
Path-based traffic flow prediction
Efstratios Karkanis1, Nikos Pelekis2, Eva Chondrodima1 and Yannis Theodoridis1

1Department of Informatics, University of Piraeus, Piraeus, Greece
2Department of Statistics and Insurance Science, University of Piraeus, Piraeus, Greece

Abstract
Predicting traffic flow on a road network is crucial in various aspects of the transportation domain, encompassing safety
and logistics. This paper introduces an innovative approach to forecast traffic flow, with a specific emphasis on predicting
future traffic along paths within a road network. The proposed framework is tailored to accept GPS trajectory data as input,
generating time series data illustrating traffic flow along designated pathways. It achieves this by utilizing only a subset of
trajectories that strictly follow the paths without detours. This intuitive approach results in training data that better captures
the essence of the forecasting problem. In the final step of our methodology, we employ state-of-the-art time series forecasting
methods, including ensemble trees and recurrent neural networks. To validate the effectiveness of our approach, we evaluate
it using a real-world dataset, demonstrating its capability in predicting traffic flow.

Keywords
Mobility, Trajectories, Traffic flow, Forecasting methods, Ensemble trees, Neural networks

1. Introduction
In the contemporary era, urbanisation has given rise to a
conspicuous surge in the demand for public transporta-
tion within urban areas. This escalating need, fueled by
population growth, economic advancement, and evolv-
ing lifestyle preferences, underscores a significant trans-
formation in the dynamics of urban mobility [1]. Con-
currently, challenges like traffic congestion, navigation
optimisation, and air quality management have become
prevalent1. As a result, path-based traffic flow, which
in terms of this study refers to the number of vehicles
passing through a particular path (a set of consecutive
road parts between intersections) on a road network,
has increased substantially over the recent decades, em-
phasising the critical necessity for accurate forecasting
methods.

Mobility data analytics and prediction has gained an
increasing interest in recent years, due to its time-critical
applications in urban, maritime and aviation domains
[2, 3, 4, 5]. In particular, predicting traffic flow is chal-
lenging due to its non-linear nature. This complexity
arises because traffic flow is influenced by non-linear
factors, such as weather conditions, road traffic accidents
and public holidays, posing difficulty in accurate fore-
casting.

Typically, road networks are equipped with sensors
that measure traffic flow at a specific point of the road

Published in the Proceedings of the Workshops of the EDBT/ICDT 2024
Joint Conference (March 25-28, 2024), Paestum, Italy
$ stratoskarkanis2@gmail.com (E. Karkanis); npelekis@unipi.gr
(N. Pelekis); evachon@unipi.gr (E. Chondrodima);
ytheod@unipi.gr (Y. Theodoridis)

Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1The European Green Deal: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=COM:2019:640:FIN

network. On the other hand, specific vehicles, such as
buses and taxis, are also expected to contain sensors that
periodically transmit their mobility status information,
including their GPS location, along with the respective
sampling timestamp. The proposed framework aims to
provide predictions for urban traffic flow along prede-
fined paths by leveraging data collected from sensors
embedded in specific vehicles, such as buses and taxis.

In summary, the complete workflow of the proposed
framework involves several key steps. Starting with the
original trajectory data provided by vehicles, we create
a time series dataset that captures historical traffic flow
values along predefined paths at uniform-sized time in-
tervals. A key aspect of our methodology involves the
measurement of traffic flow along each predefined path.
Therefore, we perform a search procedure on trajectory
data (the so-called Strict Path Query [6]) to retrieve all
trajectories that strictly cross a predefined path of a road
network within a specific time interval. A trajectory
strictly follows a path if and only if this path is a subset
of the trajectory. In other words, the trajectory does not
deviate from this predefined path. In this way, we are
sure that we compute traffic flow accurately, eliminat-
ing trajectories that perform detours while crossing the
path. This approach allows us to reliably assess traffic
flow throughout the entire length of the path, avoiding
potential inaccuracies that might arise from considering
trajectories with detours, which could lead to misleading
indications of traffic flow.

Figure 1 illustrates a road network where letters a
to l represent intersections. Four trajectories 𝑡1, 𝑡2, 𝑡3,
and 𝑡4 are depicted, each marked with a distinct colour,
navigating within the network. Additionally, there is a
predefined path b –> c –> h –> i –> d, marked with orange
colour. To assess traffic flow within this specified path

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:stratoskarkanis2@gmail.com
mailto:npelekis@unipi.gr
mailto:evachon@unipi.gr
mailto:ytheod@unipi.gr
https://creativecommons.org/licenses/by/4.0


Figure 1: Road network with a predefined path coloured
in orange and four navigating trajectories 𝑡1, 𝑡2, 𝑡3 and 𝑡4
coloured in green, blue, orange and red, respectively.

during a particular time period, trajectory 𝑡3 is retained
as it follows this predefined path. Trajectories 𝑡1, 𝑡2 and
𝑡4 are excluded from consideration since they involve
detours. In this particular example, we argue that traffic
flow within the orange path is represented better by only
considering 𝑡3, although all trajectories touch the path.

Following the generation of time series data, we con-
struct suitable Machine Learning (ML) models to address
the specific problem at hand. In this research, we evaluate
two such models: an ensemble-based decision tree model
using XGBoost [7], and a model based on Long Short-
Term Memory (LSTM) [8], an evolution of the Recurrent
Neural Network (RNN). We also analyze the advantages
and disadvantages of using each model for forecasting
traffic flow along predefined paths.

This paper aims to address the problem of effectively
predicting traffic flow on road networks. While several
studies have been conducted regarding this topic, the
novelty of our work stands on that it proposes a dis-
tinct path-based methodology that focuses on solving
this problem. To the best of our knowledge, no similar
research has been published in this field yet.

In practice, the role of the proposed framework is to
assist urban traffic management systems in guiding and
managing traffic flow, thus controlling traffic volume,
avoiding traffic congestion, and constructing an efficient
road network.

To summarise, the main contributions of this paper
are listed as follows:

• We propose a novel methodology for predicting
traffic flow on paths within a road network. Our
methodology is generic as it based on timeseries
forecasting, and towards this direction, we build
an ensemble-based and RNN-based model.

• We demonstrate the efficacy of our proposal by a
thorough experimental study using a real-world
dataset.

The rest of this paper is organised as follows: Section
2 discusses related work. In Section 3, preliminary terms
and definitions are provided. In Section 4, we introduce

our methodology. Section 5 presents the experimental
study, followed by conclusions in Section 6.

2. Related Work
Several studies approach the problem of predicting traffic
flow on road networks as follows: given a dataset of his-
torical traffic flow values, which consists of information
about the number of vehicles moving through specific
sections of the road network between intersections or
multiple areas within the same road network monitored
by traffic sensors, the objective is to predict the future
traffic flow at these locations at a given time in the future.
These studies mainly focus on ML approaches.

Many researchers have tried algorithms like Support
Vector Machines (SVM) [9, 10], K-Nearest Neighbors
(KNN) [9], Bayesian networks [9], Autoregressive In-
tegrated Moving Average (ARIMA) [10, 11, 12], Shallow
Neural Networks (SNNs)[11], Deep Neural Networks
(DNNs) [13, 11, 10, 14] and hybrid implementations [9],
each with its strengths and weaknesses. For example,
SVM and KNN are capable of capturing complex pat-
terns in multidimensional data [9]. SNNs, while useful
in many applications, struggle with non-linear patterns
of traffic flow [11]. ARIMA models perform well in pre-
dicting short-term traffic [11], making them useful for
scenarios where precise, immediate forecasts are needed.
Last but not least, hybrid approaches leverage the unique
strengths of many models combined to achieve better
predictions.

Due to the inherent volatility of traffic flow patterns,
DNNs become essential [11, 13]. Numerous studies in
the literature have recognized this necessity. In a specific
instance, researchers introduced a traffic flow predic-
tion framework centred on Fully Connected Neural Net-
works (FCNN) [11]. This model utilized historical traffic
flow data to predict traffic conditions one timestep ahead.
Notably, the authors enhanced model performance and
generalization by incorporating optimization techniques
such as Batch Normalization (BN) and dropout layers.

Another aspect of addressing the traffic flow prediction
problem using DNNs involves the utilisation of Stacked
Autoencoders (SAEs) [13]. The SAEs were used to distil
meaningful information from traffic data by compressing
input data into a lower-dimensional representation and
reconstructing the original data. Comparative evaluation
against alternative ML algorithms, such as SVM, Random
Walk (RW), and Radial Basis Function Neural Network
(RBFNN), underscored the superior performance of the
proposed SAE model, particularly in situations charac-
terised by high traffic flow volumes.

However, the most common deep learning approach
proposed when utilising time-related historical data in-
volves the use of an LSTM model. For instance, in [10],



Figure 2: The complete workflow of the proposed methodology.

this model was employed by researchers to take historical
traffic flow data as input and predict short-term traffic pat-
terns within a 15-minute time horizon in the future. The
LSTM exhibited superior performance compared to SVM
and Feedforward Neural Networks (FNN), effectively ad-
dressing traffic flow’s non-linear and time-dependent
characteristics. In another study, scientists introduced
the DeepCrowd model [14], which integrates Convolu-
tional LSTM Neural Networks with High-Dimensional
Attention Mechanisms (HDAM) to capture spatial and
temporal traffic data correlations.

In [15] the authors present the Foresight cloud-based
system for real-time spatio-temporal forecasting. The pa-
per discusses practical aspects to implement a real-time
system for real-world, while it presents experimental
results of the application of several ML methods to the
problem at hand. In addition, the authors adapt spatio-
temporal ML methods to incorporate dynamic urban
events and vehicle-level flow information into the pre-
dictive models.

Despite the widespread use of LSTM, SAE, and FCNN
models for handling time-related data, another study in-
troduces the power of Graph Neural Networks (GNNs)
when dealing with traffic data. The proposed methodol-
ogy, [12], leverages historical data, incorporating factors
influencing traffic flow and speed, including time, space,
weather conditions and activities such as public holi-
days. The chosen model for this approach is the Graph
Hierarchical Convolutional Recurrent Neural Network
(GHCRNN), which is specifically designed for urban ar-
eas. The GHCRNN model integrates both spatial and
hierarchical information to improve prediction accuracy.
It includes convolutional layers for spatial analysis, pool-
ing units for hierarchical structure representation and an
encoder-decoder architecture utilising Gated Recurrent
Unit (GRU) modules. The experimentation shows the
proficiency of GHCRNN in handling extensive graphs
and delivering precise predictions.

Besides the powerfulness of neural networks, the fol-
lowing study proves that ML implementations also ad-
dress the traffic flow prediction problem with high accu-
racy. The XGBoost algorithm with the Wavelet Decom-
position (WD) technique are used to predict short-term
traffic flow [9]. This method aims to extract additional
information from the feature to be predicted, combining
low and high-frequency details during the reconstruction

process. The model is compared with other algorithms,
such as the SVM and the XGBoost, without the use of WD
technique. Results indicate that the proposed approach
achieves superior performance.

In summary, the examined studies showcase notable
progress in the domain of traffic flow prediction. How-
ever, these researches primarily focus on predicting fu-
ture traffic flow in specific locations, whether it is a single
road segment between intersections or many road seg-
ments within intersections, each treated independently.
This differs from our objective, which involves forecast-
ing traffic flow within paths. To the best of our knowl-
edge, this study represents a novel contribution to the
field.

3. Preliminaries
In this section, we introduce some basic terms required
in the rest of the paper and formulate the problem at
hand.

In our setting, trajectories are moving on a road net-
work. A road network is defined as a directed graph,
denoted as G=(V,E), with V={𝑣1, 𝑣2, ...𝑣𝑛} representing
the set of vertices in the graph G and E={𝑒1, 𝑒2, ...𝑒𝑚}
representing the set of edges in the graph G. In a general
context, when considering a graph that represents a road
network, set V is understood to denote the intersections
within the network, while set E signifies the road seg-
ments between two intersections. Within a road network
represented as a graph G, a path, also a pathway, is de-
fined to be a sequence of at least two consecutive edges
in G.

In the context of a road network, diverse moving ob-
jects (MO) navigate through it. An MO is defined as any
entity that travels along the edges of a road network rep-
resented as a graph G. Examples of MOs include cars,
buses and taxis.

The route of a MO is defined as a sequence
<𝑟1, 𝑟2, ..., 𝑟𝑛>, where each element 𝑟𝑖 is a triple (𝑡𝑖, 𝑙𝑜𝑛𝑖,
𝑙𝑎𝑡𝑖) denoting the timestamp of the MO’s sampling and
the respective GPS coordinates.

Based on the provided definitions, the problem ad-
dressed in this study is formulated as follows: given (i)
a graph G representing a road network, (ii) a dataset D
containing a set of routes of MOs traveling along the road
network represented by G and (iii) a set P of predefined



paths within G, the goal of traffic flow prediction is to
predict the occupancy of each path in P, i.e. the num-
ber of the MOs that will traverse each predefined path
within a specific time horizon in the future using D as its
knowledge base.

4. Methodology
In this section, we introduce the proposed methodol-
ogy for efficiently resolving the challenge of forecasting
traffic flow along a pathway within a road network. The
workflow of the proposed methodology is depicted in Fig-
ure 2. The methodology starts by processing a collection
of GPS data that contain routes of MOs, and more specif-
ically by performing a route-splitting (i.e., segmentation)
operation. Route splitting is the process of partitioning
the entire route of a specific MO into distinct trajectories,
guided by specific conditions. Subsequently, the result-
ing trajectories undergo map matching onto the road
network. The next step in the methodology is to mea-
sure historical traffic flow volumes along each path that
belongs in the set of predefined paths and at uniform-
sized time intervals, resulting in the creation of a time
series dataset for each predefined path. After generating
the time series data, we extract temporal features from
timestamps to enhance the prediction accuracy of the
forecasting models. Finally, prediction procedures of traf-
fic flow magnitude are conducted using two ML models,
based on the XGBoost and the LSTM RNN approaches.

4.1. Dataset Preprocessing
In the initial phase, it is crucial to acknowledge the poten-
tial existence of routes of MOs that contain elements that
happen to be recorded at sparse timestamps. To address
this problem, a necessary step involves breaking down
MO routes into trajectories. The time gap between any
two consecutive elements within the same trajectory is
constrained to a specific time value, denoted as Dt. A
route undergoes a split when consecutive pairs of ele-
ments within the route exhibit a time difference greater
than the specified value Dt.

The subsequent phase involves the map-matching pro-
cess. The spatial locations of the trajectories may not
precisely align with the road network due to potential
noise during sampling or technical errors. Hence, the
usage of a map-matching algorithm becomes imperative
to ensure accurate alignment with the road network.

For precise map-matching of trajectory coordinates
(lat and lon) onto the road network, the Valhalla Meili
API2, recognized for its highly efficient map-matching
algorithm [16], is utilized.

2https://valhalla.github.io/valhalla/api/map-matching/api-
reference/

Once the split trajectories are processed through the
map-matching algorithm, the information given as out-
put encompasses the edges of the road network that the
trajectory traversed in chronological order. Addition-
ally, it includes information about the time interval the
trajectory lied on each edge.

4.2. Generating Traffic Flow Time Series
The subsequent stage in the proposed methodology in-
volves the generation of time series data using the tra-
jectory data. Time series data represent the traffic flow
inside each pathway under study at equal-sized time in-
tervals. The utilisation of the Strict Path Queries (SPQs)
algorithm [6] is crucial for this task. This type of query
identifies all trajectories strictly following a specified
path within a defined time interval. The start of this in-
terval signifies the minimum acceptable timestamp for
the trajectory to have entered the designated path, while
the end of the interval indicates the tolerated timestamp
for the trajectory to have exited it.

The first parameter that the SPQ algorithm requires is
a path in which past traffic flow values will be measured
at uniform-sized time intervals. The second parameter
essential for the SPQ algorithm is a time interval. Be-
cause the SPQ algorithm is employed to generate time
series data, uniform time intervals must be established.
To achieve this, the total sampling duration of trajecto-
ries within dataset D is divided by a positive number,
represented as Q. This division results in the creation
of smaller time sub-intervals, each characterized by a
duration of Q time units.

For each sub-interval, the SPQ algorithm measures
traffic flow along the predefined path, producing a time
series with traffic flow volume per sub-interval.

To improve the quality of time series data, we also
extract time-related features from the timestamps. These
features encompass the day (numerical representation,
e.g., 1, 2, 3), the day of the week (e.g., Monday, Tuesday),
the hour (numerical representation from 0 to 23), and
the minutes (numerical representation from 0 to 59). To
account for the cyclical nature of time, cyclic encoding
is applied to these time-related features, capturing their
periodic characteristics using semitones and cosines.

Incorporating additional time-related information, we
introduce the 3-hour-interval attribute (numerical rep-
resentation from 1 to 8) to signify the specific 3-hour
interval of the day to which a particular recording within
the time series belongs.

4.3. Forecasting Models
Resulting time series data serve as the input for the two
ML models, XGBoost [7] and LSTM RNN [8], we evaluate
in this study. These models are specifically trained to



predict traffic flow on each predefined path. This task is
categorized as a supervised ML process.

To structure the data into input and output sets, the
sliding window technique is applied. This technique
involves dividing the time series into subsets using a
moving or sliding window. As the window progresses
step by step through the time series, it captures fixed-size
segments of historical values. The length of this window
determines the amount of past data used to forecast the
subsequent value in the time series and corresponds to
parameter past-observations that actually indicates the
count of historical observations utilized for prediction.

Figure 3 illustrates the operation of the sliding window
technique. The table at the left displays samples of traffic
flow on a single path at 4 uniform-sized time intervals
𝑡1, 𝑡2, 𝑡3 and 𝑡4. For instance, equal to 4 at time interval
𝑡1, 5 at 𝑡2, and so on. If the decision is made to input
traffic flow values from the two preceding time steps
into the forecasting model to predict the next value, the
window length is set to 2. Adhering to these criteria, the
time series undergoes a transformation into the format
showcased in the table at the right.

Figure 3: The sliding window technique applied on time series
data (left: samples of traffic flow on a path; right: transforma-
tion according to a window length equal to 2).

Through the implementation of the sliding window
technique, we can generate input and output sets for
different values of the past-observations parameter. These
sets are utilized for training and evaluating both machine
learning models. Each model receives an input vector
with L features, including historical traffic flow values,
temporal characteristics with their cyclic encodings, and
the 3-hour-interval. Furthermore, the models incorporate
the mean and variance of historical traffic flow values
as input. The goal of each model is to predict the traffic
flow in the next sub-interval with duration Q.

To improve efficiency, a correlation matrix is utilized.
This matrix helps identify and remove attributes that
redundantly convey similar information, ensuring only
those with low correlation are included. Features with
low correlation are chosen for the training and testing
phases of XGBoost and LSTM models.

In Figure 4, the architecture of the selected XGBoost
model is illustrated. Using a set of 100 XGBoost decision

Figure 4: Architecture of XGBoost model.

trees, the model takes as input a vector with L features
in order to predict future traffic flow. Each subsequent
tree is designed to improve upon its predecessor. The
ultimate prediction for a regression task is derived by
consolidating the predictions made by each individual
tree within the ensemble. This aggregation process en-
sures that the final forecast benefits from the collective
contributions of all the trees in the model.

On the other hand, Figure 5 depicts the proposed LSTM
model. The neural network is designed to take a vector
with L features as input. This vector is then reshaped in a
3-dimensional tensor. The information traverses through
3 LSTM layers with 50, 25, and 12 units, respectively.
Dropout layers are strategically employed right after the
LSTM layers to deactivate certain neurons and prevent
overfitting during the training process. Subsequently, the
information passes through 3 fully connected layers with
6, 3, and 1 neuron, respectively, before producing the
final output y. ReLu activation functions are utilized in
all LSTM layers, while the fully connected layers employ
a linear activation function.

5. Experimental Study
In this section, we evaluate the proposed methodology
using a real-world trajectory dataset. The source code
that implements the proposed methodology is available
at GitHub3.

In particular, we used the Cabspoting dataset4, a popu-
lar urban mobility dataset consisting of navigation routes
from 537 taxis in San Francisco, CA, USA, recorded from
May 17, 2008, to June 10, 2008. The routes are captured
at an average sampling rate of approximately 30 seconds.
The entire dataset encompasses 11,220,491 GPS records.

The research was conducted using a combination of
computational resources. Data preparation and time se-
ries generation procedures were performed on a Dell
Inspiron 15 3000 series laptop equipped with an Intel
Core i5-4210U processor and 8GB of RAM. For model

3https://github.com/stratoskar/Path_Based_Traffic_Flow_Prediction
4https://ieee-dataport.org/open-access/crawdad-epflmobility;
https://stamen.com/work/cabspotting/



Figure 5: Architecture of the LSTM RNN model used.

training and forecasting processes an NVIDIA Tesla T4
GPU hosted on Google Colab was utilized. This GPU
provided the necessary computational power to train the
ML models efficiently.

Following the proposed methodology, the segmenta-
tion of taxi routes into trajectories was performed using
a time threshold of Dt=90 seconds. The identification of
the route of a taxi before splitting is encoded as taxi-id,
while the subsequent identification of each newly gener-
ated trajectory is denoted as traj-id. Thus, each trajectory
in the dataset is uniquely identified by a pair of taxi-id
and traj-id values. The produced trajectory dataset en-
compasses a total of 521,135 unique trajectories.

The Valhalla API receives GPS coordinates for each el-
ement in a trajectory as input and subsequently produces
a potential map-matched trajectory that aligns with the
road network of San Francisco. Following this procedure,
the resulting dataset includes details, such as the unique
trajectory identifier (denoted by taxi-id and traj-id) and
the exact sequence of road network edges traversed by
the trajectory. The updated dataset from the Valhalla
Meili map-matching algorithm also provides timestamps
denoted as t_enter, indicating the moments when the
trajectory enters the specified edges.

The next step involves constructing a time series
dataset focusing on the recording of traffic flow by path
and time interval. The available map-matched trajec-
tory data spans from May 17th, starting at 10:00:04, to
June 10th, concluding at 09:00:04. This time frame is seg-
mented into smaller intervals of half an hour each, i.e. Q
= 30 min.

To quantify traffic flow along pathways, we choose to
create a set of 100 unique and distinct paths. The length
of these paths, determined by the number of edges, spans
from 2 to 20 edges. Importantly, these paths are not
randomly generated; rather, they are derived from the
trajectory data. This ensures that each path created is a
subset of one or more trajectories.

The construction of a time series utilizes the SPQ al-
gorithm. For each call of the SPQ algorithm, the input
consists of the specific path for which traffic flow needs
to be counted, along with the corresponding half-hour

time interval. By repeating this procedure for each path
and every interval, we create a traffic flow time series for
each path.

The application of the SPQ algorithm filters out the
trajectories that deviate while moving along a specific
path. Figure 6 illustrates the difference in traffic flow data
obtained when using the SPQ algorithm on the set of 100
predefined paths and data collected without the use of
SPQ on the same set of predefined paths. In the absence
of SPQ restrictions, traffic flow on each route is calcu-
lated by counting the trajectories that have traversed all
path edges at least once within a defined time interval.
However, when SPQ restrictions are applied, it is evident
that the collected traffic flow data are reduced.

Figure 6: Difference in average traffic flow across all prede-
fined paths grouped by timestamps: dataset 1 (blue) is formed
using SPQ algorithm, whereas dataset 2 (orange) is developed
without adhering to SPQ rules.

To build robust and highly precise ML models, it is cru-
cial to selectively choose attributes from the time series
data with low correlation. To accomplish this, a correla-
tion matrix is utilized. The correlation matrix presented
in Figure 7 indicates that the temporal characteristics
day, dayofweek, hour and minute share common infor-
mation with their corresponding cyclic encoded features
day_of_week_sin, day_of_week_cos, hour_sin, hour_cos,
minute_sin, minute_cos, day_sin and day_cos. As a result,
temporal attributes day, dayofweek, hour, and minute are
eliminated from the time series data. The rest of the at-
tributes present in the heatmap representation are taken
into account in the training and evaluation procedures
of the ML models.

Time series data is divided into training and testing



Figure 7: Heatmap illustrating the correlation matrix among
features in the time series data.

Figure 8: Traffic Flow predictions on the test set using the
XGBoost model.

Figure 9: Traffic Flow predictions on the test set using the
LSTM model.

sets, with the training set encompassing the earliest data
in the time series, spanning from May 17th to June 2nd
inclusive. The remaining data forms the testing set.

The subsequent phase involves fine-tuning XG-
Boost’s hyperparameters utilizing the Grid Search Cross-
Validation method5. The hyperparameters targeted for
optimization encompass regularization parameters, such
as gamma, alpha, lambda, the learning rate influencing
the backpropagation algorithm, as well as the maximum
depth of each decision tree. Employing the best combi-
nation of hyperparameter values, we train the XGBoost
model utilizing an ensemble of 100 trees. The test set is

5https://scikit-learn.org/stable/modules/grid_search.html

used to evaluate the performance of XGBoost in terms
of RMSE and MAE regression evaluation metrics.

Concerning the LSTM model, the time series data
within the training set undergo a reshaping process, re-
sulting in a 3-dimensional tensor. The output y of the
LSTM model represents the predicted traffic flow value
in the time series. The LSTM model is then evaluated on
the test set using the same evaluation metrics, RMSE and
MAE.

To determine the optimal value for the past-
observations parameter, we employ varying sliding win-
dow lengths. Both models are assessed on the same test
set for different past-observations values, specifically 2,
3, 4, 5, and 6. The outcomes are presented in Table 1
using the data created using the SPQ algorithm. Table
2 indicates the result of the same experiment using the
data collected when the usage of SPQ is absent. The com-
parison of the two tables makes clear that by applying
the proposed methodology we succeed lower RMSE and
MAE scores.

Table 1
Performance comparison of XGBoost and LSTM models using
the SPQ data.

XGBoost LSTM

past-observations RMSE MAE RMSE MAE

2 2.3245 1.3210 2.3886 1.4630
3 2.3081 1.3052 2.3000 1.3556
4 2.2961 1.2929 2.3009 1.3738
5 2.2821 1.2870 2.3002 1.3189
6 2.2890 1.2879 2.2643 1.2510

Table 2
Performance comparison of XGBoost and LSTM models using
data created without applying the SPQ algorithm.

XGBoost LSTM

past-observations RMSE MAE RMSE MAE

2 11.2448 5.5897 11.3756 5.9963
3 11.1362 5.4913 11.4908 6.0612
4 11.1243 5.4591 11.2740 5.7380
5 11.1279 5.4485 11.2721 5.6650
6 11.0943 5.4437 11.3616 5.6101

Forecasts are produced using the known values from
the test set. Based on the conclusions drawn from Table
1, the XGBoost model is configured with a setting of 5 (6,
respectively) for the past-observations parameter. Figures
8 and 9 showcase the predictions made by both models
on the test set. The blue colour represents the observed
sum of traffic flow values in the test set, aggregated based
on timestamps. Conversely, the orange and red colours
represent the predicted sum of traffic flow values across
all 100 predefined paths in the test set, organized by



timestamp and generated using the trained XGBoost and
LSTM models, respectively. It appears that both models
effectively capture the trend and seasonality present in
the time series data of the test set.

6. Conclusion
In this study, we presented a generic methodology for
forecasting traffic flow volumes on pathways, employing
ML algorithms, with a particular emphasis on the XG-
Boost and the LSTM models. When tested on a real-world
dataset containing taxi routes in the San Francisco area,
both models demonstrated good performance, which is
evidently better than the case when all data is used.

A limitation that constrained the scope of our study is
the reliance only on taxi traffic data resulted in an incom-
plete representation of the city’s overall traffic dynam-
ics, overlooking the movements of other transportation
modes, such as buses and private cars. Furthermore, a
more holistic comprehension of traffic flow prediction
dynamics could be achieved by integrating additional
data, such as vehicle accidents and weather conditions,
which are known to impact traffic flow patterns.

Lastly, for future research endeavours, it is crucial to
simulate scenarios using diverse modelling approaches,
including Graph Neural Networks (GNNs), to assess their
effectiveness in capturing complex relationships within
the road network. This comprehensive approach aims to
contribute to a more nuanced and adaptable predictive
framework for future traffic flow predictions.

Acknowledgments
This work was supported by the Horizon Europe re-
search and innovation programmes under GA 101070416
(Green.Dat.AI) & 101093051 (EMERALDS) funded by EU.

References
[1] Y. Xu, L. E. Olmos, D. Mateo, A. Hernando, X. Yang,

M. C. González, Urban dynamics through the lens
of human mobility, Nature Computational Science
3 (2023) 611–620.

[2] N. Pelekis, Y. Theodoridis, Mobility Data Manage-
ment and Exploration, Springer New York, 2014.

[3] G. Vouros, G. Andrienko, C. Doulkeridis, N. Pelekis,
A. Artikis, A.-L. Jousselme, C. Ray, J. Cordero, Big
Data Analytics for Time-Critical Mobility Forecast-
ing, Springer Nature, 2020.

[4] C. Doulkeridis, A. Vlachou, N. Pelekis, Y. Theodor-
idis, A survey on big data processing frameworks
for mobility analytics, SIGMOD Rec. 50 (2021)
18–29.

[5] E. Chondrodima, N. Pelekis, A. Pikrakis, Y. Theodor-
idis, An efficient lstm neural network-based frame-
work for vessel location forecasting, IEEE Trans-
actions on Intelligent Transportation Systems 24
(2023) 4872–4888.

[6] B. Krogh, N. Pelekis, Y. Theodoridis, K. Torp, Path-
based queries on trajectory data, in: Proceedings of
the 22nd ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Sys-
tems, SIGSPATIAL ’14, Association for Computing
Machinery, New York, NY, US, 2014, pp. 341–350.

[7] T. Chen, C. Guestrin, Xgboost: A scalable tree
boosting system, in: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, ACM, 2016.

[8] R. C. Staudemeyer, E. R. Morris, Understanding lstm
– a tutorial into long short-term memory recurrent
neural networks, 2019. arXiv:1909.09586.

[9] X. Dong, T. Lei, S. Jin, Z. Hou, Short-term traffic
flow prediction based on xgboost, in: 2018 IEEE 7th
Data Driven Control and Learning Systems Confer-
ence (DDCLS), 2018, pp. 854–859.

[10] Y. Tian, L. Pan, Predicting short-term traffic flow by
long short-term memory recurrent neural network,
in: 2015 IEEE International Conference on Smart
City/SocialCom/SustainCom, 2015, pp. 153–158.

[11] H. Tampubolon, P.-A. Hsiung, Supervised deep
learning based for traffic flow prediction, in: 2018
International Conference on Smart Green Technol-
ogy in Electrical and Information Systems (ICS-
GTEIS), 2018, pp. 95–100.

[12] M. Lu, K. Zhang, H. Liu, N. Xiong, Graph hier-
archical convolutional recurrent neural network
(ghcrnn) for vehicle condition prediction, 2019.
arXiv:1903.06261.

[13] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang, Traf-
fic flow prediction with big data: A deep learning
approach, IEEE Transactions on Intelligent Trans-
portation Systems 16 (2015) 865–873.

[14] R. Jiang, Z. Cai, Z. Wang, C. Yang, Z. Fan, Q. Chen,
K. Tsubouchi, X. Song, R. Shibasaki, Deepcrowd: A
deep model for large-scale citywide crowd density
and flow prediction, IEEE Transactions on Knowl-
edge and Data Engineering 35 (2023) 276–290.

[15] C. Conlan, J. Oakley, G. V. Demirci, A. Sfyridis,
H. Ferhatosmanoglu, Real-time spatio-temporal
forecasting with dynamic urban event and vehicle-
level flow information, in: CEUR Workshop Pro-
ceedings, volume 3379, 2023.

[16] S. Saki, T. Hagen, A practical guide to an open-
source map-matching approach for big gps data,
SN Computer Science 3 (2022).

http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1903.06261

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Dataset Preprocessing
	4.2 Generating Traffic Flow Time Series
	4.3 Forecasting Models

	5 Experimental Study
	6 Conclusion

