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Abstract
Transportation networks face escalating challenges to cater to increased mobility demand while addressing traffic congestion.
Traditional remedies, such as adding roads, can paradoxically worsen congestion, as seen in Braess’s paradox. This study
emphasizes the potential benefits of strategically closing roads to alleviate congestion and carbon emissions. Milan serves
as a case study, where various road closure strategies were tested to identify scenarios where strategic removal not only
eased congestion but also significantly reduced CO2 emissions. The findings provide practical insights for urban planners
and policymakers, offering a roadmap to develop more efficient and eco-friendly urban transportation systems.
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1. Introduction
Traffic congestion is one of the most pressing problems
in urban traffic management, increasing air pollution
and greenhouse gas emissions [1, 2]. Although several
policies have been applied so far to mitigate these issues
[3, 4], evaluating their effectiveness is challenging be-
cause the interaction between the road network and the
mobility demand is non-linear, making it hard to pre-
dict the behavior of numerous agents. This non-linearity
stems from various factors, such as varying traffic vol-
umes, road conditions, and driver behaviors.

The complexity of the urban system can result in phe-
nomena like Braess’s paradox [5, 6, 7, 8]: adding roads
may inadvertently exacerbate congestion because each
driver, aiming to minimize travel time, may contribute to
slowdown traffic rather than alleviate it. The Braess para-
dox has been studied on toy examples and validated em-
pirically in several cities and through simulations [6, 7, 8].
In the real world, adding a new road requires a thorough
analysis of physical space, the available land, terrain char-
acteristics, and the integration with the existing road net-
work. In this study, we focus on road closure since it is
a less invasive and easy-to-make process. We assess the
impact of road closure on urban CO2 emissions in Milan,
Italy, assuming that closing a road may have beneficial
effects, leading to a more uniform distribution of traffic
across the remaining available roads.

To evaluate the effects of road closures on CO2 emis-
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sions, we use SUMO [9], an open-source and widely used
microscopic traffic simulator that allows for controlling
different aspects of urban traffic, intervening in the road
network, and simulating the impact of these interven-
tions in terms of CO2 emissions.

Our analysis reveals roads that, if removed, could re-
duce CO2 emissions by approximately 10%, as well as
roads whose removal could result in an alarming increase
in emissions of nearly 50%. Our work provides valuable
insights and enables policymakers and city planners to
analyze the potential outcomes of various road closure
strategies through what-if scenarios.

The code for full replication of this work at https://
github.com/Simoniuss/Braess-Paradox-Framework.

2. Related Work
The Braess paradox (BP) [5] states that adding one or
more roads to a road network can cause a redistribution of
the traffic flow such that the overall travel time increases.
When the road network is small, the BP can be solved
as a convex optimization problem [10, 11, 12]. When the
road network is large, as in the case of real-world road
networks, the BP does not necessarily take place, i.e.,
adding a new road is not always detrimental [13].

Various studies have explored the impact of road clo-
sure. In [14], the authors employed convex optimiza-
tion techniques to reveal that certain routes in Mont-
gomery County could lead to decreased travel times for
drivers if closed. In [15], the authors identified roads
using heuristic with a genetic algorithm in Winnipeg
(Canada), whose removal can reduce the total travel time
by 12%. Other studies focus on toy examples, modifying
the type of agents, or incorporating additional informa-
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tion: Buscema et al. [6], add a line of sight to choose
a route in NetLogo, Faccin et al. [16] use Belief-Desire-
Intention agents to soften the BP effect, Zhuang et al. [7]
explore the effects in a dynamic traffic case, Ziemke and
Nagel [17] simulate vehicular traffic using MATSim.

In Barcelona, Sánchez-Vaquerizo and Helbing [8] dis-
covered using SUMO that closing a few roads just to a
certain type of vehicle can reduce travel time by 14%
and the emissions by 8%. Padrón et al. [18] perform a
simulation in SUMO and find that, in Valencia, closing
one of the major roads increases CO2 emissions by 3-
4%. Other policies try to mitigate urban CO2 emissions,
encouraging public transport, creating green areas, and
reducing heavy-duty vehicles [19]. A notable example is
the “three-in-one" policy applied in Jakarta [20], requir-
ing all private cars, during peak hours, carrying at least
three passengers to cross major roads. After the policy
was abandoned, there was an increase in delays from 2.8
to 5.3 minutes per km during peak hours.

3. Simulation Framework
Our simulation framework generates urban traffic sce-
narios under various road closure strategies. The frame-
work consists of two phases, each serving a specific pur-
pose. The first phase simulates urban traffic under normal
conditions without road closures (baseline). The second
phase simulates vehicular traffic by systematically clos-
ing one or more roads through diverse closure strategies.

Road network. We model the road network as a di-
rected graph 𝐺 = (𝑁,𝐸) where the set of edges 𝐸 con-
tains the road or the streets, and the set of nodes 𝑁 con-
tains the intersections (junctions) between roads. Each
road may be composed of multiple edges, i.e., distinct
segments of roads distinguished by specific attributes.
We aggregate edges in roads using road names. Given
that some edges are without road names and the lack of
a standardized naming criterion, we apply the following
preprocessing steps:

• Each unnamed edge 𝑒 has an incoming and an
outgoing edge, with their respective road names.
If those two road names are the same, we assign
that name to 𝑒.

• We use the ArcGIS service to get the midpoint
coordinates (latitude, longitude) of each unnamed
edge using reverse geocoding, thus obtaining the
missing road name.

• Since the road network may include more than
one municipality, there may be some edges with
the same name (aggregated as roads) but geo-
graphically distant from each other. We identify
these roads using the boundaries of municipal-
ities and assign to each edge its name and the
corresponding municipality.

• Some contiguous edges are named with differ-
ent names (pseudonyms) but are the same road.
We cannot automatically change these names be-
cause they are culturally or regionally dependent,
so after detection, we change them manually.

Mobility demand. We model the vehicle flows
through the city’s mobility demand where a pair (o,d)
identifies each vehicle’s trip definition, representing the
origin and destination location. First, we divide the urban
environment into tiles, each of which will be a possible
origin or destination location. We choose hexagonal tes-
sellation H3 developed by Uber and available in library
scikit-mobility [21]. Then, we use real mobility data, such
as vehicles’ GPS traces, to estimate the flows between
tiles. In practice, we build an Origin-Destination (OD)
matrix where an element indicates the number of vehicle
trips from an origin tile to a destination tile.

Routes. For each (𝑒𝑜, 𝑒𝑑) pair in the mobility de-
mand, we use a routing algorithm from SUMO, called
Duarouter1, that connects two edges on a road network
following the fastest path, i.e., the path that minimizes the
expected travel time. The fastest path can be perturbed
using a randomization parameter 𝑤 ∈ [1,+∞) where
the higher the 𝑤, the more the path is randomized (𝑤 = 1
is exactly the fastest path). Duarouter dynamically dis-
torts edge weights (i.e., travel time) by a chosen random
factor drawn uniformly in [1, 𝑤). A 𝑤 value greater than
1 allows us to model imperfections in human driving
behavior, reflecting the lack of complete knowledge of
the road network while driving.

Traffic simulation. We generate traffic from the ve-
hicle routes using SUMO (Simulation of Urban MObility)
[9]. SUMO is a microscopic model, which means that
each vehicle is modelled explicitly, has its route, and
moves individually through the network. We estimate
CO2 emissions using the HBEFA4 model inspired by the
Handbook of Emission Factors from Road Transport [22].
HBEFA4 provides emission factors for a wide list of ve-
hicle types, different pollutants, and several traffic situa-
tions. We use this model through the SUMO simulator,
which automatically compute the CO2 (mg) emissions
for each vehicle.

Road closure. To simulate the effects of road closures
on CO2 emissions, we define a road closure simulation
framework that allows us to select a set of roads and
remove them from the road network, maintaining the
mobility demand as similar as possible. The steps of the
framework are the following:

1. Select a set of roads to close.
2. Modify the edge parameters in the road network

using the “disallow" SUMO attribute to prevent
the passage of vehicles on the roads from being
closed.

1https://sumo.dlr.de/docs/duarouter.html

https://sumo.dlr.de/docs/duarouter.html


3. Recompute the mobility demand. We iterate
through all the (𝑒𝑜, 𝑒𝑑) pairs and see if the ve-
hicle trip needs to be changed or not as follows:

• If 𝑒𝑜 or 𝑒𝑑 belongs to an edge of the re-
moved roads, we recompute a new trip for
that vehicle.

• If 𝑒𝑜 and 𝑒𝑑 are not removed from the road,
we verify if the two edges are still reach-
able after the road closure. If so, we keep
the vehicle’s trip of the baseline mobility
demand.

• If the two edges are no longer connected,
we recompute a new trip.

4. Compute the routes for all the vehicles again,
considering the new mobility demand.

5. Simulate traffic and gather results: we run a
SUMO simulation on the new road network with
road closures and recomputed routed paths. Then,
we collect the results on CO2 emissions.

4. Road Classification
Inspired by previous works [23, 24], we classify roads
using a combination of theoretical measures derived from
graph theory, such as betweenness centrality, and data-
driven metrics like Volume-Over-Capacity (VOC) and
𝐾𝑟𝑜𝑎𝑑, a metric indicating the degree of road usage.

Road betweenness centrality. It is a theoretical mea-
sure of centrality in a graph (road network) based on the
shortest paths. For our aim, we use the edge between-
ness centrality [25, 26] to obtain the road betweenness
centrality using a weighted average with the length of
the edge as weight:

𝐵𝐶(𝑟𝑜𝑎𝑑) =

∑︀
𝑒∈𝑟𝑜𝑎𝑑 𝐵𝐶(𝑒) · 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)∑︀

𝑒∈𝑟𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)
(1)

where 𝑟𝑜𝑎𝑑 is the road on which to compute the be-
tweenness, and it is composed of multiple edges 𝑒, and
𝑙𝑒𝑛𝑔𝑡ℎ(𝑒) represents the length of the edge 𝑒.

Volume-Over-Capacity. The Volume-Over-Capacity
(VOC) is the ratio between the traffic flow on a road and
the capacity of the road. It is a standard metric to evaluate
a road’s service level and indicates how congested a road
is [27, 28]. When 𝑉 𝑂𝐶 < 1, the road can still contain
other vehicles without undergoing particular slowdowns.
A road with 𝑉 𝑂𝐶 ≥ 1 suffers from congestion.

First, we compute the VOC to the edge level and then
aggregate them to the road level. We compute the volume
edge of each road segment using a data-driven approach,

running a SUMO simulation with the mobility demand
derived from the GPS data.

In the absence of the actual capacities of the roads,
we estimated them using the 2000 Highway Capacity
Manual [29]. Then, we compute the VOC for each edge
as:

𝑉 𝑂𝐶(𝑒) =
𝑉 (𝑒)

𝐶(𝑒)
(2)

To obtain the VOC associated with each road, we compute
the weighted average of the VOC of each edge in the road:

𝑉 𝑂𝐶(𝑟𝑜𝑎𝑑) =

∑︀
𝑒∈𝑟𝑜𝑎𝑑 𝑉 𝑂𝐶(𝑒) · 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)∑︀

𝑒∈𝑟𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒)
(3)

where a 𝑟𝑜𝑎𝑑 is composed by multiple edges 𝑒.

Kroad. The 𝐾𝑟𝑜𝑎𝑑 is a metric that measures the attrac-
tiveness of each road segment. It quantifies how many
city areas (neighborhoods or tiles) contribute the most
to the traffic flow on that specific road segment [24]. To
compute the 𝐾𝑟𝑜𝑎𝑑 of each edge in the road network, we
first need to define the network of road usage, a bipartite
network where each road edge 𝑒 is connected to its ma-
jor driver areas. The major driver areas are the ranked
neighborhoods that produce 80% of the traffic flow for
an edge.

We develop two concept related to the 𝐾𝑟𝑜𝑎𝑑, the
𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 and the 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 . An area 𝑇 is a driver source

for an edge 𝑒 if at least one vehicle, which passes through
the edge 𝑒, starts its trip from an edge 𝑒𝑠 ∈ 𝑇 . Similarly,
an area 𝑇 is a driver destination for 𝑒 if at least one ve-
hicle, which passes through the edge 𝑒, ends its trip to
an edge 𝑒𝑑 ∈ 𝑇 . An area can be both a source and a des-
tination. For each edge, 𝑒, the driver sources and driver
destinations can be ranked based on how many vehicles
traverse 𝑒, starting or ending in the respective area.

We compute the weight of each driver source as fol-
lows:

𝐼
(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑒,𝑇 (𝑣) =

{︃
1 if 𝑣 passes through 𝑒 from 𝑇

0 otherwise
(4)

𝐷𝑆𝑒(𝑇 ) =
∑︁
𝑣∈𝑉

𝐼
(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑒,𝑇 (𝑣) (5)

where 𝑒 is the edge on which compute the driver sources,
𝑇 is a neighborhood, and 𝑉 is the set of vehicles crossing
the city. Similarly, we can define the driver destinations
𝐷𝐷𝑒(𝑇 ). We rank the list of driver sources (DS) and
driver destinations (DD) for each edge and keep only
the DS and the DD responsible for 80% of the traffic
flow on the edge. These new lists are the major driver
sources (MDS) and the major driver destinations (MDD)
for each edge 𝑒. After identifying the MDS and the MDD,



we can build the bipartite road usage networkFinally,
we compute 𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 and 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 from the bipartite

network 𝐵𝐺:

𝐾
(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 (𝑒) = |{𝑙 | ∃𝑒 𝑙←− 𝑇,∀ 𝑇 ∈ 𝐴, 𝑙 ∈ 𝐿}| (6)

𝐾
(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 (𝑒) = |{𝑙 | ∃𝑒 𝑙−→ 𝑇,∀ 𝑇 ∈ 𝐴, 𝑙 ∈ 𝐿}| (7)

where 𝐴 is the set of area-nodes of the bipartite graph
𝐵𝐺, 𝐿 is the set of links of 𝐵𝐺, 𝑒 is an edge ∈ 𝐸 the
set of edge-nodes of the bipartite graph, and 𝑙 is an in-
going or an out-going link from an area-node 𝑇 . Actually,
𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 and 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 are respectively the in-degree and

the out-degree of each 𝑒 ∈ 𝐸 of the bipartite graph.
Ultimately, we aggregate these measures to road level
with a weighted average using the length of each edge
as weight.

Road clustering. We use a clustering approach to di-
vide the roads into categories and obtain an effective
closure strategy to evaluate the impact on CO2 emis-
sions. We use the road betweenness centrality, the VOC,
𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 , and the 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 as features for clustering to

obtain several road categories. We use the K-Means clus-
tering2 to group the roads and a grid search to find the
optimal number of clusters.

We test 𝑘 = 2, . . . , 10, choosing the best 𝑘 using the
elbow method [30].

5. Closure Strategies
We design different road closure strategies and evaluate
their impact on CO2 emissions.

CO2 policy. It removes roads based on their level of
CO2 emissions. We normalize emissions by road length,
obtaining CO2 per meter of road.

Category policy. It closes roads based on a classifica-
tion of roads. We analyze the impact of CO2 emissions
when roads are closed from each category, closing roads
with the highest CO2 per meter first.

Mixed policy. We choose a list of roads for removal,
ensuring that it comprises an equal number of roads
from every category. These roads were ranked in de-
scending order based on their CO2 emissions per meter
in each category. Initially, we eliminate the road with the
highest emissions within each category, progressively
working towards those with lower emissions. As an ex-
ample, consider three road categories denoted as 𝐴 =
[𝑎1, 𝑎2, 𝑎3, 𝑎4], 𝐵 = [𝑏1, 𝑏2, 𝑏3, 𝑏4], 𝐶 = [𝑐1, 𝑐2, 𝑐3, 𝑐4],
where each list is arranged in decreasing order of CO2/m.

2https://scikit-learn.org/stable/modules/clustering.html

If we aim to remove six roads, the list of removed roads
would be 𝑅 = [𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2], such that the list 𝑅
has the same amount of roads from each category.

The rationale behind employing a mixed strategy lies
in the road categorization based on their significance or
attractiveness in the network. This approach increases
the likelihood of obtaining clusters with similar types of
roads, such as highways or freeways. Simply removing
all roads from a single category may have a detrimental
impact because vehicles previously using those roads
are now directed to alternative routes lacking similar
characteristics, such as reduced capacity or lower speed
limits. Therefore, removing roads from diverse categories
helps mitigate this effect.

6. Experimental Setup
Road Network. We apply the simulation framework
to a squared area of almost 380 𝑘𝑚2 from the centre of
Milan and download the corresponding road network
from OpenStreetMap, obtaining 24, 063 intersections
and 46, 488 edges, which we aggregate into 7,654 roads.

Mobility Demand. We split the selected area into
tiles using H3 hexagonal tessellation with a resolution
of 8, covering the selected Milan area with 680 tiles. We
then use GPS data describing 17,087 vehicles travelling
between April 2nd and 8th, 2007 (658k points after pre-
processing) to extract the flows of vehicles between tiles.
Next, we create a realistic synthetic OD matrix that mir-
rors real-world mobility patterns, maintaining the typical
distribution of trip distances and the power-law behav-
ior in the number of trips between two locations. We
compute the mobility demand for 30, 000 vehicles as
it minimizes the Jensen-Shannon divergence between
the travel time distribution in real data and that of the
simulated vehicles [31, 32, 33].

Routes. We generate the routes from the mobility
demand using Duarouter, which computes the perturbed
fastest path using a randomization parameter 𝑤 = 7.5,
which allows us to model the real behavior of drivers
who typically do not follow the fastest route [34].

Closure strategy. We simulate the traffic demand
using SUMO, obtaining the CO2 emissions for each edge
and aggregating the results by road. We first simulate
the original road network as a baseline and then select a
closure strategy to remove a set of roads from the orig-
inal road network. A closure strategy consists of two
parallel steps. The first is the informed strategy, where
we remove the roads from the road network based on
the defined strategy. The second is an uninformed policy
in which we close random roads from the road network.
The removed roads in the uninformed strategy preserve
the same length as the informed one. For each policy,
we close 1, 10, 20, . . . , 100 roads. Independently of the

https://scikit-learn.org/stable/modules/clustering.html


policy applied, the road closures are selected with re-
spect to the baseline experiment, the original road net-
work. Thus, each set of roads is a subset of the next
set 1 ⊆ 10 ⊆ 20 ⊆ . . . ⊆ 100. We rank roads within
each strategy based on their CO2/m in descending order.
Subsequently, we incrementally select the set of roads
for closure, employing a precise approach to optimize
the reduction of carbon emissions. While this decision
is inherent in the CO2 policy by its definition, for both
the category and mixed policies, we follow the strategy
outlined in Section 5. This involves ranking roads based
on emission levels (CO2/m) in descending order and pri-
oritizing the closure of the most polluted roads from each
road category.

Road classification. We classify the roads of Milan to
identify similarities and differences between roads that
can be impactful in terms of CO2 (mg) emissions. As
suggested in [24], we characterize roads with their be-
tweenness centrality and 𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 [24], as well as addi-

tional features such as the VOC, a useful metric to classify
to quantify road congestion, and 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 to capture the

attractiveness of each road based on the destination of
the flows. We then apply a clustering algorithm using
the Silhouette score’s progression to determine that the
best number of clusters is four. We name the clusters as
follows:

• (HF): High 𝐾𝑟𝑜𝑎𝑑, high relative VOC and emis-
sions (in yellow);

• (HE): High 𝐾𝑟𝑜𝑎𝑑, low relative VOC and emis-
sions (in green);

• (LF): Low 𝐾𝑟𝑜𝑎𝑑, high relative VOC and emis-
sions (in orange);

• (LE): Low𝐾𝑟𝑜𝑎𝑑, low relative VOC and emissions
(grey).

First, we run a SUMO simulation on the original Milan
road network, i.e., without any road closure. Through
this simulation, we identify the roads with higher emis-
sions levels. Figure 1 shows the roads from each cluster
previously identified for the 𝐾𝑟𝑜𝑎𝑑 and the mixed policy.
In Figure 1a and 1b, we observe the roads characterized
by high 𝐾

(𝑠𝑜𝑢𝑟𝑐𝑒)
𝑟𝑜𝑎𝑑 and 𝐾

(𝑑𝑒𝑠𝑡)
𝑟𝑜𝑎𝑑 . The yellow roads within

these figures can be differentiated from the green roads
based on their CO2/m (mg/m) and VOC levels. Notably,
the yellow roads exhibit higher levels of both CO2/m and
VOC than the green roads. In Figure 1c and 1d, we show
the roads classified with low 𝐾𝑟𝑜𝑎𝑑. We can distinguish
between two groups based on their VOC values: high
VOC for the orange roads and low for the dark grey roads.

7. Results
Figure 2 provides an overview of total CO2 emissions
(mg) across the entire road network for each applied clo-

Figure 1: Road distribution of each category defined from
the classification of the roads in the road network of Milan.
(a)-(b) Roads with high 𝐾𝑟𝑜𝑎𝑑. (c)-(d) Roads with low 𝐾𝑟𝑜𝑎𝑑.

sure strategy. Now, we discuss each policy individually.
CO2 policy. It exhibits a beneficial impact on reduc-

ing CO2 emissions up to a certain threshold (Figure 2a).
Closing up to 50 roads leads to a decrease in the overall
emission compared to the baseline scenario. After this
threshold, the emissions increase exponentially with the
closing of every additional set of ten roads. The CO2
policy also highlights that an informed strategy based on
the level of CO2/m is more effective than an uninformed
strategy with the same emissions level as the baseline.

Category policy. The impact of this policy depends
on the road category. Closing HF roads (Figure 2b) leads
to similar results to the CO2 policy: there are beneficial
effects until a certain threshold (40 closed roads). After
closing 100 HF roads, CO2 emissions decrease, even if re-
maining above the baseline level. After closing 50 roads,
the random closure strategy outperforms the informed
strategy regarding CO2 emissions, although still worst
concerning the baseline. Closing HE roads (Figure 2c)
consistently results in a negative impact, with CO2 emis-
sions increasing up to 50% above the baseline. Even in
the case of the uninformed strategy, emissions levels rise,
although to a lesser extent. Closing LF roads (Figure 2d)
always leads to an increase in CO2 emissions, although
to a lesser degree than other removal strategies. The
closed roads cause a maximum increase of 15% compared
to the baseline. Lastly, closing LE roads does not change
emissions levels compared to the baseline (Figure 2e).



Mixed policy. Even if the impact of this policy does
not exhibit a clear trend (Figure 2f), it is worse compared
to the baseline scenario. Focusing on the closure experi-
ment of 20 roads, we find no linear relationship between
the roads closed and the resulting CO2 emissions.

Figure 2: The results on CO2 emissions (mg) obtained from
different road closure strategies. (a) CO2 policy. (b-e) Category
policy. (f) Mixed policy.

Comparing strategies. Figure 3 provides a deeper
analysis of the different closure strategies from multiple
perspectives. In Figure 3a, we show the percentage of
vehicles impacted by each closure strategy. A vehicle is
considered impacted if its previous route contains at least
one road closed in the closure strategy. The closure of
HE roads yields a higher percentage of impacted vehicles
due to two key factors. Firstly, HE roads encompass
highly frequented routes, including highways, which
affect a larger proportion of vehicles. Secondly, HE roads
comprise a larger number of roads, some longer, thereby
amplifying the impact on vehicle paths.

Figure 3b shows the percentage of the traveled road
network to the total available road network. In theory,
the more vehicles are spread on the road networks, the
fewer the emissions as we reduce the likelihood of road
congestion. However, this effect is not observed because

we are not simply redistributing the vehicles through
the road network but also removing roads from it. Road
removal limits the available route options for drivers,
leading to a situation that replicates or worsens the initial
conditions.

To gain insights into the impact of road closures on the
routed paths of vehicles, we analyze how the vehicles are
rerouted after a closure. Figure 4 shows an example of
vehicle rerouting after a road closure. The closed roads
are represented in black, while the routed paths are de-
picted in blue and orange. The orange path represents
the routed path in the baseline scenario; the blue path is
the rerouted path in the closure experiment. In this case,
we consider the CO2 policy with the removal of ten roads.
The rerouted path does not differ significantly from the
original path because the roads used in the closure exper-
iment have a smaller capacity than the baseline roads. As
a result, when simulating all traffic flows, this capacity
discrepancy leads to earlier congestion levels.

Figure 3: The impact of different road closure strategies on
vehicles and the travelled road network edges. (a) Percentage
of vehicles impacted by each road closure strategy. (b) Per-
centage of road network travelled.

7.1. Discussion
Road closures impact CO2 emissions. Emissions de-
crease for specific road categories up to a certain thresh-
old of removed roads. However, increasing the number
of removed roads, CO2 emissions increase exponentially,
reaching peaks of 50% above the baseline scenario with
the original road network. This happens because highly
polluted roads are also typically those with higher ca-
pacity, and better equipped to handle larger traffic flows.



Figure 4: Example of vehicle route change after a road closure.
Black roads are the closed ones. In orange is the route of the
vehicle before the closure. In blue is the new route considering
the closed roads.

Consequently, traffic is rerouted through lower-capacity
roads, thus increasing congestion and emissions.

Not all roads count equally. Certain roads are piv-
otal in maintaining smooth traffic flow and preventing
congestion. Those roads cannot be removed without in-
creasing CO2 emissions. We also identify roads whose
removal does not significantly affect CO2 emissions.

Removing sparse roads is ineffective. Emissions
only decrease for a specific subset of roads, while most
closure experiments result in increased emissions. In
other words, removing scattered roads throughout the
road network may not be optimal. The underlying reason
lies in the rerouting of vehicles onto alternative roads,
which are often close to the removed roads and have
lower capacity. Consequently, this necessitates consider-
ing a “zone" closure strategy to mitigate this effect and
optimize emissions reduction efforts.

8. Conclusion
Using our simulation framework, we found that closing
some roads is beneficial, but the removal becomes detri-
mental above a certain threshold of closed roads. The
closure of other roads led to an increase in CO2 emis-
sions, while certain roads have negligible influence on
CO2 emissions. Our work can be further improved in
several directions. For instance, another road closure
strategy could be to close all roads in specific “eco-zones"
rather than closing single roads, which may lead to traffic
redirection onto adjacent roads with lower capacity.
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