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Abstract
This paper addresses the challenge of map matching and geographic transferability in trajectory analysis. Existing methods
often face limitations tied to specific coordinates or road networks. In response, we propose GASM, a shape-based map
matching method that relies solely on trajectory shapes, irrespective of geographic origin. GASM introduces a symbolic road
network representation, facilitating efficient searches based solely on trajectory shapes. Our experimentation, spanning over
5,000 km of roads, demonstrates GASM’s ability to accurately position trajectories with an impressive accuracy exceeding 90%.
Notably, GASM stands as the first in the literature to perform shape-based symbolic map matching without prior knowledge
of the geographic region.
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1. Introduction
In recent years, the widespread adoption of cutting-edge
technologies equipped with Global Positioning System
(GPS) devices has enabled the recording of positions for
variousmoving objects, ranging from cars and transporta-
tion vehicles to phones and wearables. Unfortunately,
the coordinates captured by these sensors often fail to ac-
curately reflect real positions due to physical constraints
and/or legal regulations. Nevertheless, in various applica-
tions, it is imperative to accurately align GPS trajectories
with a road network. For instance, in navigation ser-
vices, map matching empowers drivers to monitor their
exact locations and receive optimal routes to specified
destinations. Conversely, in machine learning tasks, map
matching enhances users’ mobility information by in-
corporating knowledge related to the territory, such as
Points Of Interest (POI), feature engineering [1, 2, 3, 4], or
the identification of discriminatory subsequences, such
as mobility shapelets [5, 6, 7]. Without an appropriate
map-matching procedure, reliance on an expert becomes
necessary to determine which features can be extracted
from trajectories concerning the territory. However, the
reliance on ad-hoc features restricts the applicability of
machine learning methods and amplifies sensitivity to
input changes [1], rendering it unsuitable for geographic
transferability. This implies the challenge of extracting
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mobility patterns from one geographical region and ef-
fectively applying them in another region [8, 9].

Particularly noteworthy are recent advancements in
machine learning leveraging shapelet-based subtrajec-
tories [5, 6, 7]. Originating from the domain of time
series analytics, shapelets represent discriminatory sub-
sequences that encapsulate a collection of distinctive
shapes, crucial for discerning specific classes [10]. Vari-
ous approaches exist for defining discriminative subtra-
jectories. In [6], the Movelet method is introduced—an
approach for extracting discriminative subtrajectories
selected through a rigorous statistical test. During the
discovery phase, Movelet generates candidate subtrajec-
tories by extracting all possible subsequences with more
than two contiguous observations, utilizing a sliding win-
dow. Building upon the foundation laid by Movelet,
Geolet is introduced in [7]. This extension incorporates
a normalization step after the discovery phase. The nor-
malization step is designed to ease the comparison of
discriminative subsequences with trajectories recorded
in diverse geographical regions. The underlying ratio-
nale is that a subtrajectory pinpointing a sudden break
in a road segment in one city should exhibit similarities
to a subtrajectory associated with the same event in an-
other city. This normalization enhances the method’s
adaptability across various geographic contexts.

While Geolet successfully addresses the limitation
of Movelet by providing normalized subtrajectories,
thereby enhancing geographic transferability indepen-
dent of specific GPS coordinates, it introduces a potential
vulnerability tied to the road network.

Our underlying hypothesis is that the less frequently
a trajectory occurs, the greater the likelihood that shape-
based methods utilizing it as a discriminative subse-
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quence may not capture the intrinsic features of the
trajectory but rather only its geographic position. In
essence, if a discriminative subtrajectory is intrinsically
linked to a particular road network due to its distinc-
tive shape, it becomes unsuitable for geographic trans-
ferability. This limitation arises from the fact that the
discriminatory aspect is not rooted in the movements
themselves but rather in the structural characteristics
of the road network. Consequently, evaluating the geo-
graphic transferability of discriminative subtrajectories
necessitates a shape-based map-matching approach that
exclusively relies on shapes without prior knowledge of
the position. Regrettably, to the best of our knowledge,
such an approach is currently unavailable. This under-
scores the need for innovative solutions in the realm of
shape-based map matching to comprehensively assess
the adaptability of discriminative subtrajectories across
diverse geographical contexts.

To overcome this limitation, our paper introduces
GASM, an Geographic Automaton Shape-based map
Matching approach. GASM relies solely on the shape of a
trajectory to accurately determine its position within the
road network. Specifically, GASM employs a symbolic
representation to transform the road network, construct-
ing a spatial index independent of coordinates. This
unique approach allows for efficient trajectory searches
based solely on their shapes. To the best of our knowl-
edge, GASM is the first proposal in the literature that
exclusively utilizes a discretized representation of a trajec-
tory’s shape, devoid of any knowledge of the geographic
region, for shape-based map matching. Our experimenta-
tion with GASM on a novel comprehensive geographical
dataset spanning over 5,000 km of roads in Tuscany, cen-
tral Italy, demonstrates its capability to identify correct
alignments with an impressive accuracy exceeding 90%.
Furthermore, GASM exhibits efficiency, as it can con-
struct the necessary representation for the entire dataset
in less than 1.5 hours, maintaining a linear complexity at
query time.

The paper is organized as follows. Section 2 sum-
marises the related works concerning map-matching
methods and the challenges posed by geographic trans-
ferability. In Section 3, we encapsulate the technical
concepts essential for comprehending the algorithm de-
lineated in Section 4. The outcomes of experiments con-
ducted with GASM are detailed in Section 5. Finally,
Section 6 encapsulates our findings and delves into po-
tential avenues for future developments.

2. Related Works
In the following, we provide a concise overview of the
literature concerning map matching methods and eluci-
date the geographic transferability problem, introducing

key strategies employed to tackle this challenge.
In the literature of trajectory analysis, a multitude of

strategies exists for mapping trajectories onto a road net-
work. For high-frequency sampled trajectories, the sim-
plest approach involves associating each spatio-temporal
point with the nearest street segment [11, 12]. However,
these techniques, while fast and straightforward, have ex-
hibited inaccuracies, particularly at intersections and par-
allel roads. To address these limitations, enhancements
have been introduced, incorporating heading direction
or employing a Kalman filter to eliminate outlier points
in trajectories [13]. Alternatively, some approaches lever-
age probabilistic-based map-matching algorithms, in-
tegrating hidden Markov models to identify the most
likely sequence of road segments aligning with the tra-
jectory [14, 15]. On the other hand, in the context of
low-sampled trajectories, much of the existing literature
presupposes that the most probable route connecting two
successive points is also the shortest or fastest [16]. How-
ever, in [17], is introduced a map-matching algorithm
that exploits temporal intervals betweenGPS points. This
method identifies the optimal match between two GPS
points by selecting the route with the most similar travel
time. Also, in [18] is proposed a method for map match-
ing low-sampled trajectories based on supplementary
information such as speed and moving direction, typi-
cally collected alongside spatial locations.

Geographic transferability encapsulates the challenge
of extending knowledge gleaned from one geographic re-
gion to another. This entails constructing machine learn-
ing models capable of adeptly executing tasks in regions
distinct from their original training grounds. The core
of this challenge emerges from pronounced disparities
in data distributions, patterns, and characteristics across
diverse geographical locations. As articulated in [8, 9],
models trained on data from one region may encounter
difficulties in generalization when confronted with the
unique variations inherent in another region. In pursuit
of a global model, a fundamental strategy is employed
as demonstrated in [8], where diverse data sources are
aggregated on a global scale to build a transferable model.
Conversely, in [9], city indicators are identified pertain-
ing to road networks, traffic flows, and individual mobil-
ity, to facilitate the assessment of similarities between ge-
ographical regions. Subsequently, an ensemble classifier
is devised, computing the output as a weighted average of
outputs generated by individual local classifiers. Notably,
the importance of local models is determined by their
higher similarity to the target regions compared to others
in the ensemble with respect to the city indicators. Al-
ternate methodologies involve adapting a model initially
trained in a data-rich region and transplanting it to a tar-
get region characterized by limited data availability. This
adaptation process entails integrating additional data to
compute sub-region similarities, subsequently enabling



the remapping of the model [19, 20].

3. Problem Setting
In this section, we articulate the fundamental concepts
essential for comprehending our proposal. Initially, we
establish a shared language and framework by introduc-
ing notation that serves as a basis for discussing key
elements. Subsequently, we delve into the transforma-
tion facilitated by Geolet, a catalyst for the motivation
behind this work. Ultimately, we present a formal intro-
duction to the problem at hand.

Definition 1 (Trajectory). A trajectory 𝑋 is a sequence
of spatio-temporal points 𝑋 = {x⃗𝑡0 , … , x⃗𝑡𝑚} ∈ ℝ𝑚×3 where
the spatial vectors x⃗𝑡𝑗 = (lat𝑡𝑗 , long𝑡𝑗) are sorted by in-
creasing time 𝑡𝑗, i.e., ∀1 ≤ 𝑗 < 𝑚 we have 𝑡𝑗 < 𝑡𝑗+1.

In a sense, trajectories can be viewed as multivariate
time series containing two signals, i.e., the latitude and
longitude, recorded at non-constant sampling rates [5,
21, 6]. In order to simplify notation, we will use 𝑗 instead
of 𝑡𝑗 every time. A trajectory classification dataset is a set
of trajectories with a vector of labels attached. Formally:

Definition 2 (Trajectory Dataset). A trajectory dataset
𝒳 ∈ ℝ𝑛×𝑚×3 is a set of 𝑛 trajectories, 𝒳 = {𝑋0… ,𝑋𝑛}.

For simplicity, we use a single symbol 𝑚 to denote the
lengths of the trajectories, even if a dataset can contain
trajectories with a different number of observations. Sim-
ilarly, we emphasize that there is no constraint on the
sampling rate, i.e., we can have a non-constant sample
in the same trajectory. Furthermore, we define a subtra-
jectory as:

Definition 3 (Subtrajectory). Given a trajectory 𝑋 of
length 𝑚, a subtrajectory 𝑆 = {𝑠𝑗, … , 𝑠𝑗+𝑙} ⊂ 𝑋, of length
𝑙 ≤ 𝑚, is an ordered sequence of consecutive values such
that 0 ≤ 𝑗 ≤ 𝑚 − 𝑙.

As previouslymentioned, Movelet [6] and Geolet [7]
are shapelet-inspired [10] trajectory approaches that
identify discriminative subtrajectories for classification
purposes. They both select the most discriminative sub-
trajectories w.r.t. the target label using the mutual infor-
mation [22]. Like shapelet-based approaches, Movelet
and Geolet extract discriminative subtrajectories that
can be used to train any machine learning model [23].
Indeed, once the most discriminative subtrajectories are
identified, a trajectory dataset can be transformed into
a tabular representation capturing the distance between
trajectories and discriminative subtrajectories through
the subtrajectory transform function:

Definition 4 (Subtrajectory Transform). Given a dataset
𝒳 and a set 𝒮 containing ℎ subtrajectories, the subtrajec-
tory transform converts 𝒳 ∈ ℝ𝑛×𝑚×3 into a real-valued

matrix 𝑇 ∈ ℝ𝑛×ℎ, obtained by taking the best fitting of
each trajectory 𝑋 ∈ 𝒳, and each subtrajectory 𝑆 ∈ 𝒮.

Movelet computes the best fitting as the minimal Eu-
clidean Distance (ED) between 𝑆 in each subsequence of
length 𝑙 = |𝑆| of 𝑋, formally,

bestfitMovelets(𝑋 , 𝑆) =
𝑚−𝑙
min
𝑗=0

{𝐸𝐷(𝑋𝑗∶𝑗+𝑙, 𝑆)} (1)

On the other hand, Geolet computes the best fitting in
the same way, but geographically shifting 𝑆 to overlap
each subsequence of 𝑋 of length 𝑙. In particular, Geolet
extends the best fitting function of Movelet by adding a
pre-processing function, shift, that subtracts the value of
the first vector of the subsequence from all the others,

bestfitGeolet(𝑋 , 𝑆) =
𝑚−𝑙
min
𝑗=0

{𝐸𝐷(shift(𝑋𝑗∶𝑗+𝑙), shift(𝑆))} (2)

where shift(𝑋) = {𝑥0−𝑥0, … , 𝑥𝑚−𝑥0}. The shift function
makes Geolet suitable for geographic transferability not
being tide to the territory.

Finally, in order to present map matching we define a
road network as follows:

Definition 5 (Road Network). A road network 𝐺 =
⟨𝑉 , 𝐸⟩ is a directed graph where 𝑉 = {𝑣1, … , 𝑣𝑝} is the set
of 𝑝 road junction (or nodes), and 𝐸 = {𝑒1, … , 𝑒𝑞} is the
set of 𝑞 road segments (or edges), where 𝑒𝑖 = (𝑣𝑖1 , 𝑣𝑖2).

We underline that we rely on an enhanced road network
representation where, for each edge, we also have ac-
cess to the road segment geometries expressed as a se-
quence of 𝑘 latitude and longitude, formally shape(𝐸) =
{𝑥0, … , 𝑥𝑘} for some 𝐸 ∈ ℰ. As for trajectories, for sim-
plicity of notation, we use a single symbol 𝑘 to denote
the lengths of the points describing the geometry of the
road segment, even if, in real-case scenarios, the shape
can be described using an arbitrary number of points.

We are now able to formalize the shape-based map
matching problem as follows:

Definition 6 (Shape-based Map Matching). Given a
road network 𝒢 = ⟨𝑉 , 𝐸⟩ and a trajectory 𝑋, the shape-
based map matching problem consists in finding the best
sequence of edges 𝑌 = {𝑒1, … , 𝑒𝑧} ⊆ 𝐸 such that does
not exist another sequence of edges 𝑌 ′ ⊂ 𝐸 different
from 𝑌, i.e., 𝑌 ′ ≠ 𝑌, where bestfitGeolet(𝑋 , shape(𝑌 ′)) <
bestfitGeolet(𝑋 , shape(𝑌 )).

In other words, the shape-based map matching problem
involves determining the optimal alignment for a (sub)tra-
jectory 𝑋 within a designated road network 𝐺, relying on
the configuration of the edges comprising the road seg-
ments. It is essential to emphasize that this mapmatching
endeavor necessitates resolution without any reliance on
GPS coordinates as the usage of the shift operator nor-
malizes the trajectory 𝑋 rendering state-of-the-art map
matching methods unsuitable for this particular task.



Figure 1: Aho-Corasick automaton using symbolic sequences
{𝐴𝐶, 𝐵, 𝐵𝐶𝐴, 𝐶}. Blue dashed arches are suffix arches, while
green dotted arches are the dictionary suffix arches.

4. Shape-based Map Matching
To tackle the shape-based map-matching problem, our
aim is to design a map-matching method with the capabil-
ity to accurately deduce the original GPS coordinates of
a trajectory within a designated road network. Crucially,
this precision is sought exclusively through an examina-
tion of the trajectory’s shape and the configurations of
the edges within the road network, entirely independent
of any reliance on GPS coordinates.

A brute-force approach to address the problem in-
volves map matching all conceivable alignments of 𝑋
within every segment 𝐸 of the road network 𝐺, employ-
ing the bestfitGeolet function. However, this naive strategy
is only viable for small road networks due to the algo-
rithmic complexity being 𝑂(|𝐸|(𝑚 − 𝑘)𝑘), where 𝑚 and
𝑘 represent the number of points characterizing the tra-
jectory 𝑋 and the number of points describing each road
segments in 𝐸, respectively1. This limitation also extends
to other map-matching algorithms that rely on latitude
and longitude coordinates to confine the matching scope
to the nearest roads.

We overcome this limitation by proposing GASM a
Geographic Automaton Shape-based map Matching ap-
proach that is able to significantly reduce the number
of road segment alignments to test with the brute force
method. In essence, GASM comprises two key steps. Ini-
tially, leveraging theAho-Corasick algorithm [24], GASM
constructs a shape-based index for all road segments in
𝐸, portraying it as a geographic finite state automaton.
Subsequently, GASM facilitates querying the automaton
to pinpoint a set of candidate partial matches between
𝑋 and {shape(𝑌 )| ∀ 𝑌 ⊆ 𝐸}. Further elucidation of these
two steps is provided in the subsequent sections.

Geographic Automaton Construction. GASM
leverages the Aho-Corasick algorithm to construct a
geographic automaton, serving as a spatial index for
expedited query processing [24]. The Aho-Corasick
algorithm, renowned for string searching, takes a set
𝒲 = {𝑊1, … ,𝑊𝑛} as input, where each 𝑊𝑖 represents a

1For each 𝑌 ⊆ 𝐸, we compute the Euclidean Distance (linear com-
plexity), for all the possible 𝑚 − 𝑘 alignments of shape(𝑌 ) in 𝑋.

Algorithm 1: build(𝐸, 𝑑, Σ, ℎ)
Input : 𝐸 - road segments, 𝑑 - resampling

distance, 𝛼 - max nbr. of symbols,
ℎ - h-hop aggregation

Output :𝑎ℎ𝑜 - Aho-Corasick automaton

1 𝐸ℎ ← aggregate(𝐸, ℎ); // aggregate trajectories

2 𝒲 ← ∅;
3 for 𝑒 ∈ 𝐸ℎ do // for each road segment

4 𝑋 ← resample(𝑠ℎ𝑎𝑝𝑒(𝑒), 𝑑); // resample traj.

5 𝑋 ← direction(𝑋); // get traj. direction

6 𝑊 ← SAX(𝑋 , 𝛼); // discretize traj.

7 𝒲 ← 𝒲 ∪ {𝑊 }; // add to dict.

8 return Aho-Corasick(𝒲 );

Algorithm 2: 𝑠𝑒𝑎𝑟𝑐ℎ(𝑋 , 𝐴, 𝑑, Σ)
Input : 𝑋 - query traj., 𝐴 - Aho-Corasick

automaton, 𝐸 - road segments, 𝑑 -
resampling dist., 𝛼 - max nbr. of symbols

Output :𝑌 ∗, 𝒴 - best methc and best candidates

1 𝑋 ′ ← resample(𝑋 , 𝑑); // resample traj.

2 𝑋 ′ ← direction(𝑄); // get traj. direction

3 𝑄 ← SAX(𝑋 ′, 𝛼); // discretize using SAX

4 𝒴 ← search(𝐴, 𝑄, 𝐸); // get best candidates

5 𝑌 ∗ ← argmin𝑌∈𝒴 bestfitGeolet(𝑌 , 𝑋
′);

6 return 𝑌; // return the best match

finite sequence of symbols over an alphabet Σ. Subse-
quently, it builds a finite-state automaton based on the
sequences in𝒲within a given finite symbol sequence de-
fined over the alphabet Σ. Consequently, the automaton,
constructed using the dictionary 𝒲, identifies a subset
𝒲 ′ ⊂ 𝒲 wherein each sequence in 𝒲 ′ is contained in
𝑄. Figure 1 provides an illustration of the automaton cre-
ated by the Aho-Corasick algorithm, using the sequences
𝒲 = {𝐴𝐶, 𝐵, 𝐵𝐶𝐴, 𝐶} over the alphabet Σ = {𝐴, 𝐵, 𝐶, 𝐷}.
The Aho-Corasick algorithm initiates by constructing
a suffix trie [25], depicted in black in Figure 1. Subse-
quently, it designates all leaves of the trie as final states
of the automaton and introduces edges to complete the
automaton. Two types of edges are incorporated, con-
necting their respective suffixes: suffix edges, depicted
in blue, are utilized in the case of a mismatch, without
guaranteeing that the suffix is also a sequence in the dic-
tionary. In contrast, dictionary-suffix edges, portrayed in
green, guarantee that the suffix is a sequence present in
the dictionary. These operations unfold linearly concern-
ing the total number of symbols in the input dictionary𝒲.
The automaton enables the search for all sequences con-
tained in a query by traversing the automaton, achievable
in linear time relative to the query’s length.



Algorithm 1 delineates the procedural steps requisite
of GASM for constructing the Aho-Corasick automaton.
The algorithm accepts, as input, the road segments 𝐸 of
the road network 𝐺, the resampling distance 𝑑, the maxi-
mum allowed number of symbols 𝛼, and the number of
hops ℎ, producing a geographical automaton 𝐴 as out-
put. The GASM-build algorithm begins by aggregating
the road network, concatenating ℎ times a road segment
to linked road segments in 𝐸ℎ to extend the length of
existing segments and enhance their representativeness
(line 1). Subsequently, it initializes an empty dictionary
𝒲 (line 2). The following steps are applied for each road
segment in 𝐸ℎ (denoted as 𝑒). Given that the shape of a
road segment 𝑒 may be described by varying numbers of
points based on its length and sinuosity, GASM initially
resamples the geometries into a series of evenly spaced
points 𝑋. This ensures that the symbolic representation’s
length, crucial for Aho-Corasick automaton construction,
is proportional solely to the road length. To fulfill the
prerequisite of representing each road segment 𝑒 in a dis-
cretized space, a sequence of symbols is generated (line
5). Subsequently, GASM determines the heading direc-
tion 𝑋 between consecutive points along the resampled
road segment, transforming the shape of each road se-
quence 𝑒 into a univariate time series of directions 𝑋with
a consistent length-based sampling rate 𝑑 (line 6). This
facilitates the utilization of Symbolic Aggregate approXi-
mation (SAX) [26] to obtain a symbolic representation
of each road segment over an alphabet Σ (line 7). These
representations are added to the dictionary 𝒲. Finally,
the dictionary of discretized representations of the road
segments is employed to construct the Aho-Corasick au-
tomaton, which is then returned as the output (line 8).

Shape-basedMatching. Once the construction of the
geographic automaton is complete, GASM can execute
shape-basedmapmatching over the automaton following
the steps outlined in Algorithm 2. GASM-search takes as
input the query trajectory 𝑋, the geographical automaton
𝐴, the road segments 𝐸, the resampling distance 𝑑, and
the maximum allowed number of symbols 𝛼. It yields the
sequence of edges 𝑌 ⊆ 𝐸 that minimizes the bestfitGeolet
function, as per the ensuing procedure. The initial three
steps of Algorithm 2, aligning with Algorithm 1, involve
resampling the query trajectory 𝑋, extracting its direc-
tion, and transforming it into a symbolic representation
𝑄. Indeed, the same preprocessing applied to the road seg-
ments 𝐸 is applied to the query trajectories. Subsequently,
the geographic automaton 𝐴 is utilized to perform a lin-
ear search for the best matches 𝒴 among all possibilities
offered by 𝐸 (line 4). This implementation enables GASM
to identify an “initial best match”, presenting a set of
best match candidates𝒴 = {𝑌1, … , 𝑌𝑛}. From this set, the
final selection of the optimal alignment 𝑌 ∗ is determined
through a naive approach (line 5).

Figure 2: Summary of GASM, depicting geographic automa-
ton construction (left) and shape-based matching (right).

Hyperparameter GASM Values
𝑑 Resampling distance (m) [5, 10, 20, 50]
|Σ| Alphabet size [4, 8, 16]
ℎ h-hop aggregation [0, 1, 2, 3]

Table 1
Tested hyperparameters with their values.

Figure 2 visually summarise GASM. On the left side,
the geographic automaton construction phase is depicted,
wherein each road within an arbitrary large road network
is indexed according to its heading direction. On the
right side, the shape-based matching phase is illustrated.
Here, given a trajectory with known shape but unknown
origin point, GASM computes the set of potential partial
map matches. Subsequently, it selects the match that
minimizes the bestfitGeolet function.

5. Experiments
In this section, we evaluate the effectiveness of GASM2.
First, we present the experimental setting, then we report
and discuss the best performance achieved. Finally, we
illustrate details of the hyperparameter tuning and the
result of a sensitivity analysis w.r.t. some data properties.
Experimental Setting. Regrettably, only a handful

of mobility datasets, such as GeoLife and Porto Taxi3, are
available as open access [1, 7]. However, these datasets
possess limited geographic coverage, rendering them
unsuitable for our study. Thus, we introduce a novel
high-sample rate dataset derived from the publicly acces-

2Python code: https://t.ly/wVlXS. We ran our experiments on a
2xIntel Xeon Gold 6342 24-core CPU, limiting each test to use at
most 12 cores.

3GeoLife: https://t.ly/6VJ-E. Porto: https://t.ly/0GMR9.

https://t.ly/wVlXS
https://t.ly/6VJ-E
https://t.ly/0GMR9


Length (km) Length (#points) Kind of Road (%)
Province #Trj Totoal Average (𝜎) Average (𝜎) Motorway Trunk Primary Secondary Minor

Arezzo 17 341 17.2 (18.38) 853 (851) 0.019 0.227 0.205 0.344 0.196
Firenze 58 1041 30.4 (37.31) 1526 (1427) 0.122 0.032 0.392 0.205 0.249

Grosseto 35 215 6.7 (9.35) 578 (545) 0.020 0.133 0.054 0.327 0.466
Livorno 53 410 18.5 (25.42) 916 (645) 0.410 0.043 0.089 0.144 0.313
Lucca 39 804 17.5 (15.49) 1128 (1133) 0.225 0.000 0.056 0.442 0.278

M. Carrara 46 267 5.1 (3.54) 625 (430) 0.187 0.173 0.160 0.267 0.212
Pisa 35 831 26.0 (23.04) 1347 (1178) 0.000 0.002 0.219 0.200 0.578

Pistoia 20 468 53.1 (31.07) 929 (777) 0.000 0.186 0.251 0.163 0.399
Prato 31 146 4.5 (2.37) 660 (672) 0.141 0.050 0.395 0.146 0.269
Siena 24 497 22.4 (16.54) 983 (660) 0.557 0.032 0.340 0.026 0.046

Table 2
Dataset description. Besides average values are reported standard deviations (𝜎).

Method Performances Road Network Characteristics
Selectivity Building #Road Avg node

Province Factor ↓ Accuracy ↑ Time (s) ↓ Segments #Intersections Degree Length (km)
Arezzo 0.096 0.875 708.32 133028 54485 4.883 26852
Siena 0.068 1.000 516.37 175088 72079 4.858 28949

Pistoia 0.080 0.950 433.24 81870 34492 4.747 12363
Lucca 0.070 0.846 658.03 141149 59274 4.763 20328

Firenze 0.399 0.263 157.17 299312 119068 5.028 39025
Grosseto 0.060 0.823 421.66 121045 50014 4.841 26818
Livorno 0.069 1.000 277.38 96631 39613 4.879 11269

M. Carrara 0.056 0.978 294.50 71917 300071 4.783 10809
Pisa 0,081 0.857 1007.06 150954 62580 4.824 22396

Prato 0.105 0.936 190.77 45060 18794 4.795 5224
Macro Avg (𝜎) 0.108 (0.103) 0.853 (0.217)

Table 3
Selectivity factor, accuracy, automaton construction runtime, and other road network informations.

sible 2013 GPS traces on OpenStreetMap4. Although the
initial OpenStreetMap dataset encompasses GPS trajecto-
ries spanning the entire globe, our analysis concentrates
on the ten provinces in Tuscany, a region encompass-
ing 22, 985𝑘𝑚2 in central Italy. The Mappymatch python
package5 was employed to map-match each trajectory,
retaining only those trajectories with an average error of
less than 10𝑚. The final dataset encompasses 358 distinct
trajectories, covering a total travel distance of 5, 024𝑘𝑚
and described by 300, 049 GPS points. Additional infor-
mation on the types of roads traversed in each province
in Tuscany, as per the OpenStreetMap taxonomy6, is
presented in Table 6.

Within the framework of our shape-based map-
matching formulation, we aim to address the following
questions. First, to what extent can GASM infer the
original GPS coordinates without utilizing them for map
matching? Second, how effectively can GASM reduce the
number of potential alignments compared to the entire
road network? The first question is evaluated through

4OpenStreetMap 2013 public GPS traces: https://t.ly/q7u2N
5Mappymatch: https://t.ly/RHafS
6Highway taxonomy: https://t.ly/NpxZv

the metric of accuracy.On the other hand, the evaluation
of the second question relies on the metric of selectivity,
commonly employed in database literature [27]. Selec-
tivity measures the reduction of potential alignments
between a query result and the entire dataset. In our con-
text, selectivity is defined as the ratio of matched road
segments (|𝒴 |) to the total number of road segments (|𝐸|).
For accuracy, higher values indicate better results, while
for selectivity, lower values indicate better outcomes.

GASM Performance. Table 5 presents the perfor-
mance metrics of GASM across individual provinces. To
determine the optimal hyperparameters, a grid search
was conducted over the values outlined in Table 6, specif-
ically for the province of Grosseto. This process yielded
the following hyperparameters: a resampling distance
of 𝑑 = 10 meters, an alphabet size of 𝛼 = 8 symbols, and
a street aggregation of ℎ = 2 hops. GASM showcases
an impressive ability to deduce the original GPS coor-
dinates, achieving an average light accuracy of 90.1%.
Furthermore, it significantly narrows down the potential
alignments, as indicated by the selectivity factor, reduc-
ing it to just 10.8% of the original road network. These
commendable results are attained while maintaining a

https://t.ly/q7u2N
https://t.ly/RHafS
https://t.ly/NpxZv


Figure 3: Hyperparameters influence: ℎ-hop aggregation (left), 𝛼 alphabet size (center), and 𝑑 resampling distance (right).

Figure 4: Influence of trajectory length (left), trajectory straightness (center), and kind of road (right) on performance metrics.

reasonable automaton construction time of 7.8 minutes
per province, resulting in a total indexing time of a mere
1.29 hours for the entire region.

Hyperparameters Tuning. In this section, we
present the results of experiments conducted on the
province of Grosseto while varying the hyperparame-
ters detailed in Table 6. Initially, we compute the Pearson
correlation between the method’s hyperparameters and
two key performance metrics: the selectivity factor and
accuracy. Figure 3 visually depicts the changes in perfor-
mance metrics, emphasizing variations in the top three
most influential hyperparameters—those exhibiting the
highest absolute values of Pearson correlation. Notably,
the most influential hyperparameter is the number of
road segment aggregations (ℎ), demonstrating a corre-
lation of −0.52 with the selectivity. Thus, increasing ℎ
proves beneficial for GASM as it helps select fewer can-
didate road segments without significantly impacting
accuracy. The alphabet size (𝛼) displays correlations of
−0.44 and 0.40 with respect to the selectivity and accu-
racy, respectively. This hyperparameter introduces a
trade-off, as increasing the number of symbols reduces
selectivity but may lead to a slight decrease in accuracy.
Finally, the resampling distance (𝑑) exhibits a correlation
of 0.22 with accuracy. Interestingly, decreasing 𝑑 slightly
enhances accuracy according to our observations.

Sensitivity Analysis. We delve here into the varia-
tions in performance with respect to the length of the
query trajectory 𝑋. Additionally, we explore the dis-

criminative nature of trajectories based on the type of
road. Our hypothesis posits that straight streets, such
as motorways, exhibit lower discriminative characteris-
tics. Consequently, trajectories observed on such roads
are more likely to avoid re-identification, suggesting en-
hanced geographic transferability. To investigate this, we
identify the type of road traveled within each segment.
In cases where multiple types of roads are encountered,
we perform a majority vote weighted by road length. Ad-
ditionally, to examine the influence of changes in the
input data, we create random subtrajectories of varying
lengths, including 100m, 150m, 500m, 1km, 1.5km, 5km,
and 10km, derived from our OpenStreetMap dataset. In
order to assess our hypothesis, we evaluate the straight-
ness [4] of each subtrajectory by calculating the ratio
between the shortest path from the origin to the destina-
tion and the actual trajectory.

Figure 4 encapsulates these results. The initial plot on
the left highlights a notable trend: an increase in subtra-
jectory length correlates with a rapid elevation in both
accuracy and selectivity. In simpler terms, as the subtra-
jectory length extends, the model’s precision improves.
The central plot reveals that trajectory straightness has
a negligible impact on the number of candidate matches.
However, as trajectories become more linear, the accu-
racy experiences a decline. Finally, the rightmost plot
illustrates the method’s performance across various road
types. This plot validates the findings of the straightness
plot: roads with greater straightness, like motorways,
pose the greatest challenge for re-identification. Con-



versely, more sinuous roads present a slightly higher
difficulty in re-identification, reflected in a higher selec-
tivity but with a concomitant boost in accuracy.

6. Conclusion
In this paper we have introduced GASM, a map matching
method capable of determining a trajectory’s position
solely based on its shape. Our experiments showcase
that GASM significantly reduces the number of poten-
tial alignments and deduces the original GPS coordinates
with remarkable accuracy. Further analysis reveals that
longer and less linear trajectories are more straightfor-
ward to map match. However, this observation raises
concerns about the potential for shape-based methods
to inadvertently learn geographic positions instead of
focusing on other intrinsic features. As a part of future
work, as outlined at the beginning, we aim to assess the
geographic transferability of shape-based methods, such
as Geolet, by incorporating GASM. Specifically, we pro-
pose givingmoreweight to the selection of discriminative
subsequences with higher selectivity rather than basing
the decision solely on a statistical test.
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