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Abstract
This study addresses a gap in the existing literature on the Schelling segregation model by conducting a comprehensive
qualitative assessment of various relocation policies. We introduce novel Schelling models driven by different relocation
policies and analyse their impact on the convergence time and final segregation levels. Our findings demonstrate that all
policies result in segregation levels within bounds established by policies where agents relocate to maximize their happiness.
Notably, a policy ensuring the minimum improvement in agent segregation significantly reduces the model’s convergence
time. These results underscore the potential influence of relocation policies, such as those employed by online recommenders
in real estate platforms, on societal segregation dynamics. The study provides valuable insights into potential strategies for
mitigating and decelerating segregation through tailored recommendations.
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1. Introduction
In 1971, Thomas Schelling proposed the very first agent-
based model to explain how individual actions could re-
sult in a global phenomena like segregation [1, 2, 3, 4].
In Schelling’s simple spatial proximity model, a division
between the two groups of the population emerged as
a result of a homophily tendency of the agents that, he
claimed, in real life can happen along many dimensions
such as ethnicity, language, income, and class affiliation
[4]. Agents of two types are placed randomly on a two-
dimensional grid (city), with each agent having a prefer-
ence for living next to people of his type. When an agent
is surrounded by too many agents of a different kind it
becomes unhappy and moves to an empty cell that satis-
fies its preferences. Schelling observed that even when
agents are tolerant (low homophily threshold), the city
gets segregated in a few simulation steps.

Several variants and enhancements of the Schelling
model have been proposed so far. Some of them modify

Published in the Proceedings of the Workshops of the EDBT/ICDT 2024
Joint Conference (March 25-28, 2024), Paestum, Italy
∗Corresponding author.
†
Conceptualized the research, conducted the experiments, made the
plots, wrote the code and the paper.

‡
Conceptualized the research, supervised the experiments and wrote
the paper.
Envelope-Open giovanni.mauro@phd.unipi.it (G. Mauro);
luca.pappalardo@isti.cnr.it (L. Pappalardo)
GLOBE https://kdd.isti.cnr.it/people/mauro-giovanni (G. Mauro);
https://lucapappalardo.com/ (L. Pappalardo)
Orcid 0000-0001-8067-984X (G. Mauro); 0000-0002-1547-6007
(L. Pappalardo)

Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

the agents’ behaviour, for example associating to each
agent an income status [5] or treating the problem with a
reinforcement learning approach [6]. Other works anal-
yse what happens to the model if the environmental con-
figuration, like city size or shape change [7, 8, 9, 10, 11],
or if the dynamics take place on a network-like structure
[12, 13]. In two of these works [12, 9], the agent picks the
cell that maximizes its happiness. Other works included
real-world segregation data along with strategies to vali-
date simulated behaviour with observations [14, 15, 16]
or implement agent behaviours based on psychological
and sociological theories [17, 18, 19, 20]. A recent empir-
ical study suggests a link between experienced income
segregation and an individual’s tendency to explore new
places and visitors from different income groups [21].
Gambetta et al. [22] show that imposing mobility con-
straints to agents in the Schelling model strongly affects
convergence time and the final segregation level.

While previous research has explored various aspects
of urban segregation using models like the Schelling
model, there is still a gap in understanding how different
strategies or guidelines, known as ”relocation policies,”
directly influence the dynamics of urban segregation.
These policies could include government initiatives, al-
gorithms employed by real estate platforms like Idealista,
Booking, or Airbnb 1, or other mechanisms that shape
the distribution of people across neighbourhoods.

These online real estate platforms are more and more
actively suggesting housing options to users, playing a
pivotal role in influencing urban development [23]. The
choices individuals make, guided by these platforms or

1idealista.com, booking.com, airbnb.com
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other relocation policies, can contribute to scenarios of
either increased or decreased segregation within the city,
or the emergence of other phenomena like gentrifica-
tion [24, 25]. Furthermore, these platforms have been
proven to have a crucial impact on the urban scenario.
For example, in areas with a high AirBnB presence, rents
and transactions substantially rise [26] and racial biases
appear to be reinforced [27].

This work aims to fill the literature gap, underscor-
ing the need to systematically measure and understand
the numerical impact of different relocation policies on
urban dynamics. It does so by offering relocation sug-
gestions to a portion of Schelling model-like agents and
scrutinizing how these recommendations affect both con-
vergence time and observed levels of segregation. Our
findings reveal that policies focused on income (dis)simi-
larity notably increase segregation times, while strategies
encouraging agents to relocate where they would experi-
ence minimal or maximal happiness expedite segregation
times. Notably, these latter policies establish both lower
and upper bounds for the observed segregation levels of
all the analysed policies.

2. Policy-driven segregation model
Schelling’s classical model illustrates how urban segre-
gation may emerge due to individual preferences for
similar neighbours. The city is represented as a grid
where agents of two types (initially placed randomly)
inhabit cells or leave them unoccupied (approximately
20% remain empty). The parameter ℎ controls agents’
homophily tendencies. At each simulation step, an agent
in position 𝐾 evaluates its Moore neighbourhood [28] Γ𝐾
– the surrounding eight adjacent cells in a square forma-
tion. If an agent has fewer than ℎ neighbours of its type,
it becomes unhappy and relocates to a random, empty
cell. Figure 1 schematizes the Moore neighbourhood of a
happy cell (left) and unhappy cell (right). The simulation
terminates when all agents are happy.

Schelling’s analysis reveals striking outcomes: even
with a low ℎ value (e.g., ℎ = 3, indicating agents are
happy with only 3/8 of their neighbours sharing their
type), the city segregates rapidly, maintaining an aver-
age segregation level higher than the agents’ minimum
requirement.

This paper aims to evaluate the impact of diverse re-
location policies within the classical Schelling model in
terms of convergence time and final segregation level.
In our model, each simulation takes place on a 50 × 50
grid where 75% of its cells are randomly populated with
𝑀 agents. The agents are categorised into two groups:
majority agents (60%) and minority agents (40%). At the
beginning of the simulation, each agent is associated
with a fixed income 𝑤. To this purpose, as in [5], we

Figure 1: Example of a happy agent (left) and an unhappy
agent (right) with a homophily threshold ℎ = 3. The dashed
square represents the Moore neighbourhood Γ𝐾 of cell 𝐾. On
the left, three yellow agents are in the neighbourhood of a
yellow agent, so the agent is happy. On the right side, only
two agents share the type of the agent in cell 𝐾, making the
agent unhappy.

use income data from the 2022 USA Social Security Ad-
ministration report,2 which delineates the US worker
population percentages within specific income intervals.
Every agent is assigned an income interval 𝑏 with a prob-
ability proportional to the US population within 𝑏, and
the assigned income 𝑤 is picked uniformly at random
within 𝑏. The majority agents are the richest 40% ones;
the minority agents are the poorest 60% ones. Note that
the income assignment changes at each simulation, en-
hancing the robustness of our results. Figure 2 shows
the income distribution: as expected, a few agents have
a high income, while a heavy tail of agents have a low
income.
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Figure 2: Income distribution of the agents in the model. On
the x-axis, the agents are ranked by associated income. The
y-axis represents the income. A few agents have a high income
(around 1 million dollars), and the majority of the agents have
a low income.

Simulation starts with agents randomly spread on the
grid (see Figure 3, left). Each cell can either be occupied
by only one majority agent (yellow), occupied by a mi-
nority agent (red) or be empty (white). At the end of
the simulation, the grid appears spatially clustered as in
Figure 3. Even if agents are tolerant (e.g., they are happy

2www.ssa.gov/cgi-bin/netcomp.cgi?year=2022



when just 3/8 of neighbours are similar to them), the city
ends up segregated.

Start occupancy End occupancy

Figure 3: Example of a Starting (left) and final (right) distri-
bution of the agents when our model terminates. White cells
are empty; the majority type agents occupy yellow cells, and
the minority type agents occupy red cells. The grid dimension
is 25 × 25 for visualisation purposes.

In contrast with the original Schelling model, and fol-
lowing the idea proposed by Gambetta et al. [22], each
cell 𝐴 is associated with a relevance score 𝑟, represent-
ing the cell attractiveness. We assume a core-periphery
structure to model the distribution of relevance across
the grid cells [29] (see Figure 4) and use a radial distri-
bution where the relevance value of each cell decreases
with its distance from the grid centre 𝐶:

𝑟(𝐴) ∝ 1

√𝑑(𝐴, 𝐶)
(1)
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Figure 4: Cell’s relevance distribution. Central cells have a
higher relevance than peripheral ones. The visualized grid
(25 × 25) is smaller than the actual one for visualisation.

The distance between any two cells 𝐾 and 𝐽 on the
grid, represented by coordinates (𝑥𝐾, 𝑦𝐾) and (𝑥𝐽, 𝑦𝐽), is
computed as their Euclidean distance:

𝑑(𝐾, 𝐽 ) = √(𝑥𝐾 − 𝑥𝐽)2 + (𝑦𝐾 − 𝑦𝐽)2 (2)

The Moore [28] neighbourhood centered at a cell 𝐾 =
(𝑥𝐾, 𝑦𝐾) is defined as:

Γ𝐾 = {(𝑥, 𝑦) ∶ |𝑥 − 𝑥𝐾| ≤ 1, |𝑦 − 𝑦𝐾| ≤ 1} (3)

We compute the number of agents in the Moore neigh-
bourhood of cell 𝐸 that are of the same type of agent in
cell 𝐽 as:

Σ(𝐽 , 𝐸) = ∑
𝐸′∈Γ𝐸

𝐶(𝐽 , 𝐸′) (4)

where 𝐶(𝐽 , 𝐸′) denotes the equality of agents between
cell 𝐽 and cell 𝐸′:

𝐶(𝐽 , 𝐸′) = {
1 if 𝑡𝑦𝑝𝑒(𝐽 ) = 𝑡𝑦𝑝𝑒(𝐸′)
0 otherwise

(5)

where 𝑡𝑦𝑝𝑒(𝐾) returns the type of the agent in cell
𝐾. For each agent, 𝑎, its segregation score indicates the
number of agents of the same type of 𝑎 in its Moore
neighbourhood divided by 8 (the maximum number of
Moore neighbours):

𝑠(𝑎) =
Σ(𝐾, 𝐾)

8
(6)

The average segregation score of the grid, ⟨𝑆⟩, is the
average of the segregation score of all the agents:

⟨𝑆⟩ =
∑𝑎∈𝑀 𝑠(𝑎)

|𝑀|
(7)

The richness 𝑊𝐾 of a Moore neighbourhood Γ𝐾 with
𝑚 agents is the average income of the agents in the cells
within Γ𝐾:

𝑊𝐾 = 1
𝑚

⋅ ∑
𝑋∈Γ𝐾

𝑤𝑋 (8)

where 𝑤𝑋 denotes the income of the agent in cell 𝑋.
The similarity between two Moore neighbourhoods is

assessed in terms of average income similarity, i.e. the
square root of the absolute difference between the aver-
age incomes of the two neighbourhoods.

𝑠𝑖𝑚(Γ𝐾, Γ𝐽) = √|𝑊𝐾 − 𝑊𝐽| (9)

Finally, 𝑡𝑎𝑢(𝐾) represents the consecutive time steps
during which a cell 𝐾 has been empty, starting from the
last step and moving backwards.

2.1. Relocation policies
An agent moves to an empty cell when it is unhappy, i.e.,
the number of neighbours of its type is smaller than a ho-
mophily threshold ℎ = 3. In the original Schelling model,
when unhappy, an agent moves to a random empty cell



(random policy). In our model, we introduce more so-
phisticated relocation policies.

When an agent leaves its cell 𝐴 because unhappy, our
model assigns to an empty cell 𝐵 a score proportional to
a policy 𝒫, sorts the cells in decreasing order, and selects
the top 𝑘 cells. The unhappy agent uniformly randomly
picks one of these 𝑘 cells. We set 𝑘 = 30 to emulate real-
world practices in online real estate platforms, typically
suggesting 30 results per page. 3

We investigate six main policies:

• Similar neighbourhood: the score of a cell 𝐵 is
calculated as:

𝑝(𝐵) ∝ 𝑠𝑖𝑚(Γ𝐴, Γ𝐵) (10)

The more the neighbourhood of a cell 𝐵 is similar
to the neighbourhood of the original cell 𝐴, in
terms of average income of the agents, the higher
the score of cell 𝐵.

• Different neighbourhood: the score of a cell 𝐵
is computed as

𝑝(𝐵) ∝ 1
𝑠𝑖𝑚(Γ𝐴, Γ𝐵)

(11)

The score of the cell 𝐵 is inversely proportional
to the economic similarity between the starting
and ending neighbourhoods.

• Minimum improvement: the agents may move
only to cells it would be happy. Among these cells,
the score of each cell 𝐵 is inversely proportional
to the number of agents of the same class of the
agent in the starting cell 𝐴:

𝑝(𝐵) ∝ 1
Σ(𝐴, 𝐵)

, if Σ(𝐴, 𝐵) ≥ ℎ (12)

• Maximum improvement: the agents maymove
only to cells it would be happy. Among these cells,
the score of each cell 𝐵 is directly proportional
to the number of agents of the same class of the
agent in the starting cell 𝐴

𝑝(𝐵) ∝ Σ(𝐴, 𝐵), if Σ(𝐴, 𝐵) ≥ ℎ (13)

• Recently emptied: we assign a higher score to
the empty cells that have been emptied for the
lower amount of time in the last steps:

𝑝(𝐵) ∝ 1
𝜏(𝐵)

(14)

The rationale behind this policy is to assume that
a reasonable choice for an RS, is to suggest users
occupy locations that were already in conditions
of being inhabited and that were recently free.

3see idealista.com

• Distance-relevance: the score of a cell is directly
proportional to the cell’s relevance and inversely
proportional to the distance between the starting
and arriving cell [22]:

𝑝(𝐵) ∝
𝑟(𝐵)2

𝑑(𝐴, 𝐵)2
(15)

This policy encapsulates a fundamental principle
of human mobility, as postulated by the Grav-
ity model, wherein individuals seek to minimize
travel time while being drawn toward significant
locations [30].

In Figure 3, we presented the initial (left) and final
(right) configurations resulting from the execution of the
model, where all agents follow the baseline random policy.
Starting from the same initial configuration, Figure A1
reports the final configurations of simulations in which
all agents follow the other six policies

2.2. Experimental settings
In our experiments, we vary the adoption rate 𝑝 ∈
[0, 100], a parameter representing the percentage of
agents following the suggested policy. At the beginning
of the simulation, each agent has a probability 𝑝 to follow
the policy during all steps of the simulation, and thus
a probability 1 − 𝑝 to follow the random policy. Each
agent will be categorised as policy-follower or not at
the beginning of the simulation based on probability 𝑝.
The baseline of our experiments is the classical Schelling
model, where all agents follow the random policy (this,
𝑝 = 0).

We perform 100 simulations for each configuration
of the model. Each configuration combines the values
of two parameters: the policy 𝒫 and the adoption rate
𝑝. Each simulation uses a different random spatial dis-
tribution of agents on the grid and a different random
income assignment taken from the income distribution.
Each simulation terminates when all agents are happy or
after a maximum of 300 simulation steps. For each simu-
lation, we calculate the convergence time, 𝑛, the number
of steps needed to reach an equilibrium state, and the
final segregation level, ⟨𝑆⟩, at the end of the simulation.

3. Results
The analysis of convergence time as 𝑝 varies uncovers
intriguing patterns (see Figure 5).

The baseline random model typically converges in
around 27 steps. In accordance with the suggestion of
Gambetta et al. [22] the more the users follow a dis-
tance relevance policy, the more the segregation process
is slowed down (hence, the higher 𝑛). The two policies

https://www.idealista.com/en
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Figure 5: Average convergence time 𝑛 across 100 simulations
of models with a growing percentage 𝑝 of users accepting the
suggestion of the RS.

rooted in the neighbourhood income similarity, similar
neighbourhood and different neighbourhood substantially
increase convergence time. In particular, the model is
not able to reach a stable equilibrium if 10% (or more)
agents relocate to a similar neighbourhood. A similar
result holds for the recently emptied policy.

Remarkably, the only two policies that effectively expe-
dite segregation, reducing the value of 𝑛 as their adoption
rate 𝑝 increase, are the policies that suggest agents to
relocate in places where they would be happy: minimum
improvement and maximum improvement.
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Figure 6: Average final segregation levels ⟨𝑆⟩ across 100 sim-
ulations of models with a growing percentage 𝑝 of users ac-
cepting the suggestion of the RS.

Even more intriguing insights emerge from analysing
the final segregation level varying the adoption rate 𝑝
(Figure 6). The final segregation level ⟨𝑆⟩ for the baseline
random model stabilises around 0.66. Notably, for all
policies, the more users adhere to a policy, the greater
the change in ⟨𝑆⟩, indicating that suggesting relocation
policies other than the random one significantly impacts
urban segregation.

Only two policies, different neighbourhood and max-
imum improvement amplify final segregation levels as
adoption rate 𝑝 increases. In particular, the former leads
to the most substantial rise, while even the policy sug-
gesting an unhappy user move to a neighbourhood with

a different economic composition significantly amplifies
segregation, especially when influencing the majority of
the population.

Conversely, four policies lead to a reduction in ⟨𝑆⟩: re-
cently emptied, distance-relevance, similar neighbourhood
and especially minimum improvement. The recently emp-
tied policy shows a negligible reduction until only 60% of
the population adopts it but becomes increasingly effec-
tive with an increased adoption. The distance-relevance
policy substantially decreases ⟨𝑆⟩. However, the policy
that most effectively reduces final observed segregation
levels is minimum improvement : even with a small per-
centage of agents following this policy, the average ⟨𝑆⟩
reduction is substantial.

4. Discussion
Our study explores the intricate relationship between
relocation policies and the dynamics of urban segregation.
Through a series of simulations, we unveil the impact
of these policies on both convergence time and the final
level of segregation.

The implications of policies grounded in neighbour-
hood composition, such as the similar neighbourhood and
different neighbourhood, reveal intriguing trends. On the
one hand, as one can expct, suggesting agents to relo-
cate to a neighbourhood with a similar income, thereby
maintaining a comparable average income distribution
among neighbours, increases convergence times. In fact,
if agents adhere strictly to this policy, the model fails to
converge. On the other hand, it is noteworthy that even
suggesting agents to relocate to a socioeconomically dif-
ferent neighbourhood slows down segregation times. This
deceleration is most pronounced when between 40% and
60% of users relocate according to this policy. Interest-
ingly, having 100% of agents follow this policy produces
a similar effect, in terms of convergence time, as only
10% of agents following it. This dichotomy can also be
appreciated in the segregation levels ⟨𝑆⟩ analysis.

Counterintuitively, a policy that suggests agents re-
locate to a socioeconomically different neighbourhood,
thus suggesting a mixing, increases the average observed
segregation levels as its adoption increases. Surprisingly,
suggesting agents relocate to neighbourhoods with a
similar average income distribution reduces the final ob-
served segregation levels.

The analysis of the observed final segregation level
seems bounded by the outcomes of two extreme poli-
cies: the maximum improvement policy drives the final
segregation level to its maximum, and the minimum im-
provement policy minimizes it. This distinction becomes
particularly pronounced when the relocation policies
are adopted by many agents (high adoption rate 𝑝). In-
deed, minimum improvement for 𝑝 = 100% reduces the



final segregation level by 16.67% compared to the base-
line model. Conversely, maximum neighbourhood sig-
nificantly increases the final segregation level by 13.64%.
From a sociological perspective, this observation em-
phasizes how policy choices significantly mould societal
structures. The extremes represented by the accentuated
segregation of the similar neighbourhood ormaximum im-
provement policies and the minimized segregation of the
minimum improvement policy delineate the wide spec-
trum of potential societal outcomes based on policy im-
plementations. Recognizing these boundaries provides
crucial insights into the intricate connection between
policy decisions and the resultant societal dynamics. It
clarifies how different policies can influence segregation
levels, thereby guiding more informed and balanced in-
terventions.

5. Conclusion
This paper investigates the effects of different relocation
policies within the Schelling model on convergence time
and final segregation levels. It sheds light on how these
policies influence urban segregation dynamics, paving
the way for future research and the development of more
equitable urban strategies, particularly in understanding
the impact of online real estate platforms on neighbour-
hood demographics.

This work can be improved and extended in several
directions. Inspired by Moro et al. [31], designing a pol-
icy that exploits the time series of empty cells could offer
valuable insights. This approachmight uncover historical
occupancy patterns, revealing which cells have predom-
inantly housed similar agents or which tend to retain
happy occupants for longer durations. Similarly, there is
room to expand the model by training a Machine Learn-
ing (ML) model across multiple model iterations. This
approach could empower algorithms to predict optimal
cell choices for ensuring an agent’s maximal happiness
probability. Moreover, by considering broader global fac-
tors, these models might suggest strategies that maintain
a stable or reduced average segregation level within the
city.

Appendix
In Figure A1, we present examples of final configurations
produced by the execution of the model in which the
100% of agents follow one of the six policies. All the
simulations starts from the same initial configuration
reported in Figure 3 (left).

It is noticeable that the different neighbourhood and
maximum improvement policies, depicted in the last row,
result in a visually less mixed scenario compared to the

distance relevance, 133 steps minimum improvement, 6 steps

recently emptied, 300 steps similar neighborhood, 300 steps

different neighborhood, 17 steps maximum improvement, 4 steps

Figure A1: Examples of final configurations produced by each
policy on a 25 × 25 grid.

other policies, particularly the minimum improvement
one (top right), which appears to be more mixed.
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