
was 0.44, indicating that the rater coefficients and the
clip coefficients have explanatory power.
For each clip on the validation set, we compute the

standard deviation of the ratings assigned by different
raters to the same clip. The median standard deviation
is 0.6/6.0. This suggests that the median disagreement
between raters was just over half a rating point on a
given clip. The standard deviations are given on a scale
of 6.0 since the scores range from 1 to 7.

3.3. Standardized Ratings
Different raters use different standards for fluency. We
therefore obtained standardized ratings. We accomplish
this by subtracting the rater bias 𝛼𝑖 (see Section 3.1) for
rater 𝑖 for each rating 𝑟𝑖𝑗 by rater 𝑖. Then, when we com-
pute the average standardized rating for every clip, we
average ratings that are actually on the same scale.

4. Disfluency Pipeline
In this section, we describe our subsystem for assess-
ing the disfluency of a person in the input clip. We use
Whisper 1[5] to transcribe the audio. We then use an
Auto-Correlational Neural Network-based tagger [6] to
tag the Whisper transcript. Finally, we fine-tune GPT-
2 [7] on the tagged transcript as input in order to predict
the disfluency scores we assigned.

4.1. Transcribing Audio with Whisper
The YouTube videos are transcribed using the Automated
Speech Recognition (ASR) model Whisper. Tokens such
as “uh”, “um”, etc. were included in the transcript.

4.2. Disfluency Tagging
The parsed text transcripts were subsequently fed into a
Disfluency Tagging Auto-Correlational Neural Network
(DT-ACNN) [6] – a system designed to categorize each
word within the text transcript as either “fluent” or “dis-
fluent”. In [6], the Switchboard corpus of conversational
speech [8] dataset was used. For the task of predicting a
per-word “fluent” or “disfluent” label, the authors report
a recall of 90.0%, a precision of 82.8%, and an F1 score

1https://github.com/openai/whisper
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Figure 1: Learning curves: disfluency prediction regression
task

of 86.2% on the dataset. The reported results indicate
the effectiveness of the DT-ACNN model in disfluency
detection.

4.3. Fine-tuning GPT-2
We fine-tune GPT-2 to predict the average standardized
disfluency score by the rates who rated the clip from the
tagged Whispter transcripts, as well as from the words-
per-minute (WPM) measure.

For the regression task, we train with embedding size
768, using the Mean Squared Error (MSE) loss, and the
AdamW optimizer with parameters 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 10−9. The token limit of GPT2 is 1024. Inputs that
exceed this limit were truncated. The following hyper-
parameters were used during training: a learning rate of
4.5 × 10−4, a batch size of 4 (dictated by computational
limitations), with weight decay parameter 0.01, for 50
epochs.

P-tuning [9] was used. In this approach, a soft prompt
with a set of 100 tokens is introduced at the beginning
of the input. These tokens aid in guiding the model dur-
ing classification. The model uses a Prompt Encoder to
optimize the prompt, with an encoding layer comprised
of 128 units. The model performance was evaluated by
randomly splitting the dataset into an 80% training set,
and a 20% validation set.

4.4. Results
The learning curves for the disfluency prediction task are
in Fig. 1. We observe that our system is currently able to
predict the validation rating to within about 0.15/6 of the
actual rating on average (the standard error is obtained
by taking the square root of the MSE) for YouTubers not
in the training set.

https://github.com/openai/whisper


5. Patient Simulation and
Reinforcement Learning

5.1. Overview
In this Section, we explore the plausibility of using RL
together with signals from our speech disfluency detector
to find an effective medication regimen for people with
speech disfluency.

We first describe how we simulate people with speech
disfluency in a plausible way. We then demonstrate that
our RL algorithm could find an effective medication regi-
men in a plausible scenario.

5.2. Prior Work: RL for Medication
Adjustment

Reinforcement Learning (RL) for medication adjustment
has been proposed in several contexts. Oh et al. eval-
uate an offline RL algorithm learned on South Korea’s
national Health insurance system to prescribe diabetes
medication [10]. Javad et al. similarly propose an offline
RL algorithm [11]. They measure the performance of
the system based on the concordance to the prescrip-
tion actually made, as well as by analyzing outcomes
where the system’s recommendation and the actual rec-
ommendation in the data disagreed. Sun et al. explored
anapproach for Type 2 Diabetes treatment [12]. They
merged a knowledge-driven model, informed by clinical
guidelines, with a data-driven deep reinforcement learn-
ing model. The knowledge-driven model uses data from
the Singapore Health Services Diabetes Registry which
contains over 189,520 patients and their Type-2 Diabetes
medication prescription to narrow down a list of viable
medications to which the data-driven model applies a
Deep Q Network (DQN) which also learns from the his-
torical patient data and is used to rank the candidate
medications selected by the knowledge-driven model
based on expected long-term rewards.

Nemati et al. developed a clinician-in-the-loop frame-
work for heparin dosing, leveraging data from theMIMIC-
II intensive care unit database [13]. This study engaged
an interactive agent in simulated dosing trials, learning
from the outcomes to refine decision-making processes.
Similarly, Anzabi Zadeh et al. utilized deep reinforcement
learning in the context of warfarin dosing for patients
with blood clotting issues with an emphasis on individu-
alized dosing due to warfarin’s narrow therapeutic range
[14]. In this method, they frame the problem as a Markov
decision process (MDP) and employ an agent within a
Pharmocokinetic/Pharmacodynamic (PK/PD) model to
simulate dose-responses of virtual patients in which the
agent learns the best dose-duration pair through experi-
ence replay.

5.3. Person with Disfluency Simulation
Wemodel a medication administration environment, aim-
ing to determine the most effective medication regime
for people experiencing depression, anxiety, insomnia,
and resulting speech fluency issues. The person’s health
state evolves based on Hidden Markov Models (HMMs).
Each health issue (depression, anxiety, insomnia) has
its unique HMM, governing how the patient’s state pro-
gresses. The patient’s observed speech fluency is also
influenced by these health states.
The Medication object represents different types of

medications, each with varying effects on the afore-
mentioned health issues. These effects include benefi-
cial impacts on the conditions and potential side effects.
Medications have properties like dosage, half_life, and
time_to_effect, which dictate how they function over
time.
We simulate people with disfluency by evolving the

HMM state. The patient model has the following at-
tributes:

• Depression, Anxiety, Insomnia Scores: These at-
tributes represent the initial underlying condi-
tions of the patient. Represented as an integer
between 1 and 5. A higher number denotes a
more severe state.

• Depression, Anxiety, Insomnia Hidden Markov
Models: Models that represent the behaviour of
how the severity of the patient’s depression, anx-
iety, and insomnia change over time based on
their initial states and also through interaction
with medicine. These directly impact observed
speech fluency context.

• Speech Fluency Score: Indicates the patient’s nat-
ural ability to speak fluently, modelled as a con-
tinuous value between 0 and 1.

• Medication Accumulation: A list that keeps track
of all medications that are currently in the pa-
tient’s system.

Alongside this, we alsomodel an individual medication
with the following attributes:

• Name: The name of the medication.
• Depression, Anxiety, Insomnia Effects: Captures
the medication’s average effect and variability on
each condition given the standard dosage.

• Dosage: The amount of medication administered
relative to the standard dose. (e.g. Dosage = 1.5
means 1.5x the standard dose). This attribute
scales the effects of the medication on the patient.

• Time to Effect : The amount of days it takes for
the medication to start showing effects.

• Half-Life: The amount of days it takes for the
medication dosage in the patient’s system to re-
duce by half.



5.4. Hidden Markov Model (HMM)
A Hidden Markov Model (HMM) is a statistical model
that represents sequences of observable data as well as
hidden states. The sequences of observable data are gen-
erated based on hidden states which cannot be directly
observed. Here, the “observable data” is the patient’s
speech fluency score while the “hidden states” are the
underlying depression, anxiety, and insomnia conditions
that affect the severity of the disfluency. We base this
model off of the fact that a patient’s underlying level of
depression [15], insomnia [16], and anxiety [17] have an
impact on their speech fluency.
Each health condition — depression, anxiety, and in-

somnia — has its associated HMM. The key components
of these HMMs are:

• The initial probability distribution over the initial
state of the condition. Initialized as a uniform
distribution, indicating that any severity level is
equally likely at the start.

• The transition matrix, which defines the prob-
ability of transitioning from one state (severity
level) to another in consecutive time steps. For
instance, if a patient is currently at a severity
level of 3 for depression, the transition matrix,
the transition matrix will dictate the probability
of them improving to level 2, worsening to level
4, or remaining at level 3 in the next step.

• We use a Gaussian Hidden Markov Model as the
observable context is assumed to be generated
from a Gaussian distribution. The means and
covariances define these distributions for each
hidden state.

• Each state has a mean context emission, set to be
the same int the depression, anxiety, and insom-
nia states.

See Fig. 2 for a diagram.

5.5. RL Environment
At each step, an agent can choose to administer a specific
medication from the available list. The environment then
evolves based on the medication’s effects and the under-
lying psychiatric state of the patient model by the use of
a transition matrix that map the current psychiatric state
to a new state based on a probability distribution that
models the dynamic and evolving nature of underlying
psychiatric states [18]. The agent receives a reward based
on the patient’s measured fluency.

We use the LinUCB [19] algorithm to learn the optimal
medication strategy. The goal is tomaximize the patient’s
speech fluency.
The effects of the medication on the patient model is

implemented by applying the effects of the medication
on each condition on each condition’s transition matrix.
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Figure 2: A diagram of a Hidden Markov Model representing
context emissions generated from states.

5.6. Medication Selection Algorithm
We use the increase in speech fluency as our reward.
Speech fluency is modelled as a linear function:

𝑆 = 0.1 ⋅ 𝐷 + 0.2 ⋅ 𝐴 + 0.3 ⋅ 𝐼 + 0.4 ⋅ 𝑅

where 𝑆 is current speech fluency, 𝐷, 𝐴, 𝐼 are the patient’s
current depression, anxiety, and insomnia scores respec-
tively, labelled on a 5 point scale, where 1 represents no
symptoms and 5 represents the most severe symptoms.
𝑅 is the patient’s baseline fluency.

The implementation of the LinUCB algorithm observes
the current state of the patient, then for each medication
that is part of the environment, it estimates the reward us-
ing a linear approximation. An upper confidence bound
is calculated for the estimated reward in which the medi-
cation with the highest upper confidence bound is chosen
according to the equation:

𝑎𝑡 = argmax
𝑎𝜖𝐴

(𝑥𝑡(𝛼)𝑇𝜃𝑎 + 𝛼√𝑥𝑡(𝑎)
𝑇𝐴−1

𝑎 𝑥𝑡(𝑎))

where 𝑥𝑡(𝑎) is the feature vector for action 𝑎 at time
𝑡, 𝜃𝑎 is the parameter vector for action 𝑎 which we want
to estimate, and 𝛼 is the hyperparameter controlling the



exploration/exploitation trade-off [20]. In our implemen-
tation of the LinUCB algorithm, we chose the value of
𝛼 = 10.0.

5.7. Results
In our simulations, we run the RL algorithm and keep
track of disfluency over time. We inject noise into the
algorithm’s simulated measurements of disfluency to sim-
ulate the fact that our disfluency detection system does
not measure disfluency perfectly. In the experiments
reported here, we inject a minimal amount of noise, cor-
responding to the high precision with which we can
measure disfluency.
We define the success of a trial as an improvement

of over 0.5𝜎 in speech fluency. We define failure as a
deterioration of over 0.5𝜎 in speech fluency. Here, 𝜎 ≈ 0.1
is the standard deviation of fluency in the dataset.

Figures 3 and 4 show examples of a successful and an
unsuccessful run, respectively. Across 500 patient simu-
lation runs, we found a high potential for reinforcement
learning to correctly apply medication effects to reduce
speech disfluency, with 52% of runs showing success and
9% of runs demonstrating failure.
The average fluency across these runs was 0.66/1.00

with a standard deviation of 0.1. The success rate of the
simulations was 52%, with a failure rate of approximately
16%. Success and failure are defined as runs terminating
greater than 0.5𝜎 and lower than −.5𝜎 from the initial
fluency level, respectively.

These results support the possibility of the use of rein-
forcement learning to improve speech fluency under the
studied conditions. Our preliminary results indicate that
if speech disfluency can be measured to within 10% of the
true score and the medications have plausible properties
(similar to the ones seen in Section 6), then reinforcement
learning is a possible method to dose medications that
pessimize speech disfluency. However, the variability
in outcomes and the presence of failed simulations that
prompted theoretical patient deterioration indicate that
further research is needed in improving the model’s accu-
racy and understanding factors contributing to failures,
that will be important for applying these findings in a
clinical setting.
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Figure 3
Convergence to higher speech fluency.
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Figure 4
Lack of convergence to higher speech fluency.

6. Medication Literature Review
A systematic literature review was conducted to deter-
mine commonmedications used to treat major depressive
disorder (“depression”) and other mental illnesses that
affect speech fluency. Table 1 indicates 23 medications
whose onset time and response rates were used to inform
the reinforcement learning simulation.

7. Ethical Considerations
In this paper, we outline and evaluate a proposal to ad-
just medications automatically in order to improve the
speech fluency of a simulated patient. Although adminis-
tering medications automatically is sometimes done (e.g.,
with Insulin pumps), this can only be done after thor-
ough clinical trials and with informed consent from the
patient. Patients must be thoroughly informed about the
nature of the automated system, its potential risks and
benefits, and their rights in the decision-making progress.
This extends beyond initial consent, and includes ongo-



ing consent as the system adapts medication regimens.
We believe that if safe dosage ranges can be determined,
automatically adjusting medications can in principle be
done. Potential upsides include better-optimized med-
ication regimes that are found faster (or found at all).
The system’s reliance on sensitive patient data raises
significant privacy and security concerns. Finally, the
long-term implications of integrating such a system into
healthcare practices must be considered. This includes
ongoing monitoring of the system’s impact on patient
health outcomes, adapting to new medical insights, and
updating the system accordingly.

8. Limitations
This paper studies the feasibility of using automated mea-
sures of disfluency together with a reinforcement learn-
ing system to adjust medications. Our model is informed
by the literature, but it is still a “toy” model. However, our
results indicate that it is possible to measure disfluency to
a certain precision (for some definition of “disfluency”),
and that this precision can be sufficient to serve as input
to an RL system.

9. Conclusions and Future Work
We propose and evaluate a new idea: people with speech
disfluency can have their disfluency measured automat-
ically, and a reinforcement learning algorithm can find
an optimal medication regime for them through explo-
ration/exploitation. We have shown that the components
of this system are possible to build.
In our preliminary experiments, we have shown that

with an accurate enough disfluency detection system and
with medications with plausible properties, a good medi-
cation regime can be found by a reinforcement learning
system.
Future work includes improving our subsystems for

performance, ensuring that our simulations preserve pa-
tient safety (e.g. by only trying safe dosages), and run-
ning more extensive simulations to show under what
conditions RL for optimizing medications is feasible.
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Drug Name Medication Onset Time Variance in Patient Response Treated Condition

Clomipramine 6-12 weeks [21] Low remission rate (20%);
[21]

Obsessive compulsive
disorder [21]

Imipramine 4-5 weeks [22] 80.6% patients after 12-week
treatment, compared to 48.0%
in the placebo [22]

Depression, anxiety [22]

Selegiline 1-2 weeks [23] 33-40% [23] Parkinson’s disease,
depression [24]

Blonanserin 4-6 weeks [25] 52-87% [25] Schizophrenia, mania [25]
Venlafaxine 4-6 weeks [26] 67.2% [27] Depression, anxiety, panic

disorders [26]
Sertindole 4-6 weeks [28] 85% [28] Schizophrenia [28]
Carbamazepine First few days [29] 75-85% [30] Bipolar disorder, seizures [29]
Pregabalin 3 days [31] 40% [32] Anxiety [32]
Lithium 1-3 weeks [33] 33% [34] Bipolar disorder [33]
Ziprasidone 1-2 weeks [35] 51.85% [36] Bipolar disorder and

associated depression [35]
Risperidone 4 weeks [37] 63.4% (4 mg), 65.8% (8 mg)

[38]
Treats irritability associated
with autism and
schizophrenia [38]

Gabapentin 1-4 weeks [39] 17.2% - 37.6% (600
mg-1800mg dosage) [40]

Epilepsy [39]

Mirtazapine 1 week [41] 67.1% [42] Depression, anxiety, obsessive
compulsive disorder [41]

Topiramate 2-4 weeks (epilepsy), 3
months (migraines) [43]

88% [44] Epilepsy, migraines [43]

Sertraline Within 6 weeks [45] 59% [46] Depression, PTSD, OCD,
panic disorder, social anxiety
disorder [47]

Citalopram 1-2 weeks to start working,
4-6 weeks for full benefit [48]

47% [48] Depression, social anxiety
disorder, PTSD [48]

Duloxetine 2-4 weeks [49] 77% [49] Depression, anxiety [49]
Tranylcypromine 1-2 weeks to start working,

6-8 weeks for full
improvement [50]

60%-80.7% [51] Major depressive episodes
[50]

Escitalopram 1-2 weeks to start working,
6-8 weeks for full
improvement [52]

30.2% after 2 weeks of
treatment and 75.8% after 8
weeks of treatment [53]

Depression, generalized
anxiety disorder (GAD),
obsessive compulsive disorder
(OCD) and panic attacks [52]

Quetiapine 1-2 weeks to start working,
2-3 months for full
improvement [54]

58.2% for quetiapine 600
mg/day and 57.6% for
quetiapine 300 mg/day after 8
weeks of treatment [54]

Schizophrenia, manic,
psychotic and depressive
episodes [54]

Paliperidone 2-8 weeks for full
improvement [55]

33.6% after 2 weeks [55] Psychotic disorders including
schizophrenia [55]

Fluoxetine 4-5 weeks [56] 41% [56] OCD, certain eating
disorders, panic attacks [56]

Table 1
Summary of medication and variation in patient response for depression and related mental health conditions.
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