
Can UML Be Simplified?
Practitioner Use of UML in Separate Domains

 John Erickson Keng Siau
 University of Nebraska at Omaha University of Nebraska-Lincoln
 Omaha Nebraska USA Lincoln Nebraska USA
 johnerickson@mail.unomaha.edu ksiau@unl.edu

Abstract
UML’s complexity is regularly criticized by practitioners and researchers
alike, who argue that such complexity is a considerable detriment to the
adoption and use of UML in the field. Attempts have been made to assess
and/or measure UML’s complexity in a number of ways. Erickson and Siau
proposed that a subset (kernel) of UML, composed of the most important
constructs, could be equated with the complexity that practitioners face when
using the modeling language. This research extends Erickson and Siau’s
work by proposing a UML kernel in three application areas, real-time, web-
based and enterprise systems. Compared to other modeling methods and
languages, UML is very complex. As such, identifying a UML kernel will
help in the training and usage of the language. In this research, we conduct a
Delphi study using UML experts, to identify three UML kernels, and a non-
specific kernel, which are then combined into a single kernel.

Key words: UML, complexity, complexity metrics, Delphi study, Real-Time
systems, Web-based systems, Enterprise systems.

1.0 Introduction
Many people insist that the world we live in becomes more complex every day. So-
called black-box systems, based on Web-Services, Service Oriented Architectures, or
Application Service Providers are currently hailed as the wave of the future for many
organizations. Essentially, this means that organizations are expected to use these
technologies without understanding them because, among other reasons, the technical
details and construction of such systems are too complex for users to understand. In
addition to added complexity, in almost all cases, we also expect our systems to
respond in real time to meet our needs.

In an environment in which systems and software have become so complex
that developers have no expectation of a deep understanding by the users, then it is
not out of line to suppose that the underlying systems development process has
become more complex and perhaps arguably less understandable as well. Further, we
propose that if it is reasonable to assume that if the development process in general
mirrors the progression to greater complexity, then it is also logical that specific
development methods have become concurrently more complex. An example is UML
2.X. While the original UML 1.X was roundly criticized for its complexity,
inconsistent semantics, and ambiguity [7, 9, 10, 12, 18, and 30], the early version also
lacked truly useful extension mechanisms that would facilitate its use in a variety of
domains. All of this leads to a question of why. Why do UML’s “owners” not
remediate the problem with their metamodel, and remove or minimize the

inconsistencies? The question is of course rhetorical and we do not attempt to answer
it herein, but it is an issue that should be considered by the OMG [23] which controls
the UML metamodel. While UML 2.0 is advertised as addressing some of these
issues, it seems fairly likely that any increase in extensibility comes at the expense of
increased complexity, since UML 2.0 includes, among other advertised and extension-
related improvements, four new diagram types along with their related constructs.

The impact of increasing complexity upon the people using UML presents
another issue on a more human level. As finite beings, people often have problems
processing and understanding information that is extremely complex. Further,
increases in complexity are usually accompanied by increases in processing problems
as well as decreases in comprehension. Domain experts and other specialists are more
able to develop successful coping strategies that allow them to minimize the cognitive
load problems inherent in processing complex information by various means,
including increased automaticity, production creation, retrieval and usage, spreading
(neural) activation, and extensions to working memory [1, 2, 3, 16, 17, 22, and 23].
This problem surfaces often as people build information systems, which tend to be
increasingly complex. Constructing models of systems is an approach that developers
have devised to help manage the task of processing some of the cognitively complex
tasks involved in systems development. Since typical system (business) users can be
assumed to be less adept at using UML than experts, and since models are often a
primary means of communication between developers and users, the cognitive load
UML presents to those users must be higher than that for the experts. Further, if the
experts do not fully utilize UML, then the part(s) of UML that they DO use should
consist of those that they consider to be most important.

This research is aimed at developing a means to deal with UML’s
complexity for practitioners and developers alike. Identifying a kernel for UML will
help practitioners and developers to focus on the key constructs and diagrams in
UML, and will facilitate training and educational effort. Additionally, this research
could be seen as a call to simplify, if possible, the UML metamodel. While that may
not be an entirely reasonable goal given the state of nature regarding IBM and the
OMG, we present three separate but closely related practitioner-based UML kernels
as the results of a Delphi study, and an overall UML kernel, to help clarify how
people and organizations are actually using UML in the field. The results also have
implications for many organization and people involved with, or contemplating use of
UML including researchers, developers, users, and educators.

2.0 Related Work
2.1 Structural Complexity Metrics

In 1996 Rossi and Brinkkemper [25] proposed and developed a relatively easy to use
and straightforward set of measures intended to capture the structural complexity of
modeling methods. Their metrics are based on measurement of the metamodel
constructs, and were specifically created to be measure the complexity of virtually any
(diagrammatic, structurally based) modeling method. Rossi and Brinkkemper [25]
further proposed that complexity assessment was important because the complexity of
a particular modeling method was long supposed to be closely related to how easy
that method was to learn and use. While no claim is made here regarding the efficacy

of the measures themselves, the important point is the connection between complexity
and ease of use and ease of learning.

In 2001 Siau and Cao [26] applied Rossi and Brinkkemper’s complexity
metrics to UML (1.X), and compared its complexity with 36 OO diagramming
techniques from 14 distinct methods, as well assessing the overall complexity of each
of the 14 methods in aggregate. Unsurprisingly, Siau and Cao [26] found that UML is
far more complex (from 2 to 11 times more complex) in aggregate than any of the
other 13 methods assessed. The very high overall complexity of UML relative to
other methods highlights one of the issues regarding the language, that it can appear
intimidating or overwhelming to those new to UML, because of human cognitive load
limitations.

2.2 Cognitive Processing Models

Cognitive psychologists have long had a goal of create an understandable and
accurate model of how humans process information, simple or complex. Research
over at least the past 50 years typifies the effort regarding human cognition and
comprehension [1, 2, 3, 14, 22, 23, 28, and 29].

In 1956 Miller [23] proposed a model detailing some possible reasons for the
problems humans have processing cognitively complex information. His experiment
determined rough limits for what he called Immediate Memory (now more commonly
known as Short Term Memory – STM). Miller’s 1956 research aimed more at the
storage capacity of STM as opposed to the almost unlimited storage capacity of Long
Term Memory (LTM). Baddeley’s research [2 and 3] took Miller’s work and
incorporated other objects to the STM model, the Central Executive, the Visualspatial
Sketchpad, and the Phonological Loop to the storage component. Baddeley’s 1992
model of Working Memory (WM) [2] is still in use today. Many other cognitive
processing models exist, but are not cited here for brevity.

2.3 Cognitive Load

Complexity can obviously take many forms. This research examines only 2 of those;
structural complexity, and cognitive complexity. Cognitive complexity as related to
human perception can be seen as the burden (load) people face in trying to process
and understand models of information systems. Structural complexity is more closely
connected to the physical properties of the diagramming techniques found in
modeling approaches such as UML diagrams.

Cognitive Load Theory assumes that novices have little pre-existing
knowledge about any new topic they encounter, and have to split their attention and
(cognitive) resources between two or more competing cognitive inputs [22]. First,
they are essentially trying to understand the problem domain, creating schemas or
productions that create a setting (automaticity) for the problem. Second, they are
trying to solve the underlying problem itself [29]. For systems developers this
splitting of resources means that it is less likely that 1) accurate models will be created
if the novice is a developer, and 2) less understanding of the system will be conveyed
if the novice is a user. While developers are expected to hone their expertise over
time, business users would not normally operate under that expectation, meaning that
the cognitive load problem will not disappear over time, and could foster or be a

source of the user-designer gap issues so commonly cited as top reasons for system
failures.

Sweller [28] noted that the increases in complexity (or cognitive load)
experienced by novices during problem solving activities did not result in increases in
schema creation (a deep understanding of the problem), but only increased problem
solution (plug-and-play formulaic solutions). If this can be extended to the real world,
it means that novices are less able to reach a deep understanding of a system when
they are presented with a model representing the system, because they find it
necessary to expend more effort understanding the elements composing the diagram
or model itself.

2.4 Connection Between Cognitive and Structural Complexity

We propose to adopt the ideas on the definition of structural complexity as set forth
by Briand, Wüst, and Lounis [5]. They believed that the physical (structural)
complexity of diagrams affects the cognitive complexity faced by the humans using
the diagrams as aids to understand and/or develop systems.

Figure 1: Adapted from Briand, Wüst, and Lounis [5]

Since measuring cognitive complexity is likely to be at best extremely difficult to
measure, and at worst perhaps even impossible to measure, we propose that structural
complexity can be considered as somewhat of a surrogate for cognitive complexity.
While structural complexity may not be the only determinant of cognitive complexity,
it is very likely a component. We view structural complexity as a function of the
number of distinct elements (or constructs) that compose each specific diagramming
technique. Rossi and Brinkkemper’s [25] 17 metric definitions together form an
approximation of the total structural complexity of the diagramming technique.

Structural complexity is a part of the structural characteristics of the
information or modeling system, and for this research refers to the elements, or
constructs that comprise a given diagramming technique. These constructs would
include meta-construct types such as objects (classes, and interfaces), properties (class
names, attributes, methods, and roles), and relationships and associations
(aggregations generalizations, specializations). We use the [25] metrics as the
operational definition and measure of the structural complexity of diagrams.

Siau et al [27] provided some evidence indicating that the theoretical metrics
(total structural complexity) do not adequately represent the complexity practitioners
face when using UML class and use case diagrams. In addition, Erickson and Siau
[14] provided further support for the idea of practical complexity by conducting a
Delphi study aimed at identifying a kernel of UML that was based on developer
perceptions of the utility of the various constructs and diagrams comprising UML.
The current research uses Erickson and Siau’s [14] definition of practical complexity,
as a subset of theoretical complexity, and proposes and compares user-defined kernels
for real-time, Web-based, and enterprise systems.

Structural Complexity Cognitive Complexity
Affects

2.5 Research Question

Can a user-based UML kernel be identified for specific UML application areas,
in particular, Real-Time, Web-based, and Enterprise systems?

The research objectives for this study are, (i) using the Erickson and Siau results [14]
determine the most important user-identified constructs in the UML diagrams for real-
time, Web-based, and enterprise applications and, (ii) compare the results with the
previously identified general case UML kernel. Figure 2 below indicates the intent of
this investigation.

Figure 2: UML Domains and a Possible Core (Kernel)

3.0 Methods
3.1 Delphi Study

The research investigates the formulation of a series of UML kernels by means of a
Delphi study. Delphi studies attempt to form a reliable consensus of a group of
experts in specialized areas [20]. The approach is a process that focuses on collecting
information from the expert group though a series of questionnaires, and providing
feedback to the group between questionnaires. Usually the group of experts is
geographically dispersed, as will be the case for many of the subjects participating in
this research (i.e. the different companies and people involved). The questionnaires
are usually designed to allow the collection of expert opinions on the subject, and then
to facilitate the refinement or focus of the subsequent versions to narrow in on a
consensus.

Many past and present researchers have used the Delphi approach to study
various topics. According to Lawrence Day [8], Delphi studies have been used to
examine and predict future advances in computers and technology, cosmetics,
insurance, and recreation. AT&T studied the future of the telecommunications
industry, MacMillan focused on the future of newsprint, and Skandia Insurance tried
to identify and rank economic losses related to computer systems [8].

KUNNE [18] indicated that more than 463 research efforts used the Delphi
method between 1975 and 1994. The ENRiP (Exploring New Roles in Practice)
project sponsored by the University of Sheffield School of Nursing and Midwifery
used a Delphi study to assess new roles in the practice of nursing [13]. The use of
Delphi studies appears to spread across industries and time, while the methodologies
tend to split into two camps; developing a consensus on the future, or developing a
consensus on such areas as regional planning [19].

The approach for this study was to develop and administer a series of
questionnaires that captures information regarding the UML constructs commonly
used while building systems to a group of systems developers essentially identifying
the kernel of UML. In our case, the Delphi study consisted of three rounds. Subjects
were asked to rate the importance of the various diagrams and constructs in round 1.
The results were analyzed and included in the questionnaire for round 2. Subjects
were asked to reevaluate their ratings from the first round. Similarly, the results for
round 2 were analyzed and included in the questionnaire for round 3. Subjects were
again asked to reevaluate their ratings from the second round. A consensus level of
90% or higher was clearly reached after 3 rounds of the survey.

3.2 Participant Demographics

The subjects were asked to respond to their use of the standard UML constructs in
general as well as real-time, Web-based and Enterprise applications. The application
specific extensions for UML were used as the meta-constructs for each application
domain. The expert respondents were also asked to rate the standard UML diagrams
and constructs for each specific domain.

44 subjects agreed to participate in the study, and were sent Questionnaire 1.
29 returned useable surveys; a presentation of their demographic information follows.
The average development experience of the 29 final respondents was 9.5 years, and
the average UML development experience was 4.5 years.

Twenty eight of the respondents indicated that they had at least some
experience in enterprise application development, with an average of 5.6 years.
Twenty respondents also indicated web development experience, averaging 2.1 years,
while nine respondents averaged 2.7 years of real-time application development
experience. In addition, 2 respondents possessed experience in other development
areas, one with 7 years of software development tool experience, and the other with
20 years in an unnamed development area.

The job titles and industry demographics indicate that 22 of the 29 initial
respondents were in some form currently involved in academics, with 6 in the
computer industry and 1 in financial services industry (as an application developer).
Nine respondents classified themselves as students at the time of the survey, but since
their stated development and UML experience met the criteria, this indicates that
much of their experience in development was gained prior to entering school.
Second, 14 respondents worked in academia outside of the United Sates (Canada, 3;
Argentina, 1; Spain, 2; Norway, 3; Netherlands, 1; France, 2; Germany, 1; and
Finland 1) meaning that many consult as developers outside the academic setting as a
normal part of their lives. In addition, many of the US respondents US also possessed
significant development consulting experience.

4.0 Results and Discussion
While the individual extension construct kernels could prove useful for domain
practitioners, it is the experts’ assessment of the 9 standard (UML 1.X) diagrams and
related constructs that are used here to compose a picture of UML’s kernel. The final
order of importance was as follows in the below tables.

The participants were asked to rate the relative importance of the various
UML diagrams and constructs in building systems. They were asked to rate the
importance on a scale of 1 to 5; 1 as very important and 5 as very unimportant, and 0
if the diagram or construct was never used. The analysis was relatively basic in that
means and standard deviations were the only calculations made. After the first round,
the respondents were also asked whether the particular construct or diagram in
question should be included in a UML kernel. This means that there were 2 ways to
get at the kernel information; the Yes/No kernel question, and the mean scores of the
importance ratings. Generally, a mean score of 2.00 or less corresponded fairly
closely with a high level of “Yes” to include in the kernel consensus.

Table 1: UML Overall Results (non domain specific)
Construct Mean Standard Deviation % “Yes” for Kernel
Class 1.00 0.00 100.0%
Use Case 1.61 0.79 90.9%
Sequence 1.73 0.70 95.5%
Statechart 1.81 0.51 100.0%
Component 2.31 0.70 31.8%
Activity 2.41 0.55 27.3%
Collaboration 2.57 0.87 22.7%
Deployment 2.69 0.75 9.1%
Object 3.00 0.86 9.1%

Table 2 UML Real-Time System Diagram results
Construct Mean Standard Deviation % Y for Kernel
Class 1.23 0.60 100.0%
Statechart 1.31 0.48 92.3%
Sequence 1.46 0.52 100.0%
Use Case 1.92 0.86 100.0%
Component 2.00 0.82 23.1%
Activity 2.11 0.33 53.8%
Deployment 2.38 0.74 0.0%
Object 2.91 1.04 0.0%
Collaboration 3.10 0.88 0.0%

Table 3: UML Web-based System Diagram Results
Construct Mean Standard Deviation % Y for Kernel
Class 1.07 0.27 100.0%
Use Case 1.43 0.85 92.9%
Sequence 1.68 0.61 100.0%
Statechart 1.83 0.39 100.0%
Component 2.00 0.82 42.9%
Deployment 2.44 0.88 14.3%
Activity 2.67 0.50 14.3%
Collaboration 2.91 0.83 14.3%
Object 3.40 1.17 7.1%

Table 4: UML Enterprise System Diagram Results
Construct Mean Standard Deviation % Y for Kernel
Class 1.00 0.00 100.0%
Use Case 1.53 0.77 94.7%
Sequence 1.58 0.69 100.0%
Activity 1.86 0.66 94.7%
Deployment 2.27 0.79 21.1%
Component 2.33 0.82 42.1%
Statechart 2.58 0.77 36.8%
Collaboration 2.81 0.83 10.5%
Object 3.06 1.12 15.8%

4.1 Discussion

The results indicate participant agreement on 3 of the 4 kernels. Respondents agree
that not only 3 of the diagrams should be included in a kernel, but also on the ordering
of the 3 diagram types in the various domains. With minor variations in mean and
consensus, the 3 diagram types the Delphi participants all agreed on regardless of
system type, were Class, Use Case and Sequence diagrams. Based on these relatively
clear results, we propose that a kernel of UML include those three diagrams and
associated constructs. In addition, since Class diagrams model a static system view,
and use case diagrams essentially model a process view, it also makes sense that at
least one modeling technique that captures some of the dynamic elements of systems
(Sequence diagrams) be included in a core or kernel of UML.

Possible reasons for this might be that UML is use case driven, and use case
models generally represent the starting point for a UML based modeling project.
However, the Delphi group almost universally rated Class diagrams as most
important. It should be noted that class diagrams usually involve implementation, and
is possibly why practitioners emphasize it more. This issue also highlights a critical
problem with many development efforts, the user-designer gap. Another possible
interpretation of these results is that practitioners tend to use UML to model more
heavily in the Analysis stage of the system development process, and less for Design,
Testing, and Implementation. The least useful diagrams were perceived to be object,
deployment, component, or deployment, although there was some disagreement
regarding the utility of collaboration diagrams.

For the specific domains we recommend as follows. Real-time systems
projects are more likely to require modeling of state changes and state machines, so
statechart (state machine) diagrams are important for that application type. Enterprise
systems are more likely to require models of activities, and thus Activity diagrams
would be more critical for that domain. Finally, for Web-based systems, the Delphi
participants identified an identical kernel to the non-domain specific kernel.

5.0 Conclusion and Limitations
While the UML core identified here is naturally arbitrary and based on user
importance ratings, the results do provide a working compilation of the constructs that
developers most commonly use when building systems. The premise of the research
here is not to propose that the remaining constructs be excluded from UML, but rather
that those features be retained in the language, perhaps in specialization modules. In
contrast to Erickson and Siau’s 2004 [14] results, this research identifies a slightly

different UML kernel, one that likely reflects the needs of applications operating in
multiple environments. However, it is also noteworthy that the kernel differences are
relatively small as well, since the kernels identified are identical in both cases, except
for the order of the diagrams.

The research results are naturally limited by a number of factors. Delphi
studies have been often criticized for their lack of rigor. The selection of the experts
for a successful Delphi is also critical, and while we made every effort to ensure that
the participants were true UML experts, it will always be possible to debate the issue
of expertise. The study was conducted in 2003-2004, and the recruitment of
participants lead the conduct of the study slightly, so the 4.5 years of average UML
experience at that point in time corresponded to a rough maximum possible, since
UML was adopted as a standard in 1997. In addition, participants had an average of
9.5 years of development experience, so while some were in academia at the time of
their participation, their experience in development was the determining factor for
inclusion as participants in the study. Experience in the various domains may have
been a limiting factor, but since the UML domain specifications were also relatively
new at the time the data was collected, then the UML development experience as well
as the domain experience could be seen as overlapping.

This research should be considered as a small first step in identifying a use-
based UML kernel. The OMG has also identified a kernel for the language, and we
will examine the similarities and differences if possible in the future. Another
limitation deals with the 3 chosen domains. At the time the study was conducted, we
chose domains for which a fully specified UML extension had been constructed.
Future research will examine other domains as other specifications become available.

These results have a number of possible implications. First, researchers in
the method engineering area have been among those critical of UML, not only for its
complexity, but also for the inconsistencies in the meta-model. These results could
help guide efforts to remediate some of the complexity and inconsistencies. Second,
the OMG and other interested parties (the Model Driven Architecture area) could also
use these results to seriously question and examine how people are really using UML
in the field. Tied together, this could actually mean progress rather than regress.
Finally, educators in the business of teaching system development techniques, and
practitioners, in the business of using system development techniques, could also
profit from these results by spending precious educational, training and development
resources on what is really important in the quest to improve systems.

References
1. Anderson, J., and Lebiere, C. 1998. The Atomic Components of Thought, Lawrence

Erlbaum Associates.
2. Baddeley, A. 1992. “Working Memory”. Science. Vol. 255. P. 556-559.
3. Baddeley, A. 2003. “Working Memory: Looking Back and Looking Forward”.

Neuroscience. Vol. 4. P. 829-839.
4. Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The Unified Modeling Language User

Guide. MA. Addison-Wesley.
5. Briand, L., Wüst, J., and Lounis, H. 1999c. “A Comprehensive Investigation of Quality

Factors in Object-Oriented Designs: An Industrial Case Study”. 21st International
Conference on Software Engineering, Los Angeles, CA. P. 345-354.

6. Conallen, J., 2000. Building Web-Applications with UML. Addison-Wesley.

7. Burton-Jones, A. and Meso, P. 2002. “How Good are These UML Diagrams? An
Empirical Test of the Wand and Weber Good Decomposition Model”. International
Conference on Information Systems. P. 101-114.

8. Day, L. 2002 “Delphi Research in the Corporate Environment”. In H. Linstone and M.
Turoff (eds.). The Delphi Method Techniques and Applications.
http://www.is.njit.edu/pubs/delphibook/index.html.

9. Dobing, B. and Parsons, J. 2000. Understanding the Role of Use Cases in UML: A
Review & Research Agenda. Journal of Database Management. Vol. 11. No. 4. P. 28-36.

10. Dori, D. 2002. “Why Significant UML Change is Unlikely”. Communications of the
ACM. Vol. 45. No. 11. P. 82-85.

11. Douglass, B. 2000. Real-Time UML Second Edition: Developing Efficient Objects for
Embedded Systems. Addison-Wesley.

12. Duddy, K. 2002. “UML2 Must Enable a Family of Languages”. Communications of the
ACM. Vol. 45. No. 11. P. 73-75.

13. ENRiP. 2001. University of Sheffield http://www.snm.shef.ac.uk/research/enrip/refs.htm
14. Erickson, J. and Siau, K. 2004. “Theoretical and Practical Complexity of Unified

Modeling Language: Delphi Study and Metrics Analyses”. International Conference on
Information Systems. Washington, DC. December.

15. Erickson, J., Siau, K. 2003. "Unified Modeling Language: The Good, The Bad, and The
Ugly," in: Toppi, H., Brown, C. (eds.). IS Management Handbook. Auerbach.

16. Ericsson, K. and Kintsch, W. 1995. “Long-Term Working Memory”. Psychological
Review. Vol. 102. No. 2. P 211-245.

17. Green, G. 2004. “The Impact of Cognitive Complexity on Project Leadership
Performance”. Information and Software Technology. Vol. 46. P. 165-172.

18. Kobryn, C. 2002. “What to Expect from UML 2.0”. SD Times. accessed 10/22-2002.
19. KUNNE web site. 2002. accessed 2003. http://www.kunne.no/meritum
20. Ludwig, B. 1997. “Predicting the Future: Have you considered using the Delphi

Methodology?”. Extension Journal. October. Vol. 35. No. 5.
21. Marshall, C. 2000. Enterprise Modeling with UML Designing Successful Software

Through Business Analysis. Addison-Wesley.
22. Mayer, R. 1989. “Models for Understanding”. Review of Ed. Research. Vol. 59. P. 43-64.
23. Miller, G. 1956. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information”. The Psychological Review. Vol. 63. No. 2.
24. Object Management Group Web site. http://www.omg.org/gettingstarted/what_isuml.htm.
25. Rossi, M. and Brinkkemper, S. 1996. “Complexity Metrics for Systems Development

Methods and Techniques”. Information Systems. Vol. 21. No. 2. P. 209-227.
26. Siau, K., and Cao, Q. 2001. “Unified Modeling Language (UML) – A Complexity

Analysis”. Journal of Database Management. Jan – Mar.
27. Siau, K., Erickson, J., and Lee, L. 2002. “Complexity of UML: Theoretical versus

Practical Complexity”. Workshop on Information Technology and Systems (WITS).
Barcelona, Spain. December 16-18.

28. Sweller, J. 1988. “Cognitive load During Problem Solving: Effects on learning”.
Cognitive Science. Vol. 12. P. 257-285.

29. Sweller, J. and Chandler, P. 1994. “Why Some material is Difficult to Learn”. Cognition
and Instruction. Vol. 12. P. 185-233.

30. Zendler, A., Pfeiffer, T., Eicks, M., and Lehner, F. 2001. “ Experimental Comparison of
Coarse Grained Concepts in UML, OML and TOS”. Journal of Systems and Software.
Vol. 57. P. 21-30.

