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Abstract
In supermarket loyalty campaigns, shoppers collect stamps to redeem limited-time luxury products. Having an accurate prediction
of which shoppers will eventually redeem is crucial to effective execution. With the ultimate goal of changing shopper behavior, it
is important to ensure an adequate number of rewards and to be able to steer promising shoppers into joining the campaign and
redeeming a reward. If information from previous campaigns is available, a prediction model can be built to predict the redemption
probability, possibly also adapting the prediction threshold to determine predicted the label. During a running campaign, we only know
a subset of the labels of the positive class (the so-far redeemers), and have no access to the labels of any example of the negative class
(non-redeemers at the end of the campaign). The majority of the examples during the campaign do not have a label yet (shoppers that
could still redeem but have not done so yet). This is a semi-deferred labelling setting and our goal is to improve the prediction quality
using this limited information. Existing work on predicting (semi-deferred) labels either focuses on positive-unlabelled learning, which
does not use existing models, or updates models after the prediction is made by assigning expected labels using unsupervised learning
models. In this paper we present a framework for Online Prediction threshold optimization Under Semi-deferred labelling (OPUS). Our
framework does not change the existing model, but instead adapts the prediction threshold that decides which probability is required
for a positive label, based on the semi-deferred labels we already know. We apply OPUS to two real-world datasets: a supermarket with
two campaigns and over 160 000 shoppers.
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1. Introduction
Traditional supervised machine learning projects start with
a set of labelled data. Specifically in binary classification,
data belongs to one of two classes: positive and negative.
Starting from a set of examples with their ground truth label,
a predictor is created, which can assess the probability that
an unseen example belongs to the positive class. Without
optimization, an example is predicted to be part of the posi-
tive class if this probability is at least 0.5. One improvement
is to select a different prediction threshold that distinguishes
examples between the positive and negative class on their
probability. In the presence of labelled data, such a threshold
can be picked in a way that the predicted labels maximize
a given metric. Provided that no concept drift occurs, the
model with the adapted threshold can be used indefinitely
without degrading prediction quality. In this scenario, we
only use the ‘offline training’ (I) of Figure 1.

This assumption on the data is however not realistic since
changes in the data distribution such as concept drift can
reduce the quality of the model. A common technique is to
retrain or update the model at a later point in time, when
more recent labelled data is available [1] and potentially
also updating the prediction threshold. This training is re-
ferred to as online training, where new labelled examples
are received and can be used to update the model and/or
prediction threshold. Such techniques assume that the label
latency, that is the time between seeing an example and its
true label, is small. Under these conditions prediction sys-
tems can react to concept drift as it occurs. This assumption
may not be valid in all real-world scenarios, for example
because it is computationally or labour intensive to do so [2].
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Figure 1: I) In an offline phase, all labels are present. II) In the
online phase, this data is potentially outdated, but we do know a
limited number of positive labels. III) The set of positive labels
grows as time progresses. IV) At time 𝑡𝑒, all labels of the online
phase are known. At time 𝑡 we can only use the offline data (I)
and the positive and unlabelled examples (II).

If the latency becomes too high, models can no longer prop-
erly be corrected for concept drift, or not even be updated
at all if the latency is infinite [3].

In this paper we consider a special class of the latter,
where we know for some examples that they are positive
and do not know the label of the other examples (they may
be either positive or negative). This is sketched in Figure 1.
At time 𝑡, we have the (potentially outdated) offline training
data. We have further seen new examples, of which we
know some are positive. It is however not until time 𝑡𝑒 that
we know the actual labels of all examples, and up to that
point we only receive the actual label of positive examples.
We refer to this as semi-deferred labelling, as we have some
labelled examples, but only from one class. This still does
not allow us to update or retrain the model, neither does
it allow us to set a new threshold that optimizes our target
metric. Setting this new threshold is important, since we
still want to make a prediction for all unlabelled examples.
We therefore introduce OPUS, Online Prediction threshold
optimization Under Semi-deferred labelling, which aims to
set a better threshold for an existing prediction model, based
on the limited available positive examples. Note that this
is not the same as imbalanced training, as we have only a
single class of up-to-date data and do not make assumptions
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about the possibly outdated data.
Even though OPUS can be generalized to other scenarios,

we discuss a supermarket one in this paper. Shoppers in this
supermarket make use of loyalty cards which identify them
at each purchase they make. Once a year, the supermarket
holds a so-called loyalty campaign [4]. During the campaign,
shoppers may collect stamps. These stamps can be collected
by spend (for example one stamp for every 10 monetary
units) or in special promotions (an extra stamp for a certain
product). If a shopper has collected enough stamps they can
purchase a reward. Rewards are usually luxurious products
available at a much lower (sometimes only symbolic) price.
Shoppers are as such persuaded to participate in the loyalty
campaign. In this work we consider campaigns with a lim-
ited time scope: shoppers can only collect the stamps and
redeem rewards within the duration of the campaign. For
such a campaign to work, the supermarket must accurately
predict how many rewards are required, such that each par-
ticipating shopper can actually get their rewards. Having
too few rewards means disappointing shoppers, having too
many means there will be unusable stock left. It is beneficial
to make predictions about what shoppers will do during
the rest of the campaign, in an effort to either steer their
decisions or adapt the available rewards later on.

For our prediction model, we are interested in whether
a shopper will make a redemption: shoppers have positive
labels if they redeem a reward during the campaign, or
negative labels otherwise. Consider two campaigns, 𝑝1 and
𝑝2. During 𝑝2 we want to predict whether a shopper will
redeem, based on a classifier we learned from the finished
campaign 𝑝1. We continuously receive new data and make
new predictions and the end of every week. In practice this
means we get new positive examples in batches, these are all
consumers that first redeemed in the preceding week. Let 𝑡
be the moment of prediction, since the start of 𝑝2. We train
a classifier and select the best threshold. To do so, we split
the data of campaign 𝑝1 into a train and validation set, and
train several models on the former and adjust the threshold
for each model to maximize a target metric using the latter.
One of these models has the highest metric value and we
select that as our prediction model. We retrain that model
on all shoppers of campaign 𝑝1, and test it on campaign
𝑝2, using the corresponding learned optimal threshold. The
problem with this approach is that the model trained on
campaign 𝑝1 might not work as well on campaign 𝑝2. We
also do not get new negative labels during 𝑝2, which means
that updating our prediction model or creating a new one is
not feasible. The best we can do is to adapt the prediction
threshold based on the limited labels we have available for
𝑝2. This is the main contribution of this paper, OPUS is a
framework that adapts this threshold, based on the new
labelled data.

The remainder of this paper is structured as follows. In
Section 2 we discuss existing solutions to the semi-deferred
prediction problem. In Section 3 we formalize the prediction
problem for loyalty campaign participation. In Section 4
we then discuss OPUS. We finally evaluate OPUS against
alternative methods in Section 5 and conclude the paper in
Section 6.

2. Related Work
For this problem there are roughly three existing categories
of solutions. These are schematically presented in Figure 2.

The first is retraining the classifier with an extended training
set, where the new positive examples are added. This can
either have limited effect if the number of positive labels is
small or it can heavily bias the prediction model towards the
positive class if the number of positive labels is high. The
second category builds a model based on the positive and
unlabelled state of the examples. The third is to ignore the
positive labels, and assume all new data is unlabelled. All
these techniques make a new prediction model or update
the existing one. We discuss the second and third categories
below, including their specific disadvantages in the semi-
deferred labelling problem.

2.1. PU-learning
The original PU-learning solution was proposed in [5]. Here
a classifier is build using positive and unlabelled examples,
where the class of the unlabelled examples is not known.
Semi-deferred labelling is less restrictive in two ways. The
first is that we do have a, potentially outdated, set of la-
belled data. For the supermarkets, this is a previous loyalty
campaign. The second is that we do not have a single set
of positive examples but rather receive additional positive
examples later on. Because Semi-deferred labelling is less
restrictive, PU-learning can still be applied to our problem
at different points in time, though it might not be as effective
because it ignores part of the data.

A solution to PU-learning was originally proposed in [5].
Given a set of examples, of which only a fraction is labelled,
and only from a single class (positive), the authors reason
that the conditional probability that an example belongs
to the positive class is equal to the conditional probability
that the example is labelled, divided by the probability a
positive sample is labelled. From this reasoning, one can
construct a classifier on whether a sample is labelled and
use that to predict the probability that positive samples are
labelled (as average of the classifier outcome for the labelled
examples). For the prediction of the unlabelled examples,
the probability given by the classifier is divided by this latter
value. An extension of this is discussed in [6], where some
of its negative effects of misclassification are discussed. PU-
learning usually assumes that the examples are labelled
completely at random. In [7] this assumption is abandoned,
where the probability of an example being labelled depends

Figure 2: Various Semi-deferred labelling solutions and what
data they use. 1) [Retrain] the model with the positive examples
added to the existing dataset 2) [PU-learning] builds a model
based on the positive and unlabelled state of the examples 3)
[Ignore] the positive labels, only using the examples themselves.
All three categories ignore part of the data, while OPUS uses all
available data.



on its attributes. This is closer to our specific scenario, as
consumers that are labelled as positive earlier in the loyalty
campaign may have different characteristics than consumers
labelled later in the loyalty campaign. In [8], the assumption
that all labels are accurate is dropped: the authors propose a
robust method of an ensemble of Support Vector Machines
(SVMs) that can deal with the impurity of positive examples.
For loyalty campaign participation prediction, this is not
applicable, we have an exact definition of positive labels. In
addition to these works, a more general overview of PU-
learning is discussed in [9].

What all these techniques have in common is that existing
predictions models are not used or changed. While this does
not invalidate their use in semi-deferred labelling, their more
restrictive assumption does not allow them to benefit from
the existing data.

2.2. Ignoring new labels
A more restrictive assumption on the labels is that no labels
are available, short of an initial training set. This would
be comparable to ignoring newly converted consumers in
the second loyalty campaign. Research dealing with such
scenarios is often done in a streaming setting, either by pre-
dicting labels based on clustering techniques, or using semi-
supervised learning methods. In [3], the authors propose a
framework called SCARG. New examples are first classified
by an existing classifier. After enough new examples are
seen, new clusters are formed. The clusters are matched
to existing clusters by their medoids and as such given a
(new) label. Points in the clusters are then used to create a
new prediction model. A similar approach using fuzzy clus-
tering [10] is made in [11]. Instead of making predictions
using an existing classifier, the COMPOSE framework dis-
cussed in [12] uses a semi-supervised approach. Assuming
an initial set of labels, new unlabelled examples are classi-
fied in a semi-supervised manner. Next, only a selection
of these examples are kept for the next timestep, at which
new unlabelled examples are again classified using the semi-
supervised learner. The main contribution of COMPOSE
is the way in which the kept examples are selected: using
𝛼-shapes which are compacted until a desired number of
examples remain.

The commonality in these approaches is that they focus
on a streaming setting. At specific points in time, one or
more existing models are updated using estimated labels
from the respective solution. Although the authors show the
effectiveness in dealing with streaming data by seeing many
new examples at different timesteps, there are three key dif-
ferences that make these methods unsuitable for our setting.
First, we do not have a constant stream of new examples,
instead we see new information about existing examples at
discrete points in time. Second, we are only interested in
improving a single model once, as we evaluate the existing
model several weeks into the loyalty campaign. Third, we
do not expect the drift to be gradual; we are starting a whole
new loyalty campaign a year later, so our expected type of
drift is more of the abrupt kind. If we were to apply SCARG
or fuzzy clustering to predict loyalty campaign participa-
tion it would effectively be a more elaborate 𝑘NN classifier.
COMPOSE is not applicable at all, since there is no way of
knowing the true label of non-participating consumers until
the end of the loyalty campaign.

Another solution to unavailability to unlabelled data is
active learning, such as in [13]. Instead of having no labels,

learners can query selected labels from domain experts. An
example of dealing with such conditions in a multiclass
setting is COCEL [2]. An ensemble of one-class classifiers is
kept, each predicting only whether an example belongs to
its respective class. If none of the classifiers recognizes the
new example as one of their class, the example is added to a
buffer. Clusters in this buffer are labelled by domain experts.
Similar to COMPOSE, such solutions are not applicable in
our scenario, as we cannot know the actual label until the
end of the loyalty campaign.

3. Prediction Task
Before we explain how OPUS works, we first discuss the
prediction task itself. All symbols used are summarized in
Table 1. As introduced in Section 1, we want to solve the
problem: “Given the data related to a consumer at time 𝑡
during the loyalty campaign can we predict whether they
will participate in the loyalty campaign?”. This is a problem
of binary classification: for each consumer we want to deter-
mine whether they are a member of one of two classes: the
positive class (participant) or negative class (no participant).
One way to do this is to use a classifier with a prediction
threshold. A classifier is a function that assigns a probability
to the encoding of a consumer. If the probability exceeds the
prediction threshold, the consumer is predicted to belong to
the positive class, otherwise they are predicted to belong to
the negative class. While classifiers can usually be trained to
make a prediction between more than two classes, we only
consider binary classifiers in this paper which, without loss
of generalization, predict the probability that a consumer is
part of a positive class.

Let 𝑀 : 𝒮 → [0, 1] be a function with 𝒮 the set of
all consumers. 𝑀 is a binary classifier that estimates the
probability that a consumer 𝑠 belongs to the positive class.
For a given prediction threshold 𝑡ℎ ∈ [0, 1], consumer 𝑠
is predicted to belong to the positive class if and only if
𝑀(𝑠) > 𝑡ℎ. The binary classifier and the prediction thresh-
old together assign a predicted binary class, this is the binary
classification of the consumer. In this paper, the focus is
on determining the threshold. However, before we do so,
we explain what data is used to train the classifier for the
prediction task. This is presented schematically in Figure 3.

Table 1
Symbols used for the prediction task

Symbol Meaning

𝑡 Time since start of loyalty campaign for which
we train a model/make a prediction

𝑝𝑖 Loyalty Campaign, where we make predictions
during 𝑝2 using a model trained on 𝑝1

𝒮𝑖 Set of consumers that visited during 𝑝𝑖
𝒫𝒮𝑖 Subset of 𝒮𝑖 that redeemed during 𝑝𝑖
𝒩𝒮𝑖 Subset of 𝒮𝑖 that did not redeem during 𝑝𝑖
𝑀𝑡

𝑖 Binary classification model trained on 𝑝𝑖
𝑡ℎ Threshold to assign a label based on the proba-

bility predicted by a binary classification model
𝒞𝒮𝑡

𝑖 Subset of 𝒮𝑖 that redeemed by time 𝑡 in 𝑝1
𝒰𝒮𝑡

𝑖 Subset of 𝒮𝑖 that not (yet) redeemed by time 𝑡
𝑜𝑡ℎ𝑡

𝑖,𝑗 Optimal threshold based on probabilities com-
puted by 𝑀𝑡

𝑖 for shoppers in 𝑝𝑗
𝑚𝑒𝑡𝑟𝑖𝑐𝑡𝑖,𝑗 Metric value computed using 𝑜𝑡ℎ𝑡

𝑖,𝑗 and proba-
bilities computed by 𝑀𝑡

𝑖 for shoppers in 𝑝𝑗



Figure 3: Overview of learning the model and optimal threshold
in the first loyalty campaign. Since the first loyalty campaign
has ended we know the labels and we can split the consumers in
a positive set 𝒫𝒮 and a negative set 𝒩𝒮 .

3.1. Training phase: the first loyalty
campaign

We make a prediction at time 𝑡 relative to the start of the
loyalty campaign, which ends at 𝑡𝑒. We start by learning
a classifier from a previous loyalty campaign. For 𝑝1 we
know which class each consumer that visited the store dur-
ing 𝑝1 belongs to, this is whether they redeemed a reward
(𝒫𝒮1) or not (𝒩𝒮1). The 1 in the subscript indicates that
these consumer sets belong to loyalty campaign 𝑝1. We se-
lect a stratified sample of 75% from this set to train a model
and later use the remaining 25% to optimize the threshold.
Many different types of classifiers exist, but in general the
training of a classifier involves finding a function that maxi-
mizes the predicted probability for consumers that belong
to the positive class and minimizing it for consumers that
belong to the negative class.

The classifier that is trained on data up to time 𝑡 is re-
ferred to as 𝑀 𝑡

1 . The reason is that we want to use it at time
𝑡 in 𝑝2, so only data up to that time in 𝑝1 should be used
to train the classifier, to make the encoding of consumers
as similar as possible. This is indicated by the superscript 𝑡.
After training a classifier, we select a prediction threshold.
If we set the threshold lower, more consumers will be pre-
dicted as participants, if we set the threshold higher, fewer
consumers will be predicted as participants. For a given
binary classification metric and a set of consumers, there is
a threshold that can be considered the best, as it results in
the best metric score. We call this the optimal threshold or
𝑜𝑡ℎ𝑡

1,1. The consumers used to optimize the threshold come
from the 25% that was not used in training. The double 1
subscript indicates that it is the optimal threshold for the
model trained on 𝑝1 and optimized using data from 𝑝1. The
value of the metric for this optimal threshold is denoted by
𝑚𝑒𝑡𝑟𝑖𝑐𝑡1,1.

Instead of training just one model and just one way of en-
coding, we can also train multiple different model types and
different ways of encoding. We repeat the model training
and threshold optimization for each combination of model
type and encoding type. Each combination then results in a
value for the metric and we select the combination with the
highest value. This process is referred to as hyper-parameter
optimization. We discuss the exact model types in Section 5,
the different encoding types are beyond the scope of this pa-
per. After selecting the best combination of model type and

Table 2
Symbols used by OPUS

Symbol Meaning

𝑎𝑐𝑝𝑡𝑖,𝑗 The average probability of 𝒞𝒮𝑡
𝑗 predicted by 𝑀𝑡

𝑖

𝑎𝑛𝑐𝑝𝑡𝑖,𝑗 The average probability of 𝒰𝒮𝑡
𝑗 predicted by 𝑀𝑡

𝑖

𝑇𝑃𝑀𝑖,𝑗 Threshold prediction model trained on loyalty
campaigns 𝑝𝑖 and 𝑝𝑗

encoding type, we train a final model, which now includes
all consumers from 𝑝1, and keep the previously computed
threshold of that combination. With this new model and the
optimal threshold, we can make predictions in the following
loyalty campaign, 𝑝2.

3.2. Inference phase: the second loyalty
campaign

With the trained model, we can start making predictions
during the second loyalty campaign. At point 𝑡 in 𝑝2 we
only have data available up to point 𝑡, so that is what we
use in the encoding of consumers. We can identify two sets
of consumers. The first are those who have redeemed and
have a positive label: 𝒞𝒮𝑡

2. The second are those who have
not (yet) redeemed and may or may not still do so: 𝒰𝒮𝑡

2.
Both are indexed by 𝑡, as explained in Section 3 the sets
change over time. Note that 𝒞𝒮𝑡

2 ⊆ 𝒫𝒮2, 𝒩𝒮2 ⊆ 𝒰𝒮𝑡
2

and 𝒞𝒮𝑡
2∪𝒰𝒮𝑡

2 = 𝒮2. Since we cannot distinguish between
the latter two, we make predictions for them using 𝑀 𝑡

1 , and
we assign the predicted labels using the learned 𝑜𝑡ℎ𝑡

1,1. With
the predicted and actual labels (which are available when 𝑝2
ends), we can then compute the classification metric. This is
visually presented in Figure 4 in the white area. As discussed
previously, we are not able to update the prediction model
𝑀 𝑡

1 itself. However, we can change the threshold we use to
assign the predicted class from the predicted probabilities
which is the topic of Section 4.

4. OPUS framework
In this section, we sketch the idea behind OPUS and then
formalize it. Table 2 summarizes the new symbols. An
overview of how OPUS adds to the existing prediction prob-
lem is shown in Figure 4.

We start from 𝒞𝒮𝑡
2 and 𝒰𝒮𝑡

2. As we do not know the
labels of the latter, we cannot use these consumers to update
𝑀 𝑡

1 . We can however compute two characteristics about
the current loyalty campaign 𝑝2: the average probability
computed by 𝑀 𝑡

1 to each of them. We refer to these as
the average converted probability 𝑎𝑐𝑝𝑡1,2 and the average
nonconverted probability 𝑎𝑛𝑐𝑝𝑡1,2. The subscript 1 indicates
that 𝑀 𝑡

1 is used for the model, the subscript 2 that 𝒞𝒮𝑡
2 and

𝒰𝒮𝑡
2 are used for the consumers. We can do the same for

𝑝1, using 𝒞𝒮𝑡
1 and 𝒰𝒮𝑡

1 with 𝑀 𝑡
1 to compute 𝑎𝑐𝑝𝑡1,1 and

𝑎𝑛𝑐𝑝𝑡1,1 respectively. In general, for loyalty campaigns
𝑝𝑖, 𝑝𝑗 and time 𝑡 we have 𝑎𝑐𝑝𝑡𝑖,𝑗 = 𝜇𝑒∈𝒞𝒮𝑡

𝑗
[𝑀 𝑡

𝑖 (𝑒)] and

𝑎𝑛𝑐𝑝𝑡𝑖,𝑗 = 𝜇𝑒∈𝒰𝒮𝑡
𝑗
[𝑀 𝑡

𝑖 (𝑒)]. Note that these values do not
necessarily say something about the model quality. On the
one hand, we expect 𝑎𝑐𝑝𝑡1,2 to be high, since we know that
it evaluates only positive consumers. On the other hand,
we cannot make an expectation for 𝑎𝑛𝑐𝑝𝑡1,2, as it evaluates
negative and possibly also positive consumers. One thing



Figure 4: The original prediction task (white area with solid
bounds) and how OPUS extends it (gray area with dashed bounds).
The set of converted consumers 𝒞𝒮 is now used to tell something
about the model.

Table 3
All threshold methods evaluated in this paper

Type Name Description

B
as

e Regular No altered threshold (0.5)
𝑜𝑡ℎ𝑡

𝑖,𝑖 Optimal threshold from training phase

H
eu

ri
st

ic ∅𝑎𝑐𝑝 𝑜𝑡ℎ𝑡
𝑖,𝑖 multiplied by the ratio of 𝑎𝑐𝑝

∅𝑎𝑛𝑐𝑝 𝑜𝑡ℎ𝑡
𝑖,𝑖 multiplied by the ratio of 𝑎𝑛𝑐𝑝

Δ𝑎𝑐𝑝 𝑜𝑡ℎ𝑡
𝑖,𝑖 increased by the difference of 𝑎𝑐𝑝

Δ𝑎𝑛𝑐𝑝 𝑜𝑡ℎ𝑡
𝑖,𝑖 increased by the difference of 𝑎𝑛𝑐𝑝

TP
M DT 𝑇𝑃𝑀𝑖,𝑗 , with Decision Tree Regressor

RF 𝑇𝑃𝑀𝑖,𝑗 , with Random Forrest Regressor

to note is that for 𝑎𝑐𝑝𝑡1,2 we only evaluate consumers that
have already converted by time 𝑡 in 𝑝2. It might be that for
𝑡 early in the loyalty campaign we are including only a very
specific subset of eager consumers. Such consumers may
show different behaviour from consumers that converted
later in the loyalty campaign. As such, 𝑎𝑐𝑝𝑡1,2 may not be an
accurate representation of the average predicted probability
of all positive consumers, 𝑎𝑐𝑝𝑡𝑒1,2. This is not a problem
per se. First, the model is still trained on all consumers, it
therefore also captures behaviour from the consumers that
convert later. Second, we can compare 𝑎𝑐𝑝𝑡1,2 to 𝑎𝑐𝑝𝑡1,1. As
such, both will be biased towards early redeemers if 𝑡 is
small. Therefore, we expect to compare the same type of
consumers. We can therefore use these values to compare
𝑝1 and 𝑝2 and adapt the prediction threshold.

As we cannot change 𝑀 𝑡
1 , the best we can do is changing

the prediction threshold. The best value is the one which
is computed based on the labelled sets of consumers of the
second loyalty campaign; 𝒫𝒮2 and 𝒩𝒮2. In line with the
previous indexing, this value is 𝑜𝑡ℎ𝑡

1,2. We can only know
this value once 𝑝2 ends, so during the loyalty campaign we
need different ways of estimating it. Apart from the Baseline
methods, we differentiate between Heuristic thresholds and
Learned thresholds. All methods are presented in Table 3.

4.1. Baseline thresholds
For the baselines we consider values that at most use the
training data, so we only require data from the first loyalty
campaign. Without any alteration, a baseline of 0.5 is often
used as standard. We further add the optimal threshold
based on the training data, 𝑜𝑡ℎ𝑡

1,1.

4.2. Heuristic thresholds
For the heuristic thresholds we consider values that also
make use of the second loyalty campaign, and which can
be used without further knowledge. For this, we consider
four linear formulas. The first, ∅𝑎𝑐𝑝, multiplies the optimal
thresholds from training, 𝑜𝑡ℎ𝑡

1,1 with the ratio between the
average converted probabilities, 𝑎𝑐𝑝𝑡1,2/𝑎𝑐𝑝

𝑡
1,1. The idea

behind this method is that if the average probability of the
converted consumers has increased (or decreased), then the
model likely overestimates (underestimates) the probability
of a consumer being positive. Similarly, we can also use
the average non-converter probabilities for this through
multiplying 𝑜𝑡ℎ𝑡

1,1 by 𝑎𝑛𝑐𝑝𝑡1,2/𝑎𝑛𝑐𝑝
𝑡
1,2. We refer to this as

the ∅𝑎𝑛𝑐𝑝 method. Apart from the ratio, we can also take
the difference, adding 𝑎𝑐𝑝𝑡1,2 − 𝑎𝑐𝑝𝑡1,1 to 𝑜𝑡ℎ𝑡

1,1, which we
refer to as ∆𝑎𝑐𝑝. The ∆𝑎𝑛𝑐𝑝 method is defined in a similar
way. Note that in principle any of these four may result in
a value above 1, and the difference based heuristic method
may result in a value below 0. This does not invalidate the
threshold, but it means that all entities will be predicted to
be negative or positive, respectively.

4.3. Learned thresholds
For the learned thresholds we need full information about
the second loyalty campaign, meaning we can only apply
the learned thresholds to a third loyalty campaign. What the
heuristic methods have in common is that they use one or
more of the 𝑎𝑐𝑝, 𝑎𝑛𝑐𝑝 and 𝑜𝑡ℎ values to make an estimation
about the target value (𝑜𝑡ℎ𝑡

1,2). For the final set of threshold
estimation methods, we train a regression model, which
we refer to as the threshold prediction model, or 𝑇𝑃𝑀 . If
needed, we refer to 𝑀 𝑡

1 as the consumer prediction model
to distinguish between the two. 𝑇𝑃𝑀 takes as descriptive
space all known values at 𝑡: the (non-)converted probabili-
ties 𝑎𝑐𝑝𝑡1,1, 𝑎𝑐𝑝𝑡1,2, 𝑎𝑛𝑐𝑝𝑡1,1, 𝑎𝑛𝑐𝑝𝑡1,2, the optimal training
threshold 𝑜𝑡ℎ𝑡

1,1, the training metric value 𝑚𝑒𝑡𝑟𝑖𝑐𝑡1,1, the
model specification (type and encoding) and the point in
time 𝑡. This is represented by the red lines Figure 4. As
target space, we have the value of 𝑜𝑡ℎ𝑡

1,2. We can sample
these values for different values of 𝑡 and for each of the
different model specifications. Using two loyalty campaigns,
we create a training set for 𝑇𝑃𝑀 , with the target values
coming from the second loyalty campaign and the descrip-
tive features from both loyalty campaigns. We denote this
𝑇𝑃𝑀 as 𝑇𝑃𝑀1,2, without the superscript 𝑡 as multiple
values of 𝑡 are used to train 𝑇𝑃𝑀1,2. Note that we cannot
use 𝑇𝑃𝑀1,2 to estimate a threshold to use during 𝑝2, as 𝑝2
needs to be finished before 𝑇𝑃𝑀1,2 can be learned. OPUS
does not depend on the specific regressor used as a base
model for 𝑇𝑃𝑀 , in Section 5 we evaluate Decision Tree
and Random Forest regressors.

The idea behind the learned thresholds is that 𝑇𝑃𝑀1,2

learns how to adapt the prediction method (model and
threshold) from one loyalty campaign to another. This
means we could learn how the prediction method is best



‘transformed’ from 𝑝1 to 𝑝2, and then apply this learned
transformation. Suppose that 𝑝1 rewards glassware, 𝑝2 re-
wards pans, and a third 𝑝3 rewards kitchen knives. If we
learn a transformation from glassware to pans, then we
can assess 1) how well does it work on transforming the
prediction method for a different set of consumers from
glassware to pans and 2) how well does that transformation
apply to the transformation from pans to kitchen knives. In
the evaluation in Section 5 we limit the evaluation to the
first due to the unavailability of additional data on a third
loyalty campaign.

4.4. Existing Threshold Adaption techniques
OPUS is not the first framework that optimizes thresholds.
In GHOST [14], the optimal threshold of any classifier is
optimized on a validation set. The metric value for several
thresholds is computed and averaged over several stratified
subsets of a validation set. While this technique may prove
effective for finding an optimal threshold for the original
training and validation data, there is no update in a later
stage, and such an update would require labelled data. As
such, GHOST is not suitable for the problem at hand. Simi-
larly to GHOST, [15] proposes a method to find the optimal
threshold in a training set. The authors prove that for such
a method only the probabilities of positive class are required
when optimizing for 𝐹1. While this technique potentially
saves computation time, it is not universally applicable to
all metrics. In this paper we optimize the thresholds by
evaluating all predicted probabilities, and selecting the one
that optimizes the target metric. Finally, [16] proposes a
technique to adapt the separating hyperplane position of
SVMs to improve its predictive quality. OPUS is different
from these because it tries to optimize the threshold using
the new, partly labelled data in an online fashion. OPUS is
designed to improve the predictions under concept drift.

5. Experimental Evaluation
For the experimental evaluation1 we use data from a real-
world retailer containing a total of about 160 000 consumers
shopping in exactly one of two consecutive loyalty cam-
paigns, 𝑝1 and 𝑝2. We partition the consumers in ten sep-
arate datasets 𝑐1 through 𝑐10. For each dataset we build
several prediction models based on a grid-search over hyper-
parameters and at different timesteps relative to the start of
the loyalty campaign.

Models are trained and tested at multiple points in time
relative to the loyalty campaign, after 2, 4, 6, . . . , 18 weeks
into the campaign, ending before 𝑡𝑒. The encoding of con-
sumers is based on the data available from the pre loyalty
campaign period and the data during the loyalty campaign
up to 𝑡. We consider three hyper-parameters: the base
model, the encoding technique, and a strategy. The base
models are the consumer prediction models, for which we
use 𝑘-nearest neighbours (𝑘NN), decision tree classifiers
(DTs), support vector classifiers (SVCs) and Adaptive Hoeffd-
ing Option Trees (AHOTs), all with their default parameters
in Scikit-Learn for 𝑘NN, DTs, SVCs, and Scikit-Multiflow
[17] for AHOTs, except for setting a constant seeding and
training the SVCs on probabilities instead of labels. The en-
coding techniques define what type of features we use about
a consumer. The features are based on individual visits to

1For the implementation, see github.com/YorickSpenrath/opus

the store, using aggregates based on [18] and descriptive
labels based on [19] We finally adopt two strategies: with
and without adding the converted consumers in the test
set to the training set. In either strategy, the prediction
quality metrics are only computed on the non-converted
consumers in the test set. For each timestep we select the
hyper-parameter combination with the best performance
during the training phase using 𝑜𝑡ℎ𝑡

1,1 to report the results
for all threshold estimation methods.

For each combination of hyper-parameters we compute
𝑎𝑐𝑝𝑡1,𝑖, 𝑎𝑛𝑐𝑝

𝑡
1,𝑖, and 𝑜𝑡ℎ𝑡

1,𝑖 for 𝑖 ∈ {1, 2} and each timestep
𝑡. On the one hand we can use this to compute all threshold
estimation methods discussed in Table 3. On the other hand
we can use all combinations to train threshold prediction
models. For each dataset 𝑐𝑥 we compute two 𝑇𝑃𝑀s, one
using a Decision Tree regressor, 𝐷𝑇𝑥, and one using a Ran-
dom Forest regressor 𝑅𝐹𝑥. These 𝑇𝑃𝑀𝑠 are then used in
every other dataset 𝑐𝑦 , 𝑦 ̸= 𝑥, to estimate optimal thresh-
olds. We also add two results for comparison. The first uses
the actual optimal threshold (𝑜𝑡ℎ𝑡

1,2) and the second uses
a prediction model learned on 75% of the data of loyalty
campaign 𝑝2 and tested on the remaining 25% (Retrain).
Both these methods violate the train-then-test principle but
are added as a comparison to how close we can get.

During the training phase, models are trained on a strati-
fied 75% split of the consumers that visited the store during
loyalty campaign 𝑝1. The remaining 25% are used as test
set. During the inference phase, models are trained on all
consumers that visited the store during loyalty campaign
𝑝2. The consumers that visited the store by time 𝑡 are used
as test set. The entire test set is used to compute 𝑜𝑡ℎ𝑡

1,𝑖

using the model trained on the training set. The converted
(non-converted) consumers by time 𝑡 in the test set are used
to compute 𝑎𝑐𝑝𝑡1,𝑖 (𝑎𝑛𝑐𝑝𝑡1,𝑖). The non-converted consumers
by time 𝑡 are used to compute the model performance for a
given threshold estimation method.

Next to these methods, we also apply PU-learning defined
by [5]. For this we use the same hyper-parameters as for
the other experiments. We first find the best combination
based on loyalty campaign 𝑝1 and then report the score for
that hyper-parameter combination in 𝑝2, computed over all
non-converted consumers at the respective point in time.

We apply the above for both the 𝐹1 and Accuracy metrics.
We present two types of results: those for timestep 𝑡 = 4,
separated per dataset, and those for all timesteps, aggregated
over the datasets. The reason for separately reporting 𝑡 = 4
comes from domain knowledge, this is the point in the
loyalty campaign where additional rewards for the loyalty
campaign can still be ordered by the supermarket.

5.1. Results for 𝑡 = 4

Results are presented per split (one per row) and threshold
estimation method (one per column) in Figure 5. We do
not report the values of the combinations where a 𝑇𝑃𝑀 is
learned from the same split as the data it is tested on (the
white diagonals).

Baseline methods For the baseline methods we see that
using the regular value is not much better than always pre-
dicting True or False, almost all scores being 0.50, which is
effectively the worst value one can get for with balanced ac-
curacy in a binary classification. Using the optimal training
threshold 𝑜𝑡ℎ𝑡

𝑖,𝑖 works much better, with the exception of
𝑐5, 𝑐6 and 𝑐7.

https://github.com/YorickSpenrath/opus
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Figure 5: Accuracy at timestep 4. Values shown in bold are strictly better than the 𝑜𝑡ℎ𝑡
𝑖,𝑖, the ones in italic are strictly smaller.

Higher values correspond to a brighter colour. The white diagonals are skipped since those the 𝑇𝑃𝑀 would be trained on the
same split we test it on. Some scores for PU-learning are left out; for these splits there were not enough converted consumers
to train a meaningful prediction model.

Heuristic methods For the heuristic methods we have
that, except for (𝑐8, ∆𝑎𝑛𝑐𝑝), the 𝑎𝑛𝑐𝑝 methods consistently
performs as well or better than the baseline 𝑜𝑡ℎ𝑡

𝑖,𝑖. The 𝑎𝑐𝑝
values do much worse however, especially for the ∆𝑎𝑐𝑝.
As explained in Section 4.2, if the difference between 𝑎𝑐𝑝𝑡𝑖,𝑖
and 𝑎𝑐𝑝𝑡𝑖,𝑗 is too high, this method might end up predicting
all shoppers as redeemers or all shoppers as non-redeemers.
This is what happens for splits 0, 2 and 8.

Learned methods With only a few exceptions, the
learned methods always perform at least as good as the
baseline and often beat it. Furthermore, for most splits the
best values even come close to the results for 𝑜𝑡ℎ𝑖,𝑗 , the
value which we aim to estimate. Next to this, we see that
the Random Forest 𝑇𝑃𝑀 performs almost always as well
as or better than the Decision Tree based 𝑇𝑃𝑀 , compared
on the same combination of splits. This is to be expected
given the complexity of the Random Forest model and that
it can as such capture more difficult relations.

PU-LearningOne weakness of PU-learning is if the num-
ber of known positive labels is small. This results in a base
prediction model that cannot predict positive points, result-
ing in an average probability of 0 for the known positive
labels. In such a scenario, PU-learning fails to produce any
result. This is what happens in 4 of the splits. Note that
OPUS does not have this problem, as we are using the la-
belled data from last loyalty campaign. In the splits where
there are enough known positive labels, it is still outper-
formed by OPUS, for a similar reason.

5.2. Results aggregated per timestep
We next aggregate the results over the splits for each
timestep in Figures 6a and 6b. We report the mean and
95% confidence interval of the metric for every timestep
(each row). For most estimation methods (each column) this
is the average over the 10 values from different splits, for the
learned estimation methods we consider all combinations.
In other words, the reported aggregated values for 𝐷𝑇 and
𝑅𝐹 are taken over all 90 combinations.
Accuracy Some results from Section 5.1 can be trans-

ferred to more timesteps. The learned thresholds seem to
perform better than using 𝑜𝑡ℎ𝑡

𝑖,𝑖. Note that, as we have
averaged over both the splits used for the evaluation as
well as the splits used for computing the 𝑇𝑃𝑀 , this result

describes the benefit of using the learned method in OPUS
in general. We see what one can on average expect using
any other dataset to train the 𝑇𝑃𝑀 to estimate the opti-
mal threshold is beneficial. What is more, mainly for the
Random Forest 𝑇𝑃𝑀 , we see that we get values that are
close to using the actual optimal threshold 𝑜𝑡ℎ𝑡

𝑖,𝑗 . For the
heuristic thresholds, we see that the ratio-based ones (∅)
are performing close to or better than the 𝑜𝑡ℎ𝑡

𝑖,𝑖 baseline.
For PU-learning we see that the results improve over time
as more positive labels are known. This is to be expected,
though it does not yet catch with OPUS methods.
F1 We see something similar to the accuracy results. This

is expected, as we are penalizing in a similar way by com-
paring the actual with the predicted labels for each shopper.
There are two important differences. The first is that we
see lower values. This is because 𝐹1 does not account for
class imbalance as we did for the balanced accuracy score.
Given that the redeemer class is much smaller than the non-
redeemer class, the reported values for 𝑜𝑡ℎ𝑡

𝑖,𝑗 and Retrain
are reasonable. This is also seen by the non 𝑜𝑡ℎ𝑡

𝑖,𝑖 baselines,
which have a much lower score. The second is that we are
further off from the optimal thresholds 𝑜𝑡ℎ𝑡

𝑖,𝑗 . This is likely
because of a similar reason: the 𝐹1 is much more penalizing
for imbalanced datasets, and as such, being able to use the
optimal thresholds/all labels allows for a much better score
than estimating it using any of the methods from OPUS.
Like accuracy, the results of PU-learning improve over time,
eventually even improving over OPUS methods. The lower
accuracy and higher 𝐹1 for PU-learning is likely caused by
the unbalanced dataset as well.

6. Conclusion
In this paper we have presented OPUS, a framework to es-
timate a better prediction threshold when only one class
of the target labels is available. The advantage of such
optimizations is that we can adapt existing prediction mod-
els without having to rely on fully labelled data. This is a
more realistic assumption when the true label of one class
is deferred. OPUS makes use of two types of threshold esti-
mation methods, where learned methods are more effective
in getting to an optimal prediction threshold at the cost of
requiring more data (only being available at a third cam-
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Figure 6: a) Accuracy and b) 𝐹1 at each timestep, averaged over the splits with their 95% confidence interval. Values shown
in bold are strictly better than the 𝑜𝑡ℎ𝑡

𝑖,𝑖, the ones in italic are strictly worse (in terms of the reported mean). Better values
correspond to a brighter colour.

paign), compared to heuristic methods that do not have
these benefits or limitations. While the initial results are
promising, we want to elaborate the experimental analysis,
both by including more than two loyalty campaigns and
by applying OPUS on a different use case inside the student
learning domain. In the design of OPUS only characteristics
that belong to the current timestep are considered, not of
all previous timesteps. We argue that the progression of
these characteristics, as well as the model performance over
time, and how they compare to the same period in the pre-
vious loyalty campaign can be interesting to improve the
framework in future work.
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