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Abstract
Data analysis workflows are popular for sequencing activities in large-scale and complex scientific processes. Scheduling approaches
attempt to find an appropriate assignment of workflow tasks to the computing nodes for minimizing the makespan in heterogeneous
cluster infrastructures. A common feature of these approaches is that they already know the structure of the workflow. However, for
many workflows, a high degree of parallelization can be achieved by splitting the large input data of a single task into chunks and
processing them independently. We call this problem task granularity, which involves finding an assignment of tasks to computing nodes
and simultaneously optimizing the structure of a bag of tasks. Accordingly, this paper addresses the problem of task granularity for
metagenomic workflows. To this end, we first formulated the problem as a mathematical model. We then solved the proposed model using
the genetic algorithm. To overcome the challenge of not knowing the number of tasks, we adjusted the number of tasks as a factor of the
number of computing nodes. The procedure of increasing the number of tasks is performed interactively and evolutionarily. Experimental
results showed that a desirable makespan value can be achieved after a few steps of the increase.
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1. Introduction

Scientists in many domains, such as bioinformatics, remote
sensing, and physics, use Data Analysis Workflows (DAWs)
to sequence activities involved in large-scale and complex
scientific processes [1]; [2]. These DAWs are typically rep-
resented as a Directed Acyclic Graph (DAG), which consists
of a set of tasks and some directed edges between the tasks;
edges show data dependencies between tasks and the priority
order of task execution.

Scientists often use heterogeneous cluster infrastructures
to run their DAWs because of privacy and financial concerns.
Heterogeneous clusters provide high-performance comput-
ing environments that enable efficient data analysis and the
execution of large-scale DAWs in a reasonable amount of
time [3]. DAWs are often executed on large amounts of data,
resulting in long runtimes that can exceed days or weeks
[4]; [5]; [6]. Thus, in such environments, the key objective
is to schedule DAW tasks across computing resources in
such a way that the total execution time, also known as the
makespan, is minimized.

It is well known that a high degree of parallelization can
be achieved in many DAWs by splitting the input data of indi-
vidual tasks into chunks and processing them independently
[7]. For example, in metagenomic DAWs, the size of a ref-
erence genome as frequent input data can vary from several
KB to hundreds of GB, and the reference genome typically
contains thousands of genome files. The reference genome
can be divided into different bins of genome files and they
are processed by several independent tasks in parallel. The
main challenge here is how to partition the input data; what
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should be the appropriate size of each chunk of input data,
and how should each task be assigned to a computing node
so that the makespan is minimized. We call this problem task
granularity. In heterogeneous environments, this challenge
is aggravated because the computing power of the existing
computing nodes is different, so choosing the input size of
each task to be executed on each of these computing nodes
is a very effective means in optimizing the makespan. Since
each task of the DAW is equivalent to a job for the cluster
when a workflow is submitted for execution, the terms task
and job are used interchangeably in this study.

In this paper, we propose a novel approach to task granu-
larity for metagenomic DAWs in cluster infrastructures with
makespan minimization. We first formulate the problem as
a mathematical model. We solve then the proposed model
using the Genetic Algorithm method. Since the calculation
of makespan requires a proper estimation of tasks runtime,
we apply three different methods for this estimation and also
compare their accuracy.

The paper is organized as follows: Section 2 presents
a review of the related work, and Section 3 illustrates the
problem statement. The proposed mathematical model is
introduced in Section 4. Section 5 discusses solving the pro-
posed model using genetic algorithm. Job runtime estimation
is presented in Section 6, and experimental results are pre-
sented in Section 7. Finally, Section 8 provides concluding
remarks and plans for further studies.

2. Related works

In this section, we first discuss data access patterns used
in scientific workflows. We then cover the scheduling of
scientific workflows on heterogeneous clusters. Finally, we
focus on methods for predicting the runtime of tasks, as these
estimates are often used as input for scheduling approaches.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:somayeh.mohammadi@fu-berlin.de
mailto:l.pourkarimi@razi.ac.ir
mailto:manuez42@zedat.fu-berlin.de
mailto:aret01@zedat.fu-berlin.de
mailto:mecquenn@informatik.hu-berlin.de
mailto:leser@informatik.hu-berlin.de
mailto:Reinert@fu-berlin.de
https://creativecommons.org/licenses/by/4.0


2.1. Data access patterns used in scientific
workflows

The data access patterns of workflow applications have been
addressed by several studies [8]; [9]; [10]; [11]. Accordingly,
the most commonly used patterns in scientific workflows are
as follows (Fig. 1):

• Pipeline:This is the most basic and familiar pattern.
A set of computational tasks is chained in a sequence
such that the output of a parent task is the input of
its child task in the chain. Because of the line de-
pendencies in a pipeline pattern, the execution of a
task cannot begin until the execution of its parent has
completed and it has received the data generated by
its parent.

• Scatter: An input data is divided into several chunks.
These chunks are distributed into multiple tasks (a
bag of tasks), which can be executed simultaneously
because there are no dependencies between them.

• Gather: Multiple chunks of data are produced by
multiple tasks. All of them are used as input data by
a subsequent task. The later task may need to receive
all the chunks and integrate them to start execution.

Pipeline Scatter Gather

Data Task

Figure 1: Common data access patters in scientific workflows.

Obviously, the scatter pattern can be so effective in reduc-
ing makespan in a distributed environment such as a cluster
and cloud because it provides parallel execution of tasks on
computing nodes. The implementation of scatter is an NP-
hard problem (See Section 3.1), so the user is not able to do
it manually to achieve an acceptable makespan. In this study,
we propose an approach to address this problem.

2.2. Scheduling of scientific Workflows on
heterogeneous clusters

Generally, workflow scheduling on heterogeneous infrastruc-
tures can be done in two ways, statically or dynamically [12];
[2]. Static scheduling assigns tasks to compute resources in
advance, assuming that accurate information about workflow
and infrastructure resources is available. Dynamic schedul-
ing doesn’t require such assumptions. On the one hand, many
heuristic and meta-heuristic approaches have been provided
for this problem. HEFT [13] is considered to be the most
famous of these. On the other hand, mathematical optimiza-
tion approaches such as MILP [14] have proposed optimal
solutions to this problem and have also analyzed the problem
more extensively. However, the presented state-of-the-art
scheduling approaches have in common that they already

know the structure of the DAG and find an optimal or sub-
optimal assignment of tasks to the computing nodes.

By addressing the scattering problem of a bag, our pro-
posed approach not only provides a suitable structure for the
bag and consequently for the DAG, but also finds the best
scheduling of tasks to computing nodes with the objective of
minimizing the makespan.

2.3. Task runtime prediction

Most of state-of-the-art techniques for workflow scheduling
rely on accurate predictions of tasks runtime [15]. Therefore,
the problem of predicting the runtime of scientific workflow
tasks based on historical data has been studied extensively.
Recent research has used machine learning techniques to
address this issue [16]; [17]; [18]; [19]. They build their
initial models on historical data before the actual workflow
execution. [20]; [18] use neural network methods, which
are known to require large training data sets to perform well,
while [3] employs a Bayesian linear regression model, which
can work with few training points and provides uncertainty
estimates for its predictions. Most existing approaches use
the size of the file on the hard drive as input to their prediction
models.

In this research, the objective is to minimize the makespan.
To compute the makespan value, an acceptable estimate of
the runtime of jobs is required. Assuming that we have
some historical data of execution traces of jobs on computing
nodes, we use three different methods to predict the runtime
of jobs (See Section 6).

3. Problem statement

This study addresses the problem of job/task granularity of
scientific workflows in heterogeneous cluster environments
with the aim of minimizing makespan. The case study is
a metagenomic workflow where a reference genome con-
taining a set of genome files is the main input data of the
workflow. Building FM index (Full-text index in Minute
space) over a reference genome (reference genome index-
ing) is a common and time-consuming task in metagenomic
DAWs [21] and such a task is often used by the bioinfor-
matics workflow community, so it is a good case study for
optimizing job/task granularity.

In general, the system model includes the following steps:
the first step is to collect a historical dataset of job execution
traces on different computing nodes of the cluster. If this
dataset is not already available, it can be collected by data
sampling [3]. In the second step, a proper estimation of the
job runtime and its memory consumption is performed using
a prediction method. Then, by solving the proposed mathe-
matical model, the optimal size of each chunk of input data
for each job and also the assignment of jobs to computing
nodes is obtained. Finally, the optimal job granularity and
assignment is used to execute the DAW in the cluster.

3.1. A motivating example

Suppose there is a reference genome that contains five
genome files of the following sizes: g0 = 10, g1 = 15,
g2 = 20, g3 = 25, g4 = 35. Moreover, assume that the cluster
infrastructure has three computing nodes A, B and C. The
runtime of a job with an input size of S on the computing
nodes is calculated by the following functions:



• fA(S) = lnS2 +1
• fB(S) = lnS2 +2S
• fC(S) = lnS2 −4S−10
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(a) A possible assignment.
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(b) A better assignment.

Figure 2: Two possible job granularities and assignments with
different makespan values.

In Fig. 2, two different possible job building and assign-
ments of the genome files is depicted. However, there are
35 = 243 different states as a solution among which the solu-
tion with the minimum makespan is the best.

In a real example, Archaea1 has 488 genome files. As-
suming that the number of cluster computing nodes is 10.
Any approach based on complete enumeration and trial and
error for assigning these genomes to computing nodes re-
quires comparing a maximum number of 10488 to different
assignments. This approach is obviously impractical. It is
noticeable that Archaea is a very small reference genome
among the available reference genomes. Therefore, applying
the above mentioned approach for solving the related assign-
ment problem is not efficient or even applicable. The best
approach to deal with this problem is to create a mathemati-
cal model for the problem and then apply available efficient
algorithms for solving mathematical optimization models.

4. The proposed mathematical model

In a mathematical model, the objective function, decision
variables and problem constraints are expressed in mathe-
matical expressions. These models provide a deep insight
into the structure of the problem [12]; [22]. They are there-
fore suitable not only for solving the problem using classical
methods, but also for solving the problem using heuristic or
meta-heuristic methods.

The input data for the mathematical model are described
in Table 1. Also, this table explains the decision variables ex-
isting in the proposed model. In this section, the formulation
1https://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/

of the problem constraints and the objective function of the
proposed model are presented in detail.

4.1. Required memory for running jobs

This constraint states that the memory limitation of kth node
must be met. This constraint must be done for all jobs and
computing nodes.

memk ≥ fmem(
n

∑
i=1

Si · yi j · x jk)

∀ j ∈ {1,2, ...,J},∀k ∈ {1,2, ...,v}
(1)

For each J j and CNk, ∑
n
i=1 Si · yi j · x jk denotes the input size

of J j on CNk and fmem estimates the memory required for J j .

4.2. Assigning jobs to cluster nodes

Constraints (2) and (3) imply that non-empty jobs must be
assigned to exactly one node. Constrain (4) enforces that
empty jobs cannot be assigned to any node.

1
n

n

∑
i=1

yi j ≤
v

∑
k=1

x jk ∀ j ∈ {1,2, ...,J} (2)

v

∑
k=1

x jk ≤ 1 ∀ j ∈ {1,2, ...,J} (3)

v

∑
k=1

x jk ≤
n

∑
i=1

yi j ∀ j ∈ {1,2, ...,J} (4)

4.3. Objective function

For constructing the objective function the following points
should be highlighted:

• The objective function deals with the runtime of some
bags of jobs on some computing nodes.

• If tk (Eq. (5))denotes for the above mentioned time
for CNk then the total runtime (makespan) equals to
max(tk) 1 ≤ k ≤ v . The objective function aims
to minimize this time (Eq. (6)).

• When more than one task is assigned to a node, the
node wastes a certain amount of time between exe-
cuting two jobs. ∑

J
j=1(x jk −1) denotes that time.

• For each CNk, ∑
J
j=1 fk(∑n

i=1 yi j · si · x jk) calculates
the summation of the runtime of jobs assigned to
CNk. ∑

n
i=1 yi j ·si ·x jk is the input size of J j , in which,

fk() denotes an implicit function of that.

Runtime of jobs on each CNk is calculated by Eq.5.

tk = (
J

∑
j=1

x jk −1) · stk +(
J

∑
j=1

fk(
n

∑
i=1

yi j · si · x jk)) (5)

Therefore, the objective function of the model is as fol-
lows:

min(max(tk)) 1 ≤ k ≤ v (6)

This can be expressed as follows:

min α

subject to:

α ≥ tk ∀k ∈ {1,2, ...,v}
α ≥ 0



Table 1
Models parameters/variables and their description.

Notation of parameters Description

CN = {node1,node2, ...,nodev} Cluster node set
v The number of nodes of the cluster
CNk kth node of the cluster
memk Accessible memory size of CNk for running tasks
stk Switch time between two jobs for CNk

Gen = {g1,g2, ...,gn} The set of genomes of the reference genome
n The number of genomes of the reference genome
gi ith genome of the reference genome
Si Size of gi

Job = {J1,J2, ...,JJ} The set of jobs
J j jth job
J The number of jobs
Notation of decision variables Description

x jk 1 iff J j is assigned to CNk, otherwise 0
yi j 1 iff gi is binned to J j , otherwise 0

5. Genetic optimization for solving the
proposed model

Suppose there is a reference genome of a certain size with
genome files g1,g2, . . . ,gn. We want to group the genomes
into a number of jobs and then assign the jobs to computing
nodes CN1, . . . ,CNv of a cluster infrastructure.

It can be seen that the proposed model is a non-linear bi-
nary mathematical model. Due to the special structure of the
constraints and the objective function of this model, lineariz-
ing it leads to a binary linear model with a significantly large
number of constraints. Solving this model is very time con-
suming in terms of computation (it may even be impossible).
On the other hand, in contrast to classic approaches, using
genetic algorithms is a very powerful approach for treating
discret models even if the model is nonlinear [23]. Based on
this fact, using genetic approach can be an efficient approach
for solving the proposed model without any linearization. In
the following, we explain how to implement the presented
model using a Genetic Algorithm (GA).

5.1. Chromosome structure

GAs mimic optimization during optimization by modelling
genetic recombination and a fitness function. Hence, when
using GA to solve a particular problem, the first concern to
be addressed revolves around the determination of a suitable
chromosome coding. Each chromosome represents the dif-
ferent parameters that characterize a solution to the problem.
[24]. In the solution, we consider a population of individuals,
each individual being a potential solution to the problem de-
scribed by the individual chromosome. The initial population
is generated at random.

In this study, job granularity involves determining the as-
signment of genome files to jobs and the assignment of jobs
to cluster nodes. Thus, a solution (chromosome) is a two-
dimensional array in which the indices indicate the genome
file number. The elements of the first row contain the job
numbers and the elements of the second row contain the
computing node numbers. The representation of a chromo-
some in the GA implementation is shown in Fig. 3. As Fig.
3 shows g1 and g3 are assigned to J1 while g2 is assigned

to J4. Moreover, J1 and J4 are scheduled to CN3 and CN2,
respectively.

 1            2           3                                     nGenome file number

Job number

Node number

1 4 1 ...

3 2 3 ...

Figure 3: A chromosome encoding.

5.2. GA operators

The crossover operator can help to inherit some chromosome
fragments of excellent individuals to subsequent generations.
In this study, the single-point crossover technique [23] is
adapted during the performing of the crossover operator to
produce new individuals. These new individuals are then as-
sessed for their potential to contribute to the next generation
of the population. An example is shown in Fig. 4. After
crossover, the first new individual is not feasible to add to the
next generation because J5 has been assigned to two different
computing nodes.

The mutation operator is a technique that replaces some
gene values with others to increase population diversity. We
use swap mutation [25] to explore new regions of the solution
space, where two positions on a chromosome are randomly
selected and swapped. After mutation, the potential of new
individuals to contribute to the next generation of the popula-
tion is evaluated.

6. JOB RUNTIME ESTIMATION

In the GA algorithm, each individual should be assigned a
value of the fitness score, which is shown in the objective
function defined in Eq.5. Suppose the runtime of job j on
node CNk is equal to t j. The challenge here is that there is
no explicit function for calculating t j; in other words, how



Figure 4: An example of crossover.

long does it take to execute a job j of the size S j on a com-
puting node CNk? Therefore, we use the following different
methods to predict the runtime of jobs on computing nodes,
assuming that we have historical data from task execution
traces:

• Linear Regression: Linear regression is a popular
and simple machine learning algorithm that mod-
els the relationship between dependent and indepen-
dent variables by analyzing and learning from current
training results using a linear expression of indepen-
dent variables [26].

• Polynomial approximation: According to mathe-
matical theorems, any continuous function can be
optimally approximated by a suitable polynomial
[27]. Based on this theory, a polynomial of appropri-
ate degree can be used to approximate the unknown
function using the given historical data. In practice,
lower degree polynomials are considered to avoid the
socialisation of higher degree polynomials. Here we
only consider degrees one, two and three.

• Logarithmic of a polynomial approximation (log-
pol): As shown in [28], the curves of runtime ac-
cording to data input size are logarithmic like and on
the other hand, as mentioned above, the polynomials
are a suitable method for estimation, so we use a
combination of logarithmic and polynomial as a new
approximation method.

These methods assume that there is a relationship between
a task’s input size and its runtime, using the input size as
the independent variable. Thus, they can be used to predict
task runtime for any task input sizes. Similar to related work,
these methods use the size of the file on the hard disk as an
input to their prediction models. In a heterogeneous cluster,
a same task may have different run times on different com-
puting nodes. Therefore, the methods create their prediction
models for each computing node.

7. Experimental results

We developed a read-mapping workflow 2 for metagenomic
data in the popular workflow engine Snakemake [29]. The
workflow was run on Allegro 3, a cluster infrastructure. We
created a historical dataset from traces of the workflow exe-
cution on the cluster as a historical execution trace.

We selected and used three reference genomes with dif-
ferent sizes (small, medium and large) as input data of the
2https://github.com/CRC-FONDA/A2-job-granularity/tree/main/MG-
HIBF

3https://www.mi.fu-berlin.de/w/Cluster/WebHome

workflow to perform the experiments. The specifications of
the input data are described in Table 2. We also looked into
different cluster sizes of 4, 8, 16, and 24 computing nodes in
the experiments.

As previously stated, our approach consider the job gran-
ularity and scheduling problems simultaneously for a bag
of task in a workflow while related works have addressed
only the scheduling problem; Indeed, they have assumed
that there are a number of jobs, each with a certain size, and
they schedule these jobs to the cluster nodes so that the total
runtime is minimized.

Most existing approaches use the file size on disk as the
input for their predictions or approximate models. In [30] is
a detailed discussion of why uncompressed input data size
for compressed files should be used. Accordingly, we use the
uncompressed file size to predict the runtime and the used
memory of jobs.

Table 2
Reference genomes specifications.

Reference Genome Data Size # Genome files

Archaea 1.4 GiB 488
Bacteria_1 4 30 GiB 7167
Bacteria_2 5 88 GiB 22185

7.1. Accuracy comparison of job runtime
estimation methods

We compare the accuracy of the methods used to estimate
job runtime (See Section 6). The linear regression was imple-
mented using the sklearn.linear_model6 library. The polyno-
mial and log-pol have been implemented using polyfit() from
the Numpy7 library and Curve_fit() from the Scipy.optimize8

library, respectively. For comparison we use the Mean Ab-
solute Percentage Error (MAPE). This metric is calculated
using the Eq. 7 where Ai is the actual value, Fi is the pre-
dicted value and n is the number of fitted points.

MAPE =
1
n

n

∑
i=1

|Ai −Fi

Ai
| (7)

Figs. 5-7 show results for each input data separately with
different cluster sizes. As shown in these figures, the polyno-
mial method gives a more accurate estimate of the values of
job run times than log-pol. Log-pol also outperforms linear
regression.

7.2. Changing the number of jobs to improve
makespan

One of the main challenges in this problem is that the number
of jobs is not known in advance. The most obvious idea is
to consider this number as equal to the number of genome
files, i.e. n. This seems logical at first sight, since the possi-
bility to consider empty jobs allows to potentially find any
possible clustering for genome files in the form of jobs. How-
ever, from a practical point of view, this is inappropriate and
impossible in most cases, because due to the large number
of genome files, the number of decision variables and con-
straints increases significantly, making it impossible to solve
6https://scikit-learn.org/stable/modules/linear_model.html
7https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize
.curve_fit.html
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Figure 5: Accuracy of different prediction methods for Archaea.
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Figure 6: Accuracy of different prediction methods for Bacteria30G.

the problem in a reasonable time, and even if the problem
is solved, the propagation of computational errors leads to
incorrect and unreasonable results.

Considering that jobs are supposed to be assigned to nodes,
another idea is to consider the number of jobs as a factor of
the number of nodes, i.e. v; more precisely:

J = kv f or some k ∈ N (8)

The coefficient k in the Eq. 8 changes interactively and
evolutionarily from one to higher; that is, after solving the
problem for k=1 and calculating the makespan, we consider
the resulting solution as an initial solution (an individual of
the initial population) for k=2. This procedure continues and
evolves until the distance between two consecutive makespan
values is negligible or insignificant from the decision maker’s
point of view. On the one hand, this process is compatible
with the evolutionary nature of the GA used to solve the
above sequential problems, because in each step, with the
solution of the previous step as the initial solution, the value
of the fitness function in the current step starts to improve
from the value of the previous step. Therefore, the makespan

value in each step is better than or equal to the previous
step (i.e., it evolves). On the other hand, given the stopping
condition of the procedure, there is no need to solve problems
with large number of jobs.

From the experimental results presented in Tables 3 to 5,
the following points can be highlighted:

• As the number of jobs increases, the makespan and
the number of unused nodes decrease.

• As the number of nodes increases, the makespan
decreases.

• The procedure of increasing the number of jobs may
be stopped for two reasons: Firstly, increasing the
number of jobs does not improve the makespan (sig-
nificantly). Secondly, increasing the number of jobs
may be stopped by decision maker (especially if no
significant improvement in makespan is expected).

• As can be seen in the fourth row of Table 3, the
makespan does not improve as the number of jobs
increases from v to 2v. Obviously, a higher number
of jobs does not improve the makespan (such cases
are marked in bold in the tables). Thus, we have
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Figure 7: Accuracy of different prediction methods for Bacteria88G.



Table 3
Obtained results for Archaea.

J = v J = 2v J = 3v J = 4v
#Nodes Makespan #Unused nodes Makespan #Unused nodes Makespan #Unused nodes Makespan #Unused nodes

4 539 2 404 0 404 0 - -
8 339 1 334 0 312 0 312 0
16 285 5 252 0 251 0 251 0
24 206 5 206 3 - - - -

Table 4
Obtained results for Bacteria-30GiB.

J = v J = 2v J = 3v J = 4v
#Nodes Makespan #Unused nodes Makespan #Unused nodes Makespan #Unused nodes Makespan #Unused nodes

4 5804 1 5124 0 5077 0 5077 0
8 3050 1 2957 0 2952* 0 - -
16 1937 3 1937 3 - - - -
24 2016 7 1859 1 1859 0 - -

not calculated them. Moreover, in the last row of
Table 5, increasing the number of jobs from 3v to 4v
only leads to 1% decrease in the makespan, which is
not significant (such cases are marked in the tables
in bold and with an asterisk). So we stopped the
procedure. It should be noted that the DM may stop
the procedure when the number of jobs is 3v due to
the insignificant improvement in makespan and the
abandonment of an unused node.

8. Conclusion and Future works

In this paper, an approach to the task/job granularity prob-
lem for metagenomic DAWs in cluster infrastructures with
makespan minimization was proposed. The problem was first
formulated as a mathematical model and then the proposed
model was solved using the GA method. One of the main
challenges in this problem is that the number of jobs is not
known in advance. We overcame this challenge by adjusting
the number of jobs as a factor of the number of computing
nodes. For each increase in the number of jobs, the makespan
is calculated. This procedure continues and evolves until the
distance between two successive makespan values is negligi-
ble or insignificant from the decision maker’s point of view.
Experimental results showed that a desirable makespan value
can be obtained after a few steps of increasing the number
of jobs. Furthermore, the calculation of makespan requires
a proper estimation of the task runtime, so we applied three
different methods for this estimation. Experimental results
showed that the polynomial approximation outperforms.

In the future, we aim to generalize our proposed model
so that it can be applied to other scientific domains. Since
the proposed approach does not schedule the workflow, but
optimizes a single step of the workflow, we intend to integrate
it into a scheduling approach in the future work.
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