Towards a Life Cycle for Method Engineering

Naveen Prakash, S.B. Goyal
[praknav @hotmail.com, goyalsb@yahoo.com]

GCET, 1 Knowledge Park Phase II, Greater NOIDA 201306

Abstract We propose a three stage method development life cycle. The requirements
engineering phase consists of elicitation and representation of method intentions, the design
phase produces the architecture of the method and the construction phase consists of organizing
method features in a coherent whole. We concentrate in this paper on the Design and
Construction phases of the life cycle. We explain our notion of method architecture and
organization and illustrate them. Finally we show the relevance of method architecture and
organization in SME. The design and construction engineering phases of our life cycle are
illustrated for a small SME example.

Keywords: Method, Method Engineering, Meta-model, SME

1 Introduction

Traditionally, method engineering has relied on the basic technique of instantiation
of meta models. This approach calls for a detailed identification of the method
features of the method. In order to ensure that methods fit well in the project situation
where they shall be used, Situational Method Engineering, SME [Har94], was
developed. SME assumes the existence of a method repository from where the
method(s) of interest are retrieved, and modified or assembled into a new method that
is subsequently stored in the repository for reuse. Some early proposals for SME are
[Bri98, Gru96, Gup01]. Recently goal oriented approaches have been proposed.
Ralyte Ral03] suggests that method engineering should be done in two steps. First, a
method engineering goal is established. Thereafter, the assembly based method
engineering task is carried out by eliciting method engineering intentions like add
event concept. Prakash et al [Pra07] propose a three stage SME process, intention
matching, architecture matching, and organization matching.

Though method engineering has been investigated extensively, we are unaware of
any proposal for a method development life cycle on which the engineering of
methods can be based. Indeed, we believe that the development of such a life cycle is
a pre-requisite for the systematic development of method engineering, including SME
and propose to develop a method development life cycle (MDLC). In the proposed
life cycle, SME as known today, is shown to be at the down stream end. The proposed
life cycle calls for greater emphasis to be placed on the upstream activities of method
design and method requirements engineering.

2 Naveen Prakash, S.B. Goyal

The layout of the paper is as follows. In the next section we present our method
development life cycle. We show the inputs and outputs of the different stages as well
as the essential process required to do SME. In section 3, we develop the notion of
method architecture and give an example of a method architecture. In section 4, we
define method organization and illustrate it. In sections 5 and 6 we deal with the
processes of our life cycle relevant to SME. We present our processes for architecture
and organization respectively and illustrate these through a small example.

2 Method Development Life Cycle

Our MDLC has been motivated by [Pra07]. As shown in Table 1, the
Requirements Engineering stage consists of Intention Matching. First, the intention of
the method To Be is elicited. The intention matching process uses synonym matching
to identify intentionally similar methods that reside in the method repository. These
methods become candidates for the second stage of the MDLC.

Stage Process Input Output
Requirements |Intention Intention of the method To Intentionally
Engineering [Matching Be obtained from Interviews |[similar methods to

etc. the method To Be
\Design IArchitecture |Architectures of intentionally |Architecturally
Engineering [Matching similar methods similar methods
Construction |Organization [Organizations of Method To-Be
Engineering [Matching architecturally similar method

Table 1: The Method Development Life Cycle

In the Design Engineering stage, the method engineer retrieves the architecture of
each candidate from the method repository. That subset of these components and
inter-relationships is selected which best meets the broad functional needs of the
method To-Be. Such selections are made from all the candidate methods and are
synthesized together into the architecture of the desired method.

In the Construction stage the architecture is populated with instances of the method
features needed in the method. These features are in accordance with the meta model
used, fragment, contextual, decisional et..

3 Method Architecture

The Cambridge dictionary defines it as meaning "the art and science of designing
and making buildings”. Similarly, the Webster's dictionary defines it as the
“discipline dealing with the principles of design and construction and ornamentation
of fine buildings”.

Towards a Life Cycle for Method Engineering 3

In computer science this term has been used in various contexts like Computer
Architecture and Software Architecture. Computer architecture [Buc62] is the art of
determining the needs of the user of a structure and then designing to meet those as
effectively as possible. Mano describes CA [Man03] as the structure and behaviour of
the computer as seen by the user. For Stallings [Sta96] Computer Architecture refers
to those attributes of a system visible to a programmer. Clark says [Cla05] that
computer architecture is about decomposition, interfaces and dependencies, and
exploiting reusable parts as well as fundamental design principles and approaches.

Similarly, a number of views exist on software architecture. [Sub99] sees Software
architecture (SA) as a combination of structural views of a system. Lane views it
[Lan90] as the study of the large-scale structure and performance of software systems.
[Kru94] says that SA deals with abstraction, with decomposition and composition,
with style and esthetics. [Sha96] say that SA involves the description of elements
from which systems are built, interactions among those elements, patterns that guide
their composition, and constraints on those patterns. Yet another view is that
architecture [Bas98] focuses on the externally visible properties of software
components.

Following the above, we define method architecture (MA) as an abstraction of
the method that identifies its components and inter-relationships to highlight the
externally visible functionality of the method. Notice that we are talking about the
architecture of the method and not of tools like CASE and CAME. Method
architecture organizes the different features of methods into functionally coherent
featues that can be recognized by application or method engineers as providing some
useful capability.

Type Urgency Necessity Abbreviation
1 Immediate Must IM
2 Immediate Can 1C
3 Deferred Must DM
4 Deferred Can DC

Table 2: Types of Links

We adopt the basic notation of nested rectangles and links between these to
represent a MA. Rectangles represent abstractions of method features. For links, we
adopt the dependency types introduced in [Pra06]. Two attributes, urgency and
necessity, are associated with each dependency type (see Table 2). Urgency refers to
the time at which the dependent method, M,, is to be enacted. If M, is to be enacted
immediately after M, is enacted then this attribute takes on the value Immediate. If M,
can be enacted any time, immediately or at any moment, after M, has been enacted,
then urgency takes on the value Deferred. Necessity refers to whether or not the
dependent method block M, is necessarily to be enacted after M; has been enacted. If
it is necessary to enact M,, then this attribute takes the value Must otherwise it has the
value Can.

4 Naveen Prakash, S.B. Goyal

We define a link between rectangles of a method rectangle for each dependency
type shown in Table 2. Thus, there are four kinds of links, IM, IC, DM, and DC.

It has been shown in [Pra02] that methods can be built for diverse domains, other
than those of Information systems Development as well. Here we consider such a
domain to illustrate our SME approach. As an example consider the architecture for
Admit Student shown in Fig. 1. It consists of 5 rectangles, Process Regular Student,
Process Distance-learning Student, Declare Result, Collect Fee and Register
respectively. As shown, these are connected by links of the type DM, DC, and IM.
Process Regular Student consists of nested method components, Publish
Advertisement, Receive Application, and Conduct Examination respectively. Again
these are connected by their own type of links as shown. Similarly, Process Distance-
Learning Student has its own nested rectangles with appropriate links between nested
components. Declare Result, Collect Fee, and Register are atomic components and
display no nesting. These are connected by the types of links as shown in the Figure.

Pablish ot Raceive o | Conduct
Advertsepant Applicerion Envance Test
Frocess Regular Stadest
Publish =i Recaive o Verify Statas
_d,;; Bt
o8 e i "
Process Detence-Lavrning Student
Daclare Result = Collect Fes L Ragiter
Asdenie Student

Fig. 1: Method Architecture of Admit Student

The architecture of Admit Student shows that the functionality the method
provides is captured in the top level components, Process Regular Student, Declare
Result etc. In this sense, it shows the externally visible functionality to the application
engineer and/or to the method engineer. These rectangles are abstractions of the
method features that shall be provided by a real method to meet these architectural
specifications. Nested rectangles elaborate the architectural components of outer level
rectangles. Functionality represented by nested rectangles is visible as part of the
overall functionality provided by outer level rectangles.

Towards a Life Cycle for Method Engineering 5

4 Method Organization

The term organization has been used extensively in the context of computer
organization. As far as the authors are aware, there is no notion yet of software
organization. Stallings [Sta96] sees computer organization as the operational units and
their interconnections that realize the architectural specifications. Mano [Man03]
views computer organization as the way the hardware components operate and the
way they are connected together to form the computer system. [Hay98] looks upon
computer organization as the logical aspects of the implementation.

The notation for computer organization is very similar to that for computer
architecture: nested rectangles and control or data links between these. However,
rectangles of computer organization are at a lower level of abstraction than those of
computer architecture and refer to the physical units that realize the architectural
specifications.

We can define method organization by analogy with computer organization.
Method organization is the way in which method features are connected together
to realize the MA. Method organization is the manner in which MA is implemented.
It is an elaboration of MA to determine how the method is constructed, what
capabilities it provides, what constraints are applicable etc. Again, a method
organization is represented using nested rectangles and links between these. The links
are of the same four types as for method architectures.

In illustrating method organization, we first note that it is in accordance with a
model of a method. This may be a meta-model [Har94, Gro97, Pra97, Pra99], or
alternatively it can be based on a generic model [Pra06]. Method organization results
from an instantiation of the meta-model or the generic model. Here, we develop
method organization using the generic model of methods [Pra06].We shall provide
only a broad view of the generic model to establish a basis for using it for method
organization. For full details of the generic model please refer to [Pra06].

According to the generic view, a method is a triple <M, D, E> where M is the set
of method blocks, D is the set of dependencies between method blocks, and E is the
enactment mechanism. The notion of a dependency is used to build a dependency
graph with nodes as method blocks and edges as dependency types. A dependency
graph has START nodes that have no edges entering them and STOP nodes that have
no edges leaving them. The enactment algorithm guides method enactment from
START nodes through the intermediate nodes to STOP nodes.

Broadly speaking a method block has two parts, a product primitive and process
primitive. For example, <entity, attribute, attach> is a method block. It specifies that
an attribute can be attached to an entity. Method blocks show dependencies among
each other. These are the same as DM, DC, IM, or IC respectively considered above.
Using the notion of a dependency, a method can be organized as a dependency graph
[Pra06, Pra07].

6 Naveen Prakash, S.B. Goyal

Now, assuming that each method block corresponds to a method feature, it can
be seen that the dependency graph provides a full representation of the features of a
method as well as their inter-relationships. Thus, given an architecture, we define
method organization based on the generic model as the method blocks
comprising the method and the links between these. We illustrate this for the
Receive Application component of the MA of Fig. 1.

Method organization for the Receive Application method component is shown in Fig.
2. The method starts off by proposing the filling of the application form, <application,
fill>. The form can be received either by courier, by hand, or by email. This is
captured by the nodes, <Courier, Receive>, <Hand, Receive>, and <E-mail, Receive>
respectively. The method says that couriering and emailing is to be done immediately
after filling the form (IC) whereas delivery by hand can be done after some time gap
(DC). Irrespective of the path taken, the next feature of the method is to check the
application, <application, check>. This must be done but its enactment can be
deferred giving rise to a DM link. Finally the method proposes to issue an
acknowledgement, <acknowledgement, receive>. This must be done and it must be
done immediately after the check is completed. This explains the IM link.

The Receive Application method terminates when <acknowledgement, issue> has
been enacted. Now, the next method, Conduct Entrance Test, in the MA of Fig. 1 is to
be enacted as dictated by the link between Receive Application and Conduct Entrance
Test. It can be seen that the method features of which the MA is an abstraction can be
organized with the feature as the node and the link as the edge between nodes.

<Courier, Receive>

DC 0 DM Iication,Check>|
<Applicati Fill> <Hand, Receive>

>0

<Acknowledgement, Issue>

<E-mail, Receive>

Fig. 2: Organization of Receive Application for Admit Student

5 The Design Phase of MDLC for SME

In this section, we show the basic process by which MA of a method can be used in
the Design phase of the MDLC for performing situational method engineering.

Our architecture matching process can be characterized as a left to right, top down,
depth first matching process. It starts from the top left most component of an
architecture, and asks the method engineer to examine it to see if it meets project

Towards a Life Cycle for Method Engineering 7

needs. If it does, then the nest level of nested components are examined for their
relevance to the method To-Be. This is done recursively till all components have been
matched. Thereafter, the process asks the method engineer to move to the component
on the right of the top most component. The matching process is again performed.
The process continues till all components at the top most level are matched. At this
point, the method engineer can move to the left most component below the top most
and exhaust the components at this level. In this manner when the bottom most
component has been matched, the process of architecture matching ends.

To, illustrate, we shall use the architecture of Fig. 1 and follow the architecture
matching process to build a method for registering a delegate in a conference.
Following our process, we start matching Process Regular Student. We find that this
has relevance because we have to Process ‘Regular’ Delegates. All delegates are
regular in the sense that shall all physically attend the conference. We adopt this in
the architecture of our method as shown in Fig. 3. Now, the nested components are
matched. Following our process, we find Publish Advertisement in Fig. 1. We need
this method as it is, so we nest Publish Advertisement in Process Regular Delegate of
Fig. 3. Then we match Receive Application, find that it is needed, adopt the link
property DM and arrive at the left side of Fig. 3. Conduct Entrance Test of Fig. 1 is
not required in the Process Regular Delegate.

Now, we move to second row of the architecture of Admit Student. Process
Distance Learning Student is not required in Register Conference Delegate because
all delegates are to physically attend the conference. So we remove it. Next we move
to the third row of Fig. 1. Declare Result is not required for Register Conference
Delegate, so we remove it. Collect Fee is required and is included as such in Fig. 3.
We find the link DM between Process Regular Delegate and Collect Fee. Then we
move to the next method component in Fig. 1 Register. It is required for Register
Conference Delegate with the link IM.

Pablish e Feceive ing B
Adverdsement Applcstion Collect Fae Resister
Process Reguler Delegate

Register Conference Delegate

Fig. 3: Derived Architecture of Register Conference Delegate

It can be seen that the matching process at the architectural level leads to the
examination of legacy method components and links between them for their
appropriateness in the MA To-Be. Using knowledge of what is to be achieved, the
new architecture can be developed.

8 Naveen Prakash, S.B. Goyal

6 The Construction Phase of MDLC for SME

Now, let us consider the construction of the method To-Be. For this purpose each
component of the MA must be expressed as a dependency graph. As discussed earlier,
this graph constitutes method organization.

The organization matching process lies at the heart of the Construction phase of the
Life Cycle shown in Table 1. This matching process is left to right and top down. This
means that the method engineer shall consider each node in the graph starting from
the left most. If a node branches out into many nodes, then the top most link is first
examined for matching. Then the next lower edge is examined and so on till all the
outgoing branches have been considered. Thereafter, the method engineer moves to
the next node on the right and the process continues.

<Courier, Receive>

<Application, Check> DM

»O
<Acknowledgement, Issue>

<Application; Fi <Hand, Receive> DM

<Application, Check> |

™ O
<E-mail, Receive> <Acknowledgement, Issue>

Fig. 4: Organization of Receive Application for Register Conference Delegate

We illustrate this process with the Receive Application organization of Fig. 2.
Starting from the left most node, we find that <Application, Fill> is relevant to the
new method. So, it is included in the new organization. We notice a number of
branches coming out of this node in Fig. 2. Starting from the top most, we find that it
is relevant but the link is changed to DC since there can be a delay between filling and
couriering the application. The edge from <Courier, Receive> to <Application,
Check> does not change. This is shown in Fig. 4. The middle edge to <Hand,
Receive> of Fig. 2 and its outgoing edge are accepted as such. Similarly, the bottom
edge is accepted as such. This is shown by the middle and bottom edges of Fig. 4. Just
as in Fig. 2, it is necessary to issue an acknowledgement for the new method.
However, in the new method, acknowledgement of applications received by e-mail is
done immediately after checking is over. For the other ways in which applications are
received, the acknowledgement is to be issued in deferred mode, i.e., perhaps, after a
delay. This forces us to reproduce the <Application, Check> node and create different
links to <Acknowledgement, Issue> as shown in Fig. 4. The link to the next method
component is now to be examined and organization matching for the Collect Fee
component is done. As for architecture matching, organization matching enables the
systematic examination of each method feature and an evaluation of its fitness for use
in the method To-Be. Every link between features is also examined to find its
suitability.

Towards a Life Cycle for Method Engineering 9

7 Conclusion

The area of method engineering lays great emphasis on meta models. Meta models
provides an abstraction of the set of concepts that go into defining a method. Thus,
GOPRR can be used to instantiate a large range of methods. MA is different from a
meta model. First it is developed for a given method, Register Delegate, Reserve
Room, Issue Passport etc. and does not have the capability of meta-models to yield
different methods. MA elaborates method components and links between them to
reveal method functionality. Second, when instantiated, a MA yields a method
organization, the manner in which method features ‘hang’ together. A given MA can
be instantiated to yield more than one method organization. Thus, it can be seen that
whereas a meta model can yield different kinds of methods, a MA yields different
organizations for a given method.

A method organization is represented as a dependency graph. This graph reveals
relationships among method features and is controlled by the urgency and necessity
properties. Diagrammatically, the dependency graph looks similar to a map used in
[Ral03]. However, the map is at a completely different level of abstraction. Its nodes
are intentions and edges are strategies for fulfilling these intentions. This is in contrast
to a method organization where nodes represent the capability of operating on given
product elements. Again, in a map, there is a successor-predecessor relationship
between intentions. Relationships are controlled by different map topologies,
bundles, multi-paths, etc. That is, a map is an expression of a method at an intentional
level but is not a dependency graph whereas a method organization is an expression at
the operational level and is a dependency graph.

In this paper we proposed a life cycle for the task of method engineering and have
concentrated on elaborating the construction and design phases of this life cycle. The
output of the design phase is the architecture of a method. The meaning of MA and its
representation was developed by analogy with the notion of architecture found in
computer technology. Similarly, the notion of method organization was developed for
the construction phase of the life cycle. In order to develop the method To-Be, we
proposed matching processes: at the design phase, for architecture matching and at the
construction phase, for organization matching.

It can be seen that method organization provides a way to realize a MA. Each
feature of the method represents a low level functionality and an abstraction of a
collection of such features results in a component of an architecture. Whereas MA is
about the arrangement of the method, the organization is about the working of the
method.

References

[Bas98] Bass L., P. Clements, R. Kazman (1998). Software Architecture in Practice. Reading,
MA: Addison Wesley Longman, Inc.

10 Naveen Prakash, S.B. Goyal

[Bri98] Brinkkemper S., Saeki M., Harmsen F., Assembly Techniques for Method Engineering,

Proc. CAISE 98, Pernici B. hanos C. (eds.) LNCS 1413, Springer, 381-400

[Buc62] Planning a Computer System, W. Buchholz ed., McGraw-Hill, 1962, p. 5

[Cla05] Clark D. David, http://find.isi.edu/presentation_files/Dave Clark-
What_is_architecture_4.pdf 2005

[Gro97] Grosz G., et al, Modelling and Engineering the Requirements Engineering Process: An

Overview of the NATURE Approach, Requirements Engineering Journal, 2, 3, 115-131

[Gru96] Grundy J.C. and Venable J.R., Towards an Integrated Environment for Method

Engineering, in Method Engineering Principles of Method Construction and Tool Support,

Brinkkemper, Lyytinen, and Welke (eds.) Chapman and Hall, 45-62

[Gup01] Gupta D. and Prakash N., Engineering Methods form Method Requirements

Specification, Requirements Engineering Journal, 6, 3, 135-160

[Har94] Harmsen F., et al, Situational Method Engineering for Information System Project

Approaches, in Methods and Associated Tools for the Information Systems Life Cycle, Verrijn-

Stuart and Olle (eds.), Elsevier, 169-194

[Hay98] Hayes P. John, Computer Architecture and Organization, McGraw Hill International

Editions, 3/e, 1998, P.34

[Kru94] Kruchten 1994, Software Engineering Institute, Carnegie = Mellon,

http://www.sei.cmu.edu/architecture/published definitions.html

[Lane 90] Lane 1990, Software Engineering Institute, Carnegie = Mellon,

http://www.sei.cmu.edu/architecture/published_definitions.html

[Man03] Computer System Architecture, M.M. Mano, P-H, 2003, P. 3

[Pau02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, Judith Stafford, Documenting Software Architectures: Views and Beyond, by

Addison Wesley Professional. 2002

[Pra97] Prakash N., Towards a Formal Definition of Methods, Requirements Engineering

Journal, Springer, 2, 1, 23-50

[Pra99] Prakash N., (1999) On Method Statics and Dynamics, Information Systems Journal,

24,8, 613-637.

[Pra02] Prakash N. and Bhatia MPS, Generic Models for Engineering Methods for

Diverse Domains, , Advanced Information Systems Engineering. Pidduck A.B.,

Mylopoulos J., Woo C.C., Ozsu M.T. (eds.) CaiSE 2002, LNCS 2348, 612-625, 2002

[Pra06] Prakash Naveen, On Generic Method Models, Requirements Engineering Journal, 11,

4,221-237, 2006

[Pra07] Prakash Naveen, An Intention Driven Method Engineering Approach, First

International Conference on RCIS, Morocco, April (to be presented)

[Ral03] Ralyté J; Deneckere R., Rolland C., Towards a Generic Model for Situational Method

Engineering, Proc. CAiSE 2003, Eder J. & Missikoff M. (eds.) LNCS 2681, Springer, 95-110

[Sha96] Shaw M. and D. Garlan. Software Architecture Per-spectives on an Emerging

Discipline. Prentice Hall, New Jersey, 1996

[Sta96] W. Stallings: Computer Organization and Architecture, 4. ed. 1996, p-3

[Sub99]Subbu Allamaraju, http://www.subbu.org/articles/architecture/Paradox.html

