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Abstract

This study introduces time-windowed variations of three established trajectory simplification algorithms. These new algorithms are
specifically designed to be used in contexts with bandwidth limitations. We present the details of these algorithms and highlight the
differences compared to their classical counterparts.

To evaluate their performance, we conduct accuracy assessments for varying sizes of time windows, utilizing two different datasets
and exploring different compression ratios. The accuracies of the proposed algorithms are compared with those of existing methods. Our
findings demonstrate that, for larger time windows, the enhanced version of the bandwidth-constrained STTrace outperforms other
algorithms, with the bandwidth-constrained improved version of Squish also yielding satisfactory results at a lower computational cost.
Conversely, for short time windows, only the bandwidth-constrained version of Dead Reckoning remains satisfactory.
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1. Introduction

During the last decades, the rapid proliferation of mobile de-
vices equipped with tracking capabilities has led to a surge
in the production of spatio-temporal data. This can be ob-
served across diverse types of geolocation data sources [1].
Democratization of mobile devices, such as smartphones and
wearable technologies, and the spread of Global Positioning
System (GPS) equipped vehicles or Automatic Identification
System (AIS) equipped vessels are some example of reasons
for this data explosion. While the spatio-temporal data of-
fers many exploitation opportunities (both commercial and
research), its increase also causes some new challenges. One
of these challenges is to process this large amount of data.
In 2004, [2] have shown that 100Mb would be necessary to
store the localisation of a set of 400 moving objects, with
a frequency of 10 Hz (typical frequency of GPS devices).
Bruxelles Mobilité1, the public administration overseeing
mobility-related infrastructure in the Brussels Capital Re-
gion, collects positional data specifically for heavy-goods
vehicles in Brussels. This information is primarily utilized to
calculate toll charges, represents, on average, 19 Gigabytes
of data accumulated daily [3].

To overcome this difficulty, different compression or sim-
plification algorithms have been proposed [4, 5]. One of the
most well known simplification algorithm is the Douglas
Peucker (DP) algorithm [6] (initially aimed at line simplifica-
tion without temporal feature). Later, [2] introduced some
variations of the DP algorithm (including the Top Down
Time Ratio algorithm (TD-TR)), taking into account the
temporal feature of the locations. Since then, multiple algo-
rithms such as Squish (and its variations) [7, 8], STTrace
[9] or Dead Reckoning (DR) [10] have been proposed. The
main contribution of this work is to extend these algorithms
so that they could be used in contexts where bandwidth lim-
itations apply. The rest of this paper is divided as follows.
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First, Section 2 will provide a definition of compression un-
der bandwidth constraints as well as a motivation to this
problem. Section 3 introduces three existing trajectory sim-
plification algorithms while variants of these algorithms
for the bandwidth constrained contexts are described in
Section 4. Then, in Section 5, the performances of these
algorithms will be analysed and compared to the existing al-
gorithms using two different datasets. It will also be shown
that the classical algorithms are not suited for bandwidth
constrained contexts. Finally, Section 6 concludes this work
and presents some further research avenues.

2. Compression under bandwidth

constraints motivation

Existing techniques for simplification of trajectories have
already largely been studied. These techniques are generally
aimed at simplifying the trajectories in order to facilitate
their exploitation by machine learning techniques. This
is usually performed by trying to minimize the number of
points (position of an object at a given timestamp) kept with-
out deteriorating the trajectory significantly. In this work,
a different approach will be used. Instead of trying to mini-
mize the number of points kept, the algorithms introduced in
this work will consider some bandwidth constraints. These
constraints are defined as follows. For each period of time,
a predefined limit on the quantity of points that can be
kept must be respected. Therefore algorithms presented
in this work are aimed at minimizing the deterioration of
the trajectories during compression without exceeding this
limit. The duration of these periods as well as the number of
points that can be kept are parameters of the compression
algorithms. While bandwidth limitations are mentioned for
different contexts (vessels tracking [11], animal tracking
[12]), the problem of simplifying trajectories under band-
width limitation has, to the best of the authors knowledge,
not yet attracted the attention of the research community.
Some existing algorithms (such as the already mentioned
Squish and STTrace) compress trajectories under memory
limitations (with a threshold on the final number of points)
but these do not respect bandwidth constrains.

The main use case motivating compression under band-
width constraints concerns the extension of AIS signal cov-
erage for maritime monitoring and is detailed in Section 2.1.
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Further potential use cases are detailed in Section 2.2.

2.1. Extension of AIS signal coverage

Since 2004, all cargo vessels over 500 GT and all passenger
vessels are required to be equipped with AIS transceivers.
These transceivers allow automatic exchange of information
in between ships and between ships and coastal stations by
broadcasting positional messages using the Self-Organizing
Time Division Multiple Access (SOTDMA) protocol. The
International Telecommunication Union (ITU) recommen-
dation defines 2 default communication frequencies: AIS
1 (161.975 MHz) and AIS 2 (162.025 MHz) [13]. While AIS
data has initially been developed for collision avoidance,
since then, it has vastly been used by maritime authorities
to monitor vessels’ behavior and identify illegal activities.
The frequencies and the use of SOTDMA protocol imposed
by the ITU however limit both the range of communication
and the bandwidth available. One vastly used solution to
increase the range for which vessels could be monitored
from coastal stations is satellite AIS which involves the use
of satellites to receive and relay AIS signals from the ships
to the stations. Another possible solution which does not
require the use of satellites is mentioned in [14]. It consists
in allowing ships to repeat some of the broadcasted signals
that they receive, acting as an "AIS-repeater". Such a solu-
tion however would come at the cost of an increase in the
size of data transmission, which, if applied naively, might
exceed the available bandwidth. For this reason, BandWidth
Constrained (BWC) techniques should be developed.

2.2. Objects tracking over the Internet of

Things

Another family of use cases for compression under band-
width constrains could be the tracking of objects over the
Internet of Things (IoT). By design, many IoT devices have
limited capabilities (battery, bandwidth, ...). Object tracking
devices with such limitations could need to compress the
trajectories before communicating them to other devices.
For such devices, compression is not aimed at but a technical
necessity. In this situation BWC algorithms would offer the
necessary compression while minimizing the deterioration
of the trajectories. Many situations could be considered.
Some examples are given as follows:

Animal tracking is more and more used by private pet
owners, live stock owners and by scientists. For
the latter, compressing trajectories under bandwidth
constraints might be necessary to study animals’
behaviors in remote locations where communication
capabilities are inherently constrained.

Autonomous fleets: with the recent development of
smart cities, the amount of positional information
generated is always increasing. Combined with the
additional information exchange required, the moni-
toring of fleets of autonomous vehicles might benefit
from bandwidth constrained compression.

3. Existing algorithms

In this section, 3 existing algorithms which can be adapted
in bandwidth constraint scenarios will be introduced. For
all these algorithms, we will consider 𝑛 entities (or targets)

for which the position on earth is tracked over time. For
each entity 𝑙, its actual continuous movement over time
will be called its real trajectory and denoted by 𝒯𝑙. In prac-
tice, this continuous trajectory will be measured at discrete
timestamps leading to the generation of the trajectory of 𝑙,
denoted 𝑡𝑙 as a time ordered sequence of measurements of
𝑙’s position.

The main purpose of the algorithms will be to compress
(or simplify) the 𝑛 trajectories into 𝑛 samples (denoted 𝑠𝑙
with 𝑙 ∈ {1, ...𝑛}). The main purpose of the algorithms will
be to compress (or simplify) the 𝑛 trajectories into samples
(denoted 𝑠𝑙 with 𝑙 ∈ {1, ...𝑛}). In this work, we will only
consider compression techniques such that the sample 𝑠𝑙
obtained by compressing 𝑡𝑙 is composed of a subset of the
points of 𝑡𝑙. In addition for being important algorithms in
the literature, these algorithms have been chosen for the
following reason. Both Squish and STTrace are designed to
compress trajectories to a predetermined target size which
inherently makes them suitable candidates to be adapted in
a bandwidth constrained context. DR, on the other hand, is
designed to be applied in real time and will be modified to
respect bandwidth limitations.

Hereunder, the three classical algorithms will be intro-
duced. For simplicity purposes, Squish and STTrace will be
illustrated with a priority queue. It should be noted however
that this is done to simplify the algorithms description. In-
deed, both methods could be implemented more efficiently
without it.

3.1. Squish

The Squish algorithm has initially been presented in [7].
Since then, several improvements have been proposed, such
as the Squish-E method presented in [8]. It works by com-
pressing each trajectory individually. It will therefore re-
ceive as input a single trajectory. Each point 𝑝 in this trajec-
tory will be a tuple composed of (𝑝.𝑥, 𝑝.𝑦, 𝑝.𝑡𝑠) with 𝑝.𝑥
and 𝑝.𝑦 being its coordinates and 𝑝.𝑡𝑠 being the timestamp
associated to 𝑝. Furthermore, the algorithm will associate to
each point a dynamic priority 𝑝.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 which will depend
on the current state of the sample. The main steps of the
algorithm are described in Algorithm 1.

Algorithm 1 Pseudocode of the Squish algorithm
Require: trajectory 𝑡, sample size 𝑀𝑡

1: 𝑠 = empty list of points
2: 𝒬 = empty priority queue
3: for 𝑝 in 𝑡 do
4: p.priority = ∞
5: 𝑠.append(𝑝)
6: compute_priority(𝑠[−2], 𝑠) {s[-2] is the previous

point}
7: 𝒬.add(𝑝)
8: if 𝒬.size() > 𝑀𝑡 then
9: drop_point_update_priorities(𝒬, s)

10: end if
11: end for
12: return 𝑠 {or 𝒬}

The priority of a point in the sample (line 6) is computed
as the Synchronized Euclidian Distance (SED) error intro-
duced in the sample by removing this point. The SED of a
point 𝑥 with respect to points 𝑎 and 𝑏 such that:

𝑎.𝑡𝑠 ≤ 𝑥.𝑡𝑠 ≤ 𝑏.𝑡𝑠 (1)



represents the distance between the point 𝑥 and its projec-
tion 𝑥′ which is the position the entity would have at time
𝑥.𝑡𝑠 if it was moving at constant speed between 𝑎 and 𝑏.
Therefore, 𝑆𝐸𝐷(𝑎, 𝑥, 𝑏) be computed as follows:

𝑆𝐸𝐷(𝑎, 𝑥, 𝑏) = 𝑑𝑖𝑠𝑡(𝑥, 𝑝𝑜𝑠(𝑎, 𝑏, 𝑥.𝑡𝑠)) (2)

with the distance between two points being computed as
their euclidian distance:

𝑑𝑖𝑠𝑡(𝑎, 𝑏) =
√︀

(𝑎.𝑥− 𝑏.𝑥)2 + (𝑎.𝑦 − 𝑏.𝑦)2 (3)

and with the position at a specific time 𝑡𝑖𝑚𝑒 ∈ [𝑎.𝑡𝑠, 𝑏.𝑡𝑠]
(according to a segment between the two other points 𝑎 and
𝑏) being defined by:

𝑝𝑜𝑠(𝑎, 𝑏, 𝑡𝑖𝑚𝑒).𝑥 = 𝑎.𝑥+
(𝑏.𝑥− 𝑎.𝑥)

𝑏.𝑡𝑠− 𝑎.𝑡𝑠
× (𝑡𝑖𝑚𝑒− 𝑎.𝑡𝑠)

(4)

𝑝𝑜𝑠(𝑎, 𝑏, 𝑡𝑖𝑚𝑒).𝑦 = 𝑎.𝑦 +
(𝑏.𝑦 − 𝑎.𝑦)

𝑏.𝑡𝑠− 𝑎.𝑡𝑠
× (𝑡𝑖𝑚𝑒− 𝑎.𝑡𝑠)

(5)

The priority of a point at the position 𝑙 in a sample 𝑠 of size
𝑘 is computed as follows:

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑠[𝑙], 𝑠) =𝑆𝐸𝐷(𝑠[𝑙 − 1], 𝑠[𝑙], 𝑠[𝑙 + 1])

∀𝑙 = 1, ..., 𝑘 − 1

(6)

With the priorities of 𝑠[0] = 𝑠[𝑘] = ∞ as the first and the
last point of the sample will always be kept.

When a new point is added to the sample, the size of the
priority queue might exceed the maximum allowed buffer
size. In this case, the point with the lowest priority should
be dropped (both from the sample and from priority queue)
(see line 9). Once a point is dropped, the priority of the
"neighbors" of this point should be updated. In order not
to recompute the priority of the points, Squish works by
increasing the priority of the neighboring points by the pri-
ority of the point dropped. By denoting 𝑠 the sample before
the dropping of the point 𝑠[𝑙] and 𝑠′ the sample after the
removal, the priorities of the points which were neighboring
𝑠[𝑙] will be computed as follows:

𝑠′[𝑙 − 1].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑠[𝑙 − 1].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + 𝑠[𝑙].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

𝑠′[𝑙].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑠[𝑙 + 1].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + 𝑠[𝑙].𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

(7)

It should be noted that the point following 𝑠[𝑙] has the index
𝑙 + 1 in 𝑠 while it has the index 𝑙 in 𝑠′ due to the removal
of 𝑠[𝑙]. Once the priority of these two points is recomputed,
their positions in the priority queue are adapted as well.

It is important to keep in mind that for Squish as well
as for all other algorithms presented in this work, when a
point is dropped, it is dropped both from the priority queue
and from the sample it belongs to.

3.2. STTrace

The STTrace algorithm was initially presented in [9]. Its
pseudocode is presented in Algorithm 2.

It is very similar to Squish except the three following
differences:

line 3: It compresses the different trajectories simultane-

Algorithm 2 Pseudocode of the STTrace algorithm
Require: 𝑆𝑡𝑟𝑒𝑎𝑚 𝒮𝒯 , maximal buffer size 𝑀𝑛

1: 𝑆 = matrix of 𝑙 empty lists
2: 𝒬 = empty priority queue
3: for 𝑝 in 𝒮𝒯 do
4: s = S[p.id]
5: if interesting(p, s, 𝒬) then
6: p.priority = ∞
7: 𝑠.append(𝑝)
8: compute_priority(𝑠, 𝑠[−2])
9: 𝒬.add(𝑝)

10: if 𝒬.size() > 𝑀𝑡 then
11: drop_point_recompute_priorities(𝒬, S)
12: end if
13: end if
14: end for
15: return 𝑆 {or 𝒬}

ously (the 𝑛 trajectories are contained into a single
stream of points 𝒮𝒯 ). Each point 𝑝 will be a tuple
composed of (𝑝.𝑖𝑑, 𝑝.𝑥, 𝑝.𝑦, 𝑝.𝑡𝑠) with 𝑝.𝑖𝑑 being
the index of the trajectory 𝑡𝑝.𝑖𝑑 it belongs to, 𝑝.𝑥 and
𝑝.𝑦 being its coordinates and 𝑝.𝑡𝑠 being its times-
tamp. Furthermore, it operates in an unbalanced
way, i.e. after simplification, samples representing
more complicated trajectories will be composed of
more points. This result is obtained by maintain-
ing a single priority queue for all the points of the
different trajectories.

line 11: When one point 𝑥 is dropped from the priority
queue and from the concerned sample 𝑆[𝑥.𝑖𝑑] (note
that the sample 𝑆[𝑥.𝑖𝑑] is generally not the same
sample as the sample in which the last point was
added), the priorities of the neighboring points of
𝑥 in the sample 𝑆[𝑥.𝑖𝑑] will not be updated using
an heuristic approach such as in Squish. Instead,
when removing a point 𝑠[𝑙], both the priorities of
𝑠[𝑙 − 1] and 𝑠[𝑙 + 1] will be recomputed as
𝑆𝐸𝐷(𝑠[𝑙 − 2], 𝑠[𝑙 − 1], 𝑠[𝑙 + 1]) and as
𝑆𝐸𝐷(𝑠[𝑙 − 1], 𝑠[𝑙 + 1], 𝑠[𝑙 + 2]).

line 5: Before adding the next point 𝑝 in a sam-
ple 𝑠 = 𝑆[𝑝.𝑖𝑑], it will first check whether
this point seems promising. This is performed
by computing what the priority of the last
point in 𝑠 would be if 𝑝 was added to 𝑠 :
𝑆𝐸𝐷(𝑠[−2], 𝑠[−1], 𝑝). If this potential priority is
lower than the lowest priority in the priority queue,
then point 𝑝 is not added to the sample.

3.3. DR

The DR algorithm has been initially presented in [10]. It
has the particularity of being inherently designed for real-
time applications. The main idea is that when a point 𝑝
is considered, the deviation between 𝑝 and the expected
position according to the last points of the sample it belongs
to at the time 𝑝.𝑡𝑠will be computed. If this deviation is larger
than a defined threshold 𝜖, then 𝑝 is added to the sample.
The value of 𝜖 represents the half of the largest synchronized
distance admissible between an initial trajectory and the
corresponding sample [10]. The pseudocode for the DR
algorithm is provided in Algorithm 3.



Algorithm 3 Pseudocode of the DR algorithm
Require: 𝑆𝑡𝑟𝑒𝑎𝑚 𝒮𝒯 , deviation threshold 𝜖

1: 𝑆 = matrix of 𝑙 empty lists
2: for 𝑝 in 𝒮𝒯 do
3: s = S[p.id]
4: 𝑝′ = estimate_position(s, p.ts)
5: if dist(𝑝′, 𝑝) > 𝜖 then
6: 𝑠.append(𝑝)
7: end if
8: end for
9: return 𝑆

The estimated position (line 4) can be computed in two
different ways according to the information contained in the
stream of points. If each point 𝑝 of the stream is composed
of (𝑝.𝑖𝑑, 𝑝.𝑥, 𝑝.𝑦, 𝑝.𝑡𝑠) (such as for Squish and STTrace ),
then the expected position will be computed as if the object
was travelling with constant direction and speed from 𝑠[−1]
(with the direction and the speed being computed according
to the straight line between 𝑠[−2] and 𝑠[−1]). For instance,
the x coordinate of the expected position is computed as
follows:

𝑝′.𝑥 = 𝑠[−1].𝑥+
(𝑠[−1].𝑥− 𝑠[−2].𝑥)

𝑠[−1].𝑡𝑠− 𝑠[−2].𝑡𝑠
(𝑝.𝑡𝑠− 𝑠[−1].𝑡𝑠)

(8)

In some cases (such as in the AIS data), each point 𝑝 in the
stream contains some information with respect to its speed
and direction of the moving object. Each point p is then
composed of (𝑝.𝑖𝑑, 𝑝.𝑥, 𝑝.𝑦, 𝑝.𝑡𝑠, 𝑝.𝑠𝑜𝑔, 𝑝.𝑐𝑜𝑔) with 𝑝.𝑠𝑜𝑔
and 𝑝.𝑐𝑜𝑔 representing respectively the speed over ground
and course over ground of the entity. Then this additional in-
formation can be used to compute the estimated position 𝑝′

of 𝑝. For instance, the x coordinate of the expected position
is computed as follows:

𝑝′.𝑥 =𝑠[−1].𝑥+

𝑐𝑜𝑠(𝑠[−1].𝑐𝑜𝑔)× 𝑠[−1].𝑠𝑜𝑔 × (𝑝.𝑡𝑠− 𝑠[−1].𝑡𝑠)

(9)

4. BWC variants

While the previous section consisted in an introduction of
different existing compression techniques, this section con-
sists in the introduction of BandWidth-Constrained (BWC)
variants of the existing algorithms. Four variants will be
analysed in this work: BWC-STTrace, BWC-STTrace-Imp,
BWC-Squish, BWC-DR. All of them share the main idea of
extending their respective existing algorithm in a time win-
dowed manner. However some slight adaptations have to be
performed for the BWC-Squish and BWC-DR algorithms.
Furthermore, the time windowed constraint also gives us
the opportunity of proposing “improvement” of the BWC-
STTrace algorithm (which is denoted BWC-STTrace-Imp).
The modifications necessary for these three algorithms will
be developed hereunder.

For simplicity purposes, the bandwidth will be considered
as a constant parameter in all the algorithms. This means
that for each time window, the same number of points will
be kept. However, in practice, nothing prevents the algo-
rithms of being used with an array of bandwidths for each
different time window or in a more dynamic way by adapt-

ing the bandwidth according to the real time congestion of
the network.

4.1. BWC-Squish and BWC-STTrace

The BWC-STTrace method is simply the modification of
the STTrace method applied on every time window, with
the particularity that points kept in the sample of previous
time windows can be used to compute the priority of points
in the current time window. The priority of points in BWC-
STTrace is identically computed as in the original STTrace
method. The bandwidth constrains are respected by flush-
ing and re-initializing the priority queue after each time
window. A similar approach is used for the BWC-Squish
algorithm. One of the characteristics of the Squish method,
is that the numbers of points kept in the simplification of the
trajectories have to be determined beforehand. However,
the repartition of the number of points that should be kept
for each trajectory individually in each time window is not
straight forward. For this reason, the BWC-Squish algo-
rithm is an “STTrace inspired" modification of the Squish
algorithm as instead of compressing the trajectories indi-
vidually, a single priority queue of limited size is shared for
all trajectories. Such as for BWC-STTrace , the priority
of points in BWC-Squish is identically computed as in the
original Squish method. The pseudocode for the algorithms
fo BWC-STTrace and BWC-Squish are identical and are
shown in Algorithm 4. While the pseudocodes are identical,
it is important to remember that both methods still compute
the priorities differently.

Algorithm 4 Pseudocode of the BWC-Squish , BWC-
STTrace and BWC-STTrace-Imp algorithms. Underlined
parts are the addition required for BWC-STTrace-Imp .
Require: 𝑆𝑡𝑟𝑒𝑎𝑚 𝒮𝒯 , window limit 𝑏𝑤, window dura-

tion 𝛿, start time 𝑠𝑡𝑎𝑟𝑡, precision 𝜖
1: 𝑆 = matrix of 𝑙 empty lists
2: 𝑇 = matrix of 𝑙 empty lists
3: 𝒬 = empty priority queue
4: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡+ 𝛿
5: for 𝑝 in 𝒮𝒯 do
6: if 𝑝.𝑡𝑠 > 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 then
7: flush(𝒬)
8: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 = 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑+ 𝛿
9: end if

10: s, t = S[p.id], T[p.id]
11: p.priority = ∞
12: 𝑠.append(𝑝)
13: 𝑡.append(𝑝)
14: compute_priority_imp(𝑠[−2], 𝑠, 𝑡, 𝜖)
15: 𝒬.add(𝑝)
16: if 𝒬.size() > 𝑏𝑤 then
17: drop_point_recompute_priorities(𝒬, S, T, 𝜖)
18: end if
19: end for
20: return

4.2. BWC-STTrace-Imp

The main motivation behind this improvement is that in
STTrace, the priority of a point is computed using the
sample it belongs to. Therefore, this priority is computed
independently of the previously removed points. While the
removal of a single point with a small priority will lead to a



slight deviation in the sample, significant deviations can re-
sult of successively removing such points. The pseudocode
of BWC-STTrace-Imp is detailed in Algorithm 4.

The priority of a point in a sample is therefore computed
as follows. Instead of computing the SED error introduced
in the sample when removing the concerned point, BWC-
STTrace-Imp computes the difference between the SED
error of the sample with respect to the initial trajectory
with and without the considered point.

This error will be computed according to the distance
between the synchronized position in the trajectory and the
position in corresponding sample at regular time intervals
(denoted 𝜖). To compute these positions (in a trajectory or
in sample denoted 𝑥) at a specific time 𝑡, the "neighboring"
points should be identified. These neighbor points will be
denoted 𝑥−

𝑡 (the first point in 𝑥 before time 𝑡) and 𝑥+
𝑡 (the

first point in 𝑥 after time 𝑡):

𝑥−
𝑡 = 𝑝 ∈ 𝑥 𝑠.𝑡.

𝑝.𝑡𝑠 ≤ 𝑡

∧ ̸ ∃𝑞 ∈ 𝑥 𝑠.𝑡. 𝑝.𝑡𝑠 < 𝑞.𝑡𝑠 ≤ 𝑡

(10)

𝑥+
𝑡 = 𝑝 ∈ 𝑥 𝑠.𝑡.

𝑡 ≤ 𝑝.𝑡𝑠

∧ ̸ ∃𝑞 ∈ 𝑥 𝑠.𝑡. 𝑡 ≤ 𝑞.𝑡𝑠 < 𝑝.𝑡𝑠

(11)

By using equations 4, 5 and 11, we will define a function
𝑥(𝑡) providing the position of the entity at time 𝑡 according
to the sample or trajectory 𝑥:

𝑥(𝑡) = 𝑝𝑜𝑠(𝑥−
𝑡 , 𝑥

+
𝑡 , 𝑡) (12)

Then, the set of all the timestamps where the errors will be
computed will be denoted 𝑊 (𝑠[𝑙], 𝑠). Indeed, the priority
of a points 𝑠[𝑙] will be the sum of all the errors for all times-
tamps between 𝑠[𝑙 − 1].𝑡𝑠 and 𝑠[𝑙 + 1].𝑡𝑠 with the step 𝜖.
𝑊 (𝑠[𝑙], 𝑠, 𝛿) will therefore be denoted:

𝑊 (𝑠[𝑙], 𝑠, 𝛿) = {𝑠[𝑙 − 1].𝑡𝑠+ 𝑘𝜖 |

𝑘 ∈ N+ ∧ 𝑠[𝑙 − 1].𝑡𝑠+ 𝑘𝜖 < 𝑠[𝑙 + 1].𝑡𝑠} (13)

Finally, the sample that would be obtained by removing the
node 𝑠[𝑙] from 𝑠 will be denoted:

𝑠−𝑙 = 𝑠 ∖ 𝑠[𝑙] (14)

Using these notations, the priority in the sample 𝑠 with
respect to an initial trajectory 𝑡𝑟𝑎𝑗 of a point 𝑠[𝑙] can then
be computed as:

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝑖𝑚𝑝(𝑠[𝑙], 𝑠, 𝑡𝑟𝑎𝑗, 𝜖) =∑︁
𝑡∈

𝑊 (𝑠[𝑙],𝑠,𝜖)

(︁
𝑑𝑖𝑠𝑡

(︀
𝑡𝑟𝑎𝑗(𝑡), 𝑠(𝑡))

)︀
−𝑑𝑖𝑠𝑡

(︀
𝑡𝑟𝑎𝑗(𝑡), 𝑠−𝑙(𝑡))

)︀)︁
(15)

Once more, such as in STTrace, when dropping a point
from a sample, the priority of the previous and following
points in the sample will need to be recomputed.

While BWC-STTrace-Imp will produce more accurate
results, it is at the cost of a more computationally expen-
sive computation of the priorities. The computation of the
priority of the point 𝑠[𝑙] in STTrace or BWC-STTrace
requires the computation of one distance as well as one

position (from two existing points and one timestamp). On
the other hand the computation of the priority of 𝑠[𝑙] in
BWC-STTrace-Imp requires the computation of at most
2×𝛿
𝜖

× 2 distances as well as 2×𝛿
𝜖

× 3 positions. Indeed,
since 𝑠[𝑙 − 1] might belong to the previous time window,
the duration between 𝑠[𝑙 − 1] and 𝑠[𝑙 + 1] is at most 2× 𝛿
which leads the set 𝑊 (𝑠[𝑙], 𝑠, 𝜖) to be at most of size 2×𝛿

𝜖
.

For every timestamp in this set, 3 positions (according to the
real trajectory, the initial sample and the simplified sample)
as well as 2 distances must be computed.

4.3. BWC-DR

The DR algorithm has been modified in order to fulfill band-
width constrains. This is performed, such as for Squish
and STTrace by the introduction of time windows and a
priority queue. Instead of using the distance between the
position of the processed point with its expected position as
a binary criterion to decide whether to add this point to the
corresponding sample or not, this distance will be used as
the priority of the point. Therefore, only the points which
are the furthest of their expected position will be kept in
each time window.

The pseudocode for the BWC-DR algorithm is detailed in
Algorithm 5.

Algorithm 5 Pseudocode of the BWC-DR algorithm.
Require: 𝑆𝑡𝑟𝑒𝑎𝑚 𝒮𝒯 , window limit 𝑏𝑤, window dura-

tion 𝛿, start time 𝑠𝑡𝑎𝑟𝑡
1: 𝑆 = matrix of 𝑙 empty lists
2: 𝒬 = empty priority queue
3: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡+ 𝛿
4:
5: for 𝑝 in 𝒮𝒯 do
6: if 𝑝.𝑡𝑠 > 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 then
7: flush(𝒬)
8: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 = 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑+ 𝛿
9: end if

10: 𝑝′ = estimate_position(s, p.ts)
11: p.priority = dist(𝑝′, 𝑝)
12: 𝑠.append(𝑝)
13: 𝒬.add(𝑝)
14: if 𝒬.size() > 𝑏𝑤 then
15: drop_point_recompute_priorities(𝒬, S)
16: end if
17: end for
18: return

Similarly as with Squish and STTrace (bandwidth con-
strained versions or not), when one point 𝑠[𝑙] is dropped
from the priority queue, it is also removed from the corre-
sponding sample. Therefore, the priorities of some points
of 𝑠 must be recomputed. With BWC-DR, its is not the pri-
orities of the two neighbors (𝑠[𝑙 − 1] and 𝑠[𝑙 + 1]) which
must be recomputed, but the priorities of the one or two
next nodes (𝑠[𝑙 + 1] and 𝑠[𝑙 + 2]).

5. Empirical results

In this section, the performance of the introduced BWC algo-
rithms as well as their classical equivalents and the classical
TD-TR algorithm will be compared. The comparison will be
performed on two datasets of different spatial and temporal
ranges.



5.1. Datasets

5.1.1. AIS

The first dataset consists of 24h of AIS data in the region be-
tween the cities of Copenhagen and Malmo on first January
2021 [15]. It is composed of 103 trips totalling 96819 points.
The trips can be seen in Figure 1.

Figure 1: AIS trips around Copenhagen and Malmo.

5.1.2. Birds

The second dataset consists of three months of GPS of black-
backed gulls between the 9th of July and the 9th of October
2021 [16]. It is composed of 45 trips totalling 165244 points.
While most of these trips originate from Belgium and North
of France, some are spreading as far as the north of Spain.
Few other trips are also entirely taking place in Spain and
one in Algeria. These trips can be seen in Figure 2.

Figure 2: Birds trips.

5.2. Evaluation of the BWC Algorithms

In this section, the different algorithms will be evaluated by
computing the Average Euclidian Synchronized Distance
(ASED) between some initial trajectories and their com-
pressed counterparts at a regular time interval.

It is important to note that this evaluation is not aimed at
stating that some compression algorithms are better than
others. Indeed, when selecting a compression algorithm,
different factors have to be taken into account. While the
ASED is generally an important factor, other factors such
as time and space complexity should be taken into account.
Furthermore the BWC algorithms are designed to be able to
be used in situations with additional bandwidth constraints.
It is not surprising that the fulfillment of these additional

constraints may lead to a deterioration of the algorithms
ASED.

While the different algorithms require different param-
eters, these were determined in order to produce a similar
total number of points in the simplified trajectories pro-
duced by the different algorithms. For each dataset, the
algorithms will be assessed with parameters such that both
around 10% and around 30% of the original points are kept
in the simplified trajectories.

The exact value of the parameters for the classical algo-
rithms are listed hereunder.

Squish Squish requires the maximal number or points
kept for each individual trajectory. This maximal
number of point as been set to 10% and 30% of the
initial points of each trajectory.

STTrace STTrace requires the maximal number or points
kept for for all trajectories. This maximal number
of points has been set to 10% and 30% of all initial
points.

DR DR requires a distance threshold. This threshold has
been set to 425 and 115 meters for the ais dataset
and has been set to 2500 and 950 meters for the birds
dataset.

TD-TR The TD-TR time algorithm requires a tolerance
threshold. This threshold has been set to 0.15 and
0.051 in the AIS dataset as well as 16.7 and 1.5 for
the Birds dataset.

For each of the classical algorithms, its ASED can be seen
in Table 1.

AIS Birds

10% 30% 10% 30%

Squish 20.87 4.83 585.34 44.95

STTrace 58.66 9.78 1823.10 431.65

DR 6.75 2.32 697.14 46.48

TD-TR 2.95 1.08 274.78 26.87

Table 1

ASED of the classical algorithms on the different datasets.

As it can be seen from Table 1, TD-TR is outperforming
the other algorithms. This is due to the fact that Squish,
STTrace and DR are designed to be less computationally
expensive.

The performances of the BWC algorithms on the AIS
dataset can be found in Tables 2 and 3.

window size (min) 120 60 15 5 0.5

points per window 800 400 100 33 4

BWC-Squish 10.97 10.65 7.35 7.90 130.59

BWC-STTrace 17.23 12.49 6.25 5.09 81.54

BWC-STTrace-Imp 1.49 1.53 1.72 4.62 108.39

BWC-DR 13.77 15.82 14.91 13.07 11.16

Table 2

ASED of the different BWC algorithms when simplifying until

10% of the AIS dataset for different sizes of time windows.

Furthermore, we can notice from Tables 2 and 3 that for
large enough windows (between 15 and 120 minutes), BWC-
STTrace-Imp is outperforming the other BWC and classical



window size (min) 120 60 15 5 0.5

points per window 240 1200 300 100 12

BWC-Squish 1.82 1.67 1.51 1.32 21.57

BWC-STTrace 8.87 3.90 2.12 2.34 7.13

BWC-STTrace-Imp 0.55 0.55 0.56 0.57 14.55

BWC-DR 5.61 5.49 4.95 4.72 4.20

Table 3

ASED of the different BWC algorithms when simplifying until

30% of the AIS dataset for different sizes of time windows.

algorithms. This is due to the fact that the priority of the
points is evaluated using the sample and the original trajec-
tory. It can also be noticed that for small time windows, the
performances of BWC-Squish, BWC-STTrace and BWC-
STTrace-Imp deteriorate. The deterioration is even drastic
for 30 seconds time windows when keeping 10% of the
points. The reason for this deterioration is that these three
algorithms compute the priority of a point according to both
the previous and the next point in the sample. Therefore,
for small time windows, there will generally be less than 2
points per trajectory in the sample, making the removal of
a point arbitrary and therefore leading to inaccurate simpli-
fications. On the other hand the performances of BWC-DR
are more constant and even improve for smaller time win-
dows. This is due to the fact that BWC-DR only makes use
of the previous one (or two) points to compute the prior-
ity of the currently processed point. Therefore, even with
small time windows, it will be able to compute the prior-
ities correctly using points kept during the previous time
windows.

As expected, it can also be noted that the average er-
ror of the improved version of BWC-STTrace-Imp is in-
deed smaller than the one of BWC-STTrace. Surprisingly
however, even BWC-STTrace outperforms the classical
STTrace algorithm. One hypothesis is that this is due to
STTrace both assessing the priority of points using current
simplified trajectory only and simultaneously comparing
different trajectories of different natures. Therefore, tra-
jectories with different sampling frequencies could be com-
pressed simultaneously. Trajectories with lower frequencies
might fill up the priority queue as the priority of a point
which is far apart in time from its neighbors in the sample
will intuitively be higher than the one of a point close to its
neighbors. Restarting with an empty priority queue at fre-
quent time interval might help mitigate this phenomenon.
Squish on the other hand, does not seem to suffer from
this drawback. This might be due to their heuristic which
counterbalance this effect by adding the priorities of points
deleted from the sample.

The Tables 2 and 3 represent tests performed with a con-
stant bandwidth (indicated by the window size and the num-
ber of points per window). It should be noted however
that similar results can be obtained by selecting a random
number of points (around the value indicated in the tables)
individually for each time window.

The performances of the BWC algorithms on the Birds
dataset can be found in Tables 4 and 5. Similar observations
can be made for the Birds dataset as for the AIS dataset.
Surprisingly, it can be seen that increasing the bandwidth
from 8 to 22 points for the 1 hour time window lead to
worse results for BWC-Squish, BWC-STTrace and BWC-
STTrace-Imp. This confirms the arbitrary simplification
performed by these algorithms if there are not enough points

for each trip in each time window.

window size (days) 31 7 1 1/4 1/24
points per window 5580 1260 180 45 8

BWC-Squish 777 939 884 1061 3615

BWC-STTrace 2780 2651 1144 1277 3096

BWC-STTrace-Imp 273 382 497 749 3437

BWC-DR 1997 1752 1677 1421 1314

Table 4

ASED of the different BWC algorithms when simplifying until

10% of the Birds dataset for different sizes of time windows.

window size (days) 31 7 1 1/4 1/24
points per window 16740 3780 540 135 22

BWC-Squish 77 104 108 126 4882

BWC-STTrace 1245 707 245 247 6828

BWC-STTrace-Imp 32 50 60 77 4706

BWC-DR 570 605 623 465 554

Table 5

ASED of the different BWC algorithms when simplifying until

30% of the Birds dataset for different sizes of time windows.

5.3. Points distribution

In this section, the time repartition of points conserved with
classical compression algorithms will be illustrated. This
will be done by compressing the AIS dataset to 10% of its
original size and by analysing the time repartition of the
points kept for each period of 15 minutes. It will be shown
that these algorithms do not produce an homogeneous time-
partitioned results. In this configuration, 100 points should
be kept in each period in order to satisfy the bandwidth
constrain. The time repartition of simplified points for the
TD-TRand DR are illustrated in Figures 3 and 4 (similar
figures are obtained for Squish and STTrace). These figures
consist in histograms representing the number of points
remaining in all simplified trajectories during each period.

Figure 3: Histogram of the quantity of points in different time-

windows in samples obtained with TD-TR.

In each figure, the limit of 100 points is indicated with the
blue dotted line. These figures confirm the need of using
different compression techniques in context with bandwidth
constrains.



Figure 4: Histogram of the quantity of points in different time-

windows in samples obtained with DR.

6. Conclusion

In this work, four variations of existing algorithms for the
simplification of trajectories have been introduced. These
variations are aimed at being used in a situation with band-
width limitations. The performances of the four algorithms
have been studied for different sizes of time windows for
two different datasets and for different compression rates.
While the more computationally intensive BWC-STTrace-
Imp outperforms the other algorithms for the larger time
windows, the performances of BWC-DR remain more stable
with small time windows.

Several further improvements could still be considered.
First of all, this work extends three well known algorithms
to a time windowed context. Different algorithms might
also be considered for such an extension. Furthermore, the
presented algorithms could be further optimized. For in-
stance the transition between time windows for the BWC-
Squish, BWC-STTrace and BWC-STTrace-Imp could be
improved. Indeed, actually, all the last points of a trajec-
tory in a window are assigned an infinity priority as there
is no information accessible within the window with re-
spect to the next points. This is probably the main reason
why BWC-Squish , BWC-STTrace and BWC-STTrace-Imp
perform poorly when the number of points kept in a time
window is low compared to the number of trips. The prior-
ity of these last points could therefore be computed during
the next time window, leading hopefully to more accurate
results. The DR algorithm could also be modified in a dif-
ferent manner to satisfy bandwidth constrains instead of
using a time-windowed approach with a priority queue. For
instance, the distance threshold could be modified in real
time by the algorithm according to the current number of
points in the sample. Finally, the different algorithms could
be further studied by applying the on a larger variety of
datasets.
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