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Figure 1: Visual representation of the data transformation flow.

ABSTRACT
Ships are often considered as the backbone of the global economy.
A fundamental unresolved problem is how to best operate fleets,
given a sudden increase in demand, such as that reported following
the first months of the COVID19 pandemic. Advancing our knowl-
edge of the supply chain’s delicate equilibrium between demand
and supply, requires analyzing huge amounts of ship-related posi-
tional data, thus revealing which areas should be avoided due to
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potential congestion buildup and where cargoes should be rerouted
to. Herein, we analyze a large-scale high-resolution mobility data
set of more than 7,000 container ships, collected over an extended
period of 36 months, covering the entire globe, so as to measure
quantitatively the effects of the pandemic post-hoc on the supply
chain. To further understand these fine-grained mobility patterns,
we introduce a mobility model for calculating ship presence times
(or waiting times) at a global scale. We then reveal the congestion
points, which strongly correlate with port waiting areas and anchor-
ages. We analyse the data to reveal how times at port areas were
affected by the rising number of ships waiting to load or unload
cargo. Following this, we transform this data into a ‘port to port’
graph mapping the international flow of containerised trade. We
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apply methods of graph theory, complex networks, and multivari-
ate statistics to unravel the hidden relationships between global
maritime structure and ship time distribution. This analysis is novel
in respect to the size of the data analyzed, the algorithmic approach
and the impact of the results which reveal some affinities between
pre-COVID and post-COVID shipping patterns.

1 INTRODUCTION
The supply chain is a complex network involving suppliers, trucks,
distribution centers, warehouses, logistics centers and vectors,
working together in concert to deliver goods to the customers.
Today, this complex network is distributed all around the world.
With more than 80% of global trade by volume and up to 70% of its
value being carried by the shipping industry, vessels can be seen
as the backbone of the global supply chain. Thus, shipping can be
viewed as a barometer for the global economic climate, and any
reduction in activity is expected to have a cascading effect on the
global economy. On the other hand, ports are located at the nexus
of the supply chain and connect global and regional actors.

The COVID-19 pandemic and containment measures had a sig-
nificant impact on global maritime traffic in the short term. Several
studies have attempted to quantify these effects and assess the size
of this reduction. However, after the initial shock of the pandemic,
when customer demand rebounded, vessels stacked up high with
containers could be seen anchored outside many of the world’s
major ports.

Starting from the idea that shipping traffic data can be used
to assess the effects of restrictive measures on the global supply
chain, in this work we focus on revealing the major delay points
in the maritime global supply network, as well as attempting to
answer the question if these correlate with major port locations.
We also explore if congestion at ports is simply related to a sudden
increase in ship traffic and evidently quantify the increase in delay
times. Along these lines, we attempt to reveal how the pandemic
has affected ports over an extended period of time and attempt to
reveal the trajectory of recovery.

The main technical challenge is that of a big-data mining task of
transforming huge amounts of geospatial data–as collected from
vessels using the Automatic Identification System (AIS)–into a de-
scriptive and compact data model, that can be used for identifying
the underlying relationships or patterns. In our case, the patterns
are those of normal port to port traffic connections. Our approach
relies on data transformations and distributed raster-based analyt-
ics as a first step to reduce the size of the data, followed by graph
analysis to reveal the hidden patterns in the data.

The main methodological contribution of this work is showing
that mobility data can be processed to shed light on the temporal
and spatial characteristics of the supply chain as a network at the
global scale. To the best of our knowledge, no major study has
attempted to analyze such a large dataset with this aim before.

1.1 Related work and contribution
Over the last years, there has been an exponential growth of scien-
tific publications related to maritime traffic analysis involving big
data analytics and/or novel Artificial Intelligence (AI) techniques.
For instance, the analysis of vessel mobility data to understand

the hidden patterns is intrinsic to trajectory data mining, and the
seminal work in [28] covers the field in detail. This growth has been
boosted also by the availability of data from large sensor networks,
such as the AIS, which has provided researchers with enormous vol-
umes of information for the study of maritime transportation and
the maritime industry in general. According to the authors of [10],
one of the main scientific topics discussed in the maritime literature
is indeed the applications of big data techniques to AIS. Recently,
mostly due to the COVID-19 pandemic, but also to other events,
such as the Suez canal blockage in 2021 and the Red Sea crisis in
2024, the maritime transportation has been often disrupted [19, 23]
and several studies were conducted to measure effects of this disrup-
tion [15, 17]. The strong academic interest to study large mobility
data at scale combined with necessity for fast decision making dur-
ing the pandemic has accelerated advancements in the field [29].

In this work, we use big data analytics and graph analysis to bet-
ter understand the disruption in the supply chain. The utilisation of
big data in AIS analysis is an area of research that has received a lot
of attention [3, 24, 30] recently. For instance, in [22], authors evalu-
ate the performance of clustering algorithms for route modelling
on a full year global AIS dataset, and in [16], the KDE technique is
adapted to map-reduce paradigm to compute seaports’ extended ar-
eas of operations from AIS data. Other examples are [20], where an
image analysis on density maps to detect traffic flows is introduced,
as well as [27], in which authors introduce trip semantic objects and
the use of density based clustering to identify clusters of way-points
and stops. In a complementary to this work approach, authors in [4]
build voyage graph feature time-series (VGT) to study their evolu-
tion from a time-series perspective. In this work, we quantify and
allocate to ports the effects of each vessel slow-down in range by
introducing the waiting and approaching time indicators. We study
their evolution over time to understand which ports are affected
the most.

Graph theory, and its widely known extension known as com-
plex networks, can be employed to characterize (port) nodes by
providing a hierarchy of centrality/accessibility in the container
shipping network. Early applications provided global-network mea-
sures of connectivity [11, 12, 26], as well as a cartography of degree
or betweenness centrality [9]. Research on the relationship between
centrality and other port performance indicators remains relatively
scarce in the literature [13, 14, 25], usually confirming the strong
correlation between degree centrality (i.e., number of connections
to other ports) and weighted degree (i.e., total traffic in twenty-foot
equivalent units [TEUs]). Thus, in the present study, we innovate
by applying a statistical analysis of traffic, centrality, and time in-
dicators. It complements the work of Ducruet and Itoh [8] on the
statistical relationships at stake between ship time, port centrality,
and port traffic by focusing on a specific event and its supply chain
consequences. A recent review of the field [7] also showed that
within a corpus of 212 papers about shipping networks published
between 2007 and 2022, nearly 20% concerned the topics of crisis
and vulnerability, i.e., the second largest category after "network
structure".



2 METHODOLOGY
2.1 Automatic Identification System
AIS was originally designed as a collision avoidance system for
ships. Since 2002, the International Maritime Organisation (IMO)
has made compulsory for all vessels with a tonnage including
and above 300 gross tonnage to be equipped with a class-A AIS
transceiver. At its core, each AIS transceiver sends and receives
positional reports (i.e., types 1, 2, 3 and 18) every few seconds
via VHF. The messages contain information about each vessel’s
identity, location, course and speed. Since 2006, the lower-power
(and lower-cost) class-B transceiver was introduced, allowing also
smaller vessels to use the AIS, even if with lower performance and
priority than commercial fleets, which operate strictly on class-
A transceivers [21]. The transmission rate of AIS ranges from 2
seconds, for fast moving vessels or maneuvering vessels equipped
with a class-A transponder, up to 3 minutes for anchored or moored
vessels.

For this study, we make use of AIS positional reports of container
ships traveling across the globe for the years 2019, 2020 and 2021.

2.2 Data transformation
To unravel the hidden information of global supply chain perfor-
mance from raw AIS messages, we employ a multi-step sequential
data mining process. Our main goal is understanding if supply chain
disruption is measurable and correlated with port activities. Then,
we also investigate what are the intrinsic characteristics of these
ports, to understand if they can be possibly used in a predictive
fashion as indicators of future disruptions, so that fleets can be
rerouted suitably. In our case study, the effects of a disruption in
global supply chain are not known beforehand. We introduce a pro-
cess (Fig. 1) to infer a global supply chain network graph from AIS
mobility data. Then, we apply advanced graph analytics to identify
port typologies and changes over its connections to measure effects
of disruptions over a three-year period.

Data cleaning & conditioning The first step in the process is
a cleaning task to ensure that records comply with protocol stan-
dards and reject records with missing values. Then, we apply a
geo-fencing technique to select records located within port areas,
and exclude them from the identification of waiting areas part of
the analysis. To facilitate the numerical calculations, all positional
reports are re-projected into the Web Mercator (EPSG:3857) coordi-
nate system.

Raster-based analysis. To identify waiting areas from AIS mes-
sages, we use a raster-based analysis. We first define the raster
characteristics, such as the shape and size of its cells. For the analy-
sis performed in this work, the raster consisted of square-shaped
cells of a 9.7 km side length, each one of them covering an area of
approximately 100 km2 on average with respect to the projection
systems’ distortion. Then, we assign the AIS messages to the grid
cells, by splitting each trajectory into segments that match the grid
definition (i.e., each segment is allocated to exactly one cell and
it is annotated with the cell’s id). Each segment consists of either
two consecutive AIS messages or a grid intersection point and an
AIS message,where the location and timestamp of the intersection
point are interpolated assuming constant speed. Then, we calculate
the average speed required for a vessel to cover the distance of each

segment. We annotate as idle any segments whose average speed
is less than 2 knots, and finally we sum up the total time of idle
segments for each cell and month. High values of idle times are
indicators of choke points for shipping traffic, and the computation
of idle time rasters on a monthly basis allows us to characterize
how the distribution changes over the three-year period consid-
ered. Anticipating the results, we observe that high idle time cells
typically appear near major container ports and canals.

Connecting waiting areas with ports. To further investigate
this behavior and explicitly connect cells of high cumulative idle
time with ports, we performed a nearest neighbor analysis [2]
to assign each cell to its nearest port. Then, if the cell is located
within a 100 km range of any top-50 ports 1(in terms of annual
reported volume [1]) the cell is reassigned to its closest top-50 port.
Again, anticipating a bit the results of our analysis, we notice an
increase of cumulative idle time around major ports both in terms
of cumulative values and number of cells where this happens.

Measuring in-port and approaching time. The previous steps
leave us with the congestion epicenters near major ports, where
vessels wait to enter the port. The epicenters are located, in most
cases, near the ports. However, as congestion increases, the wait-
ing areas expand vastly following different patterns with respect
to topology and other local characteristics. It is also possible that
a non-negligible number of vessels sheltered themselves in these
areas and never entered the closest major port. To confirm or reject
this hypothesis, we used accurate information about the end of
each itinerary. The AIS protocol supports messages that include
information about the destination port, but unfortunately it cannot
be considered as a reliable source of information, as it is manually
entered by the crew, without following a specific standard, mak-
ing it thus extremely prone to errors. To tackle this problem, we
performed a retrospective analysis on the data to identify the ports
of origin and destination for each trip, and we calculated the exact
time of approaching 300 km to destination, as well as the exact time
of each vessel entering the port across all itineraries that reach any
of the top-50 ports. Then, we calculate for each itinerary the total
time spent within a 300 km radius and the time spent in the port.
The 300 km radius ensures that we account for any intentional or
unintentional delay that may occur for any vessel before it reaches
its final destination. This radius is selected so that all waiting areas
of the first part of our analysis are included. The time in port reflects
the operational time of a vessel calling a port and it captures all
time required to moor at berth and perform all kinds of loading and
unloading operations and exit the port.

Defining the waiting time network.Maritime flows can be
modeled as a graphical structure G, where the ports (𝑣) are the
nodes (or vertices), which are connected by inter-port connections
(𝑒) as links (or edges), so that G = (𝑣, 𝑒) [6]. The connections among
ports are in general not known a priori and can change over time,
but in principle they can be learned by inspection of the AIS data by
looking at vessels navigating from one port to another. Each vertex
𝑣 in the graph G stores static features and summary statistics of the
port’s traffic flow strength that corresponds to the graph weights
and they are calculated on quarterly basis. The static features are the

1We consider the top-50 ports to be representative of the whole port system in their
proximity.



port identifier and country each port belongs to, while the summary
statistics measure the number of vessels calling the port, as well
as their aggregated maximum capacity. Each link 𝑒 ∈ G consists
of the pair of ports identifiers it connects, as well the number of
voyages on this connection and their cumulative maximum TEU
capacity and aggregated time indicators. Those statistics are also
calculated in correspondence to nodes on a quarterly basis.

Graph analysis To assess the level of disruption on port con-
nections, we rely on quarterly created summary statistics for nodes
(𝑣) from the previous step, and we calculate the differences for the
total and the in port time between the last quarter (Q4) of 2019
and the first quarter (Q1) of 2020. We apply linear transformations
to summary statistics to define supply chain port characteristics
such as the number of vessels calls (frequency) and total vessel
traffic (frequency × vessel capacity in TEU). We complement our
dataset with graph-theoretical indices calculated for all network
nodes and both quarters, namely the degree centrality (number of
shipping links), betweenness centrality (number of occurrences on
shortest paths in the graph), and inverse clustering coefficient (local
hub power). The average port time in Q4 2019 will also be used
as a pre-existing characteristic. We apply a Principal Components
Analysis (PCA) to all nodes to the (Q4) of 2019 quarter and quar-
terly calculated residuals to reveal the hidden trends at stake in the
shipping traffic data. PCA is a statistical method serving to unravel
a limited number of unobserved (latent) variables among a set of
observed, correlated variables [5]. Such unobserved variables, often
called principal components or “factors”, constitute the basis of a
clustering analysis that will distribute observations (port nodes)
among distinct groups. The clusters, i.e. groups of ports of similar
operational behaviour (see bottom right legend in Figure 4), are
then confronted to initial variables to best describe their trends and
characteristics. The next step is to illustrate the typology by means
of a single linkage analysis. This method serves to highlight the
main hubs and their “nodal regions” by keeping only the largest
traffic flow link of each port in the graph. Finally, a multiple re-
gression looks at the determinants of time evolution based on port
characteristics.

3 RESULTS
Areas where ships “wait” evidently depict problematic spots in the
supply chain. In order to reveal the spatiotemporal characteristics of
delay areas globally, we first define and quantify areas where ships
are idle for long periods, as these can be an indicator of disruptions
in the supply and demand balance [17]. Our analysis focused on first
understanding if these areas overlapped with specific port areas
and then to further understand if these had specific characteristics.

As a first result, which may have been expected, we confirmed
that waiting areas are close to port locations. All top-30 locations
are within 80 nautical miles range from ports, and we can assume
reasonably that ships stationing in these areas are waiting to enter
the port. This result is in line with reports and papers reporting the
increase turn around in port areas [18].

In Fig.2, we illustrate a Sankey Diagram ranking ports according
to the measured total idle time over the last time period of the
analysis, where ports with longer waiting times are located at the

top of the diagram. Interestingly, we can see the fluctuation in the
positions, with ports switching their ranking throughout the year.

To understand the characteristics of the ports and areas of delay,
we move onto the second part of the analysis, which makes use of
graph theory and PCA.

3.1 Single and multivariate linkage analysis
We apply PCA to two distinct datasets: 1) based on static port char-
acteristics in Q4 2019; and 2) based on absolute changes of these
characteristics between Q4 2019 and Q1 2020. Both datasets include
time evolution as a means of checking its affinity with other vari-
ables, which are its potential determinants. The two PCAs provided
interesting results, with 72.1% of variance contained in the three
first components for static variables (with eigenvalues > 1), and
76.0% for the first four components for dynamic variables (with
eigenvalues > 1). Figure 3 represents the distribution of variables
along the two first components for each dataset (left, static; right,
dynamic). Interestingly, worsening time is opposed to traffic and
centrality level/growth in the two figures. This is even truer for dy-
namics, where calls (trip_dif) and traffic (teu_dif) are more directly
opposed to port time evolution. Another difference between the two
PCAs is the opposition between connectivity changes and traffic
changes along the second component (vertical axis) for dynamics.
It means that although growing ports in general witnessed reduced
port time, those with growing connectivity tended to increase port
time, contrary to ports increasing traffic. Lastly, the static analysis
shows that ports with longer times in Q4 2019 were also the ones
increasing port time in Q1 2020 (vertical axis).

The situation of each port in the observed trends is revealed
by means of a hierarchical clustering analysis, which is applied to
the main components of each PCA, to produce a typology. This
is combined with a single linkage analysis, to test whether the
obtained types have a specific position in the network’s backbone.

The dynamics-based typology provides the picture of world ports
reported in Fig. 4. It considers absolute changes of port character-
istics as for the second PCA, and the single linkage analysis is
based on Q1 2020. The most impacted category (yellow) is marked
by drastic traffic decline, slight reduction of centrality, and the
strongest increase of total and in-port time. It includes a vast ma-
jority of gateway ports (Le Havre, Constanta, Koper, Alexandria,
Liverpool, Felixstowe, Zeebrugge, Fos, Los Angeles, Long Beach,
Tianjin, Lianyungang, Kobe, Ho Chi Minh, Manila) as well as Hong
Kong and Port Klang. Except from the latter two ports, these gate-
ways have, in general, a limited role in the architecture of nodal
regions, due to their specialization in import/export cargoes. An-
other category has lost similar amounts of traffic on average (red)
but such ports slightly increased their centrality. Several of them
are large hub ports polarizing their respective nodal region, the
largest being, like in the previous figure, Singapore, Busan, and
Rotterdam. Like for the other categories (green, blue), these ports
experienced a slight increase of total port time and small decrease
of in-port time. While they also lost traffic, the secondary hubs
(green) gained enormous centrality in Q1 2020, contrary to what
we can call second-tier hubs (blue), which have the opposite profile.
There is no apparent geographic or functional logic in those two
categories, which are disseminated across regions and contain both



Figure 2: Visual representation in terms of total idle time for the top-10 ports of each month across 2021 year. Line width
represents the value of total idle time. AMB:Ambarli, ANT:Antwerp, BRE:BremerHaven, BUS:Busan, CAP:CapTown,DAL:Dalian,
DAR:Dar ES Salaam, HAM:Hamburg, HON:Hong Kong, JAK:Jakarta, JEB:JEBEL ALI, LOM:LOME, LOS:Los Angeles, MAN:
Manzanillo, NIG: Nigbo, OAK:Oakland, PIR: Piraeus, POR: Port Lang, Rot: Rotterdam (blue: Waalhaven, orange:Maasvlakte),
SAV: Savannah, SHA: Shanghai, SIN: Singapore, VAL: Valencia.

gateway ports and transshipment ports. The loss of centrality (blue)
is, still, relatively common to European ports while the increase of
centrality (green) is better found in Asia.

3.1.1 What determined port time changes in 2020? A multiple re-
gression analysis is applied in two steps, each being a model focus-
ing on a distinct independent variable: total port time difference
(model 1) and in-port time difference (model 2), as shown in Ta-
ble 1. As a matter of fact, among the selected dependent variables,
only two have a statistically significant effect. It is the case of in-
port time in model 1 (0.05 significant), which increased total port
time difference between Q4 2019 and Q1 2020. The other case is the
regional dummy Africa in model 2, which increased in-port time dif-
ference. Despite the low significance of other dependent variables,
some of them may be discussed according to the direction of their
effect on time evolution. Among the ones that deserve attention,
inverse clustering coefficient stands out as it has the same, negative
effect on time evolution, and is near-to-significant in both models.
It means that ports ensuring stronger hub functions before the
crisis have witnessed lesser congestion and, even, more fluid cargo
transfers. Such a result is in line with the single linkage analyses,
showing that pivotal hubs ensure and maintain their domination
towards other ports, often within a certain geographic radius (nodal
regions). It also confirms the work of Ducruet and Itoh [8] about the
determinants of ship turnaround times on a long period. Although
this measure is very much correlated with port traffic and other

centrality indicators (cf. Principal Component Analysiss (PCAs)),
it expresses a specific dimension of port connectivity, namely the
ability to polarize neighboring, or adjacently connected, ports.

A counter-intuitive result is the negative effect of city size (pop-
ulation) on time evolution in both models, as the inclusion of this
variable was meant to test the role of potential congestion played
by cities on port operations, in terms of lack of space and density.
This can be explained by our focus on the top of the port hierarchy,
where most ports are in fact major metropolitan areas. Another
commonality between the two models is the negative influence of
total port time and the positive influence of in-port time. In-port
time is a component of total port time, but it better represents the
core activity of the port, as it is the closest to the length taken by
terminal operations. This crucial component of the whole transport
chain, if prolonged, will inevitably have strong consequences on
the rest of the chain, as seen with its positive impact on total time
difference (slowdown, queuing), which includes the water vicinity
of the port (e.g. port entrance, access channel). Thus, ports with an
already high in-time (turnaround time) have witnessed worsening
operations (prolonged times) during the COVID-19 crisis. At the
contrary, total port time had a negative effect on time evolution
in both models. While such a result may seem to contradict the
former, it should be understood in the light of other port variables
in each model. In model 1, the negative effect of total port time on
total port time difference goes along with a negative effect of port
size (calls, TEUs), meaning that large, busy ports in Q4 2019 (but



(a) (b)

Figure 3: Principal component analyses

Table 1: Determinants of port time evolution.

Model 1
total time difference

Model 2
in-port time difference

Estimate Std. err. 𝑡-value Pr(> |𝑡 |) Estimate Std. err. 𝑡-value Pr(> |𝑡 |)
(Intercept) 1.409 00 1.201 00 1.173 0.2440 −0.720 11 0.524 60 −1.373 0.1735

Population −0.024 69 0.035 61 −0.694 0.4899 −0.008 62 0.015 55 −0.554 0.5809

Calls −0.093 89 0.232 51 −0.404 0.6874 0.164 42 0.101 56 1.619 0.1092
TEUs −0.127 66 0.141 70 −0.901 0.3702 0.024 27 0.061 89 0.392 0.6960

Distance −0.037 87 0.088 34 −0.429 0.6692 0.038 61 0.038 59 1.000 0.3200
Betweenness Centrality 0.023 93 0.079 31 0.302 0.7636 0.010 52 0.034 64 0.304 0.7621

Degree Centrality 0.460 94 0.332 03 1.388 0.1687 −0.238 50 0.145 03 −1.645 0.1038
I.C.C.† −0.048 19 0.031 99 −1.506 0.1357 −0.016 58 0.013 97 −1.186 0.2388

Total time −0.167 66 0.135 24 −1.240 0.2185 −0.083 76 0.059 07 −1.418 0.1599
In-port time 0.581 33 0.263 06 2.210 0.0298* 0.084 71 0.114 91 0.737 0.4630

Africa −0.025 91 0.699 50 −0.037 0.9705 0.525 12 0.305 55 1.719 0.0893
Americas 0.180 97 0.664 12 0.273 0.7859 0.147 99 0.290 09 0.510 0.6113

Asia 0.405 55 0.665 50 0.609 0.5439 0.194 31 0.290 69 0.668 0.5057
Europe 0.087 54 0.662 63 0.132 0.8952 0.264 30 0.289 44 0.913 0.3638

† Inverse clustering coefficient

not necessarily the most central, as seen with the positive influence
of betweenness and degree) had more chance to perform better in
times of crisis. In model 2, the same negative effect is associated
with a positive influence of port size (worsening in-port time), and

a negative influence of degree centrality (numerous connections).
This means that hub ports with a relatively lower size managed to
improve their core operations in the advent of the crisis.



Figure 4: Single linkage analysis and port typology – Q1 2020 and port/time evolution

4 CONCLUSION
Based on geospatial data mining approaches, in this paper we pre-
sented a methodology to determine the misbalances in the global
supply and demand equilibrium as captured through ship move-
ments. The presented approach is capable, firstly, of detecting and
defining the areas of potential delays, which in most cases overlap
with the main port areas, and secondly to determine the specific
characteristics of these ports. Our approach relies on methods of
raster based analysis, graph theory and complex networks analy-
sis. Future work will be focused on applying additional methods
from the field of graph analysis and complex networks to similar
datasets.
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