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Abstract
Large companies typically face a problem of multiple database records describing the same physical object (a.k.a. duplicates).
There are multiple sources of duplicates, e.g., using multiple but not synchronized data repositories, applications that do not
check for duplicates before inserting data into a repository, and data errors. This problem is of particular importance while
dealing with personal data, e.g., in healthcare, banking, insurance. To handle the problem of duplicates, the state-of-the-art
data deduplication pipeline was developed. The pipeline is equipped with multiple complex algorithms. A promising direction
in data deduplication is machine learning. In this paper, we report our experience in researching and developing two
approaches to deduplication of customer records in a financial institution. These approaches are based on: (1) statistical
modeling and (2) machine learning. In particular, this paper summarizes our findings from comparing these two approaches.
The reported research was done within a R&D project for the biggest Polish bank - PKO BP.
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1. Introduction
Large organizations/companies face the problem of du-
plicated data. This problem is frequent for companies
that store customer data. Duplicated and outdated data
cause economic losess, increase customer dissatisfaction,
and deteriorate the reputation of a company. For these
reasons, data integration, cleaning, and deduplication of
customer records are one of the core processes in data
governance.

Data deduplication has been extensively researched
in multiple research centers worldwide. The research
resulted in a base-line data deduplication pipeline,
e.g., [1, 2, 3]. It has become a standard pipeline for mul-
tiple data deduplication projects in various application
domains. The pipeline includes four basic tasks, namely:

• blocking (a.k.a. indexing), which arranges records
into groups, such that each group is likely to in-
clude duplicates,

• block processing (a.k.a. filtering), which elimi-
nates records that do not have to be compared,

• entity matching (a.k.a. similarity computation),
which computes similarity values between record
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pairs, and
• entity clustering, which creates larger clusters of

similar records.

Each of these tasks is supported by multiple algorithms.
Some of them apply very complex statistical models
(SM), whereas others are based on standard machine
learning (ML), including deep learning (DL). The ML
techniques typically apply various classification mod-
els to divide records into classes of matches, probably
matches, and non-matches, e.g., [4, 5, 6]. The DL tech-
niques apply language models for both record blocking
and record matching, e.g., [7, 8, 9, 10, 11].

Since there are two families of approaches to data dedu-
plication, a question is which family offers more accu-
rate deduplication models. In this paper, we outline our
experience and findings on designing a deduplication
pipeline for customer data. We designed two versions of
the pipeline. The first one uses statistical modeling for dis-
covering duplicates. The second one uses ML techniques.
Both pipelines were developed within a R&D project for
the biggest Polish Bank PKO BP (https://pkobp.pl). The
pipelines were tested on a real data set of over 5 million
of customer records. To the best of our knowledge, this
is the biggest deduplication experiment comparing SM
and ML approaches, reported in the research literature.

2. Tasks in the SM pipeline
We built the SM pipeline as the extension of the base-line
data deduplication pipeline (BLDDP), to serve the par-
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Figure 1: The tasks in the deduplication pipeline based on statistical modeling

ticular goals of the project. First, our pipeline explicitly
includes all steps that we found to be crucial for the dedu-
plication process (whereas in the BLDDP, some steps are
implicit). Second, the last two tasks in our pipeline ex-
tend the BLDDP and they allow to further merge groups
of similar records into subgraphs. Third, our pipeline
accepts partially dirty data, as in practice it is impossible
to perfectly clean all data. The SM pipeline applied in the
project is shown in Figure 1.
SMT1: In this task, grouping attributes are selected,

which allow to co-locate similar records in the same
group. In our project, initially 20 candidate grouping at-
tributes were selected by domain experts. The attributes
allowed either to identify customers, or they were error-
free and not null, or their values haven’t changed over
time. The candidate attributes were further verified by
means of a method that we developed. For each attribute,
the method computed a value representing its fit as a
grouping attribute [12]. Finally, the obtained ranking of
attributes was verified by domain experts again. Based
on their input, the final set of grouping attributes was
selected.

SMT2: Using grouping attributes obtained from SMT1,
records are arranged into groups via sorting. The method
we used is very similar to the one described in [13], how-
ever multiple sortings were used.

SMT3: The goal of this task is to select attributes that
will contribute to assessing a similarity value between
records in each pair. Attributes that: (1) represent record
identifiers, (2) do not include nulls, (3) include cleaned
values, (4) include unified (homogenized) values, (5) do
not change values over time are good candidates. Unfor-
tunately, in real scenarios, attributes exposing all these
characteristics are often unavailable. In our project, the
set of attributes selected for comparing record pairs is
based on the aforementioned preferable attribute char-
acteristics and on expert knowledge. The set includes
18 attributes describing individual customers (including
personal data and address).

SMT4: Similarities between corresponding attributes
(selected in SMT3) in pairs of records are compared by
means of similarity measures. The literature lists well
over 30 different similarity measures for text data (e.g.,
[14, 15]). Unfortunately, there are no rules that would
guide a data scientist for selecting the right similarity
measure for an attribute having a given characteristic of

its values. For this reason, in our project, the selection
of the most suitable similarity measures for our problem
was based on excessive experimental evaluation [16, 17].

SMT5: Measures selected in SMT4 are applied to com-
puting similarities of corresponding attribute values, con-
stituting customer pairs of records. An adequate similar-
ity measure is applied to every pair of attributes. Based
on attribute similarities, an overall record similarity value
is computed. In a simple scenario, all compared attributes
are equally important. In practice, some attributes may
contribute more to records similarity than others. For
example, a last name is more important (usually more
clean and not null) than an email address (frequently
null and changing in time). For this reason, the com-
pared attributes must be weighted, resulting in an overall
weighted similarity of records. The first challenge in
task SMT5 is to define adequate weights for attributes.
In practice, these weights are defined by a try and error
procedure and by applying expert knowledge. Based on
the similarity of a pair of records, the pair is classified
either as duplicates (class T), or probably duplicates (class
P), or non-duplicates (class N). For this kind of classifica-
tion, the so-called similarity thresholds have to be defined
for each class. These thresholds impact the number of
true positives and false negatives. Setting adequate val-
ues of the thresholds is another challenge in SMT5. In
practice, the thresholds are defined experimentally with
the support of domain experts [14]. In our project, to
find attribute weights and similarity thresholds we apply
mathematical programming [17].

SMT6: To compare records in a group, a popular tech-
nique, called sorted neighborhood is used. It accepts one
parameter that is the size of a sliding window in which
records are compared. This parameter impacts the com-
putational performance and the number of discovered
(potential) duplicates. Defining the size of the sliding
window is challenging. A window that is too narrow
may prevent from discovering all potential duplicates,
whereas a window that is too wide will allow to discover
more potential duplicates at a cost of unnecessary time
overhead caused by comparing more records - some of
them will be false positives. In our project, the window
size was selected by means of excessive experiments [13].
SMT7: Since similar records may form groups larger

than pairs, in order to find such groups, all similar pairs
of records have to be combined. To this end, we cre-
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Figure 2: The tasks in the deduplication pipeline based on machine learning

ated a record similarity graph. In this graph, nodes repre-
sent records and edges represent similarity links between
records (labeled with similarity values).
SMT8: Similar records in the record similarity graph

can be extracted by cutting the graph into sub-graphs.
In our project, we applied clustering of records by using
similarity values of pairs of records computed in SMT5.
For this purpose, we modified the Highly Connected Sub-
graphs (HCS) clustering algorithm [18]. HCS recursively
applies the minimum cut to the record similarity graph
(separately for each connected component) until the ob-
tained sub-graphs are highly connected, i.e. the size of
the minimum cut is larger than the number of nodes di-
vided by two. The resulting sub-graphs form the groups
of similar records. The modifications include: using a
minimum weighted cut instead of a minimum cut, search-
ing for additional edges in sufficiently small subgraphs
and assigning resulting singletons to the most similar
groups after the clustering ends. The performance of
the modified HCS is close to linear w.r.t. the number of
pairs, since larger connected components in the similarity
graph are rare.

Notice that the pipeline we proposed, is mapped to the
BLDDP as follows: SMT1 realizes block building in the
BLDDP; SMT2 realizes block processing; SMT3, SMT4,
and SMT5 realize entity matching; SMT6, SMT7, and
SMT8 realize entity clustering. A more detailed descrip-
tion of our pipeline is available in [17].

3. Tasks in the ML pipeline
The machine learning pipeline applied in the project is
shown in Figure 2.
MLT1: in this task, 1000 pairs of records were manu-

ally assigned labels by domain experts. A label indicated
one of the three classes, namely T, P, or N. All the la-
bels were roughly equally represented. Since the Bank
database included over 20 millions of customer records,
it was not possible to label manually a sufficiently large
sample of record pairs. For this reason, in MLT2 the set
of rules was built manually with the support of domain
experts. It is important to stress that high quality of these
rules is crucial for subsequent tasks. The rules were next
applied in task MLT3 to automatically label a set of 50
000 pairs of customer records.

It was assumed that the effect of applying the rules

was to determine decisions consistent with those of the
domain experts. Even for a small set of attributes being
compared in pairs (18 attributes in our case), attempts
to create simple rules of type if X then Y else Z turned
out to be challenging. It was due to the very different
scenarios present in the data, in particular, the lack of
100% similarity between the compared attribute values.
It turned out that rules that only confirmed whether a
given pair could be a representative of a given class T, P,
or N were much easier to interpret. This led to a set of
𝑚 rules under the following assumptions:

• each rule can return only one answer: T, P or N;
• a rule for a given pair of customer records may

return no answer;
• for a given pair, successive rules are applied; an

answer can be returned by a set of 0 to 89 rules;
• rules have a certain priority - the strongest are

rules that assign class N, followed by rules that
assign class T, and the weakest rules are those
assigning P.

The above assumptions cause that the final decision
made by the rules is determined as described in Tab. 1.
It shows the number of N, P, and T responses generated
by a set of rules. Symbol ∗ denotes any number of rules
returning a given answer. In general, the following four
cases are possible. Case 1: when at least one rule returns
N, then the final decision is N. This is due to the highest
priority of rules returning N. Case 2: decision P is taken
when no rule returns N and no rule returns T and at
least one rule returns P. Case 3: decision T is taken when
no rule returns N and at least one rule returns T. Case
4: no rule returns an answer. In such a case, given the
bank’s conservative policy, the final decision is N, since
a possible false negative is much less costly than a false
positive.

Table 1
Determination of the final rule decision

No. N P T Decision
1 >0 ∗ ∗ N
2 0 >0 0 P
3 0 ∗ >0 T
4 0 0 0 ? (N by default)

Despite tremendous effort, designing rules that
matched exactly the experts decisions proved to be im-



possible in a reasonable amount of time. The confusion
matrix for the set of 89 rules created is shown in Tab. 2.
In addition to the T, P, and N classes, it is easy to see that
for a total of 70 pairs, the rules made no decision (column
None). This means that for 1 000 pairs, the coverage of
pairs by rules is equal to 93%. It is noteworthy that the
assessments made by the rules were more conservative
than those made by the experts, i.e., in the case of con-
fusion, they assigned class N to pairs considered to be T
and class P to pairs considered to be T. It is notable that
never a pair of class N was considered either P or T.

Table 2
Confusion matrix for the final set of rules

Rules decision
N P T None

Expert
decision

N 310 0 0 38
P 8 373 0 30
T 0 7 232 2

In MLT3, from the test set of over 5 million of cus-
tomer records, 2.5 million of pairs were created and then
they were labeled by means of the rules. The set of pairs
to be labeled was not random, and a good portion of
it contained common as well as problematic examples.
Therefore, it can be considered that it was somehow bi-
ased and unrepresentative for the coverage assessment
measure. It turned out to be much more interesting to
assess coverage by experimenting with the set of pairs
obtained by applying step SMT2 (from the SM approach).
For the set of 2.5 million of pairs analyzed, in only 23 352
cases the rules were not able to make a final decision.
This means the rule coverage of 99.987%. It should be
noted here that of the 89 rules, the most popular rules
(i.e., those that produced a result for the largest number
of pairs) assigned class N. The most popular rule pro-
duced N for more than 83% of pairs. When considering
the entire population of pairs (i.e., any pairs from the set),
the result would be even higher, as the chance to find
duplicates decreases significantly.

In, MLT4, from the set of pairs built in MLT3, a train-
ing and a testing data sets were created by stratified sam-
pling. Having created these two subsets, we have added
new features inspired by the conditions of the expert
rules (task MLT5).

In MLT6, we run several preparatory experiments to
get the "feel" of the data. In one of them, we used PCA
method to obtain two principal components and rendered
each example in the dataset of 1000 pairs manually la-
beled by domain experts on a two-dimensional scatter
plot, with classes T, P, and N marked in colors. The result
was that classes T and N were separated quite well, while
P was scattered all over the plot. This observation meant
that class P would be problematic.

Having run the preparatory experiments, four different

classification models were created based on the training
set. The models included: decision tree, random forest,
SVM, and feed forward neural network. These models
were built using Python package sklearn. Hyperparame-
ters of the models were adjusted manually or (if needed)
with the help of the optuna package, based on the dataset
labeled by domain experts. We also attempted to use an
auto-ML approach by means of the tpot library, but it
was not able to produce any model that would be more
accurate than the models mentioned above, within the
given time frame.

Finally, in MLT7, the quality of all the produced mod-
els was tested based on the testing set obtained from
the automatically labeled data as well as based on the
set of 1000 pairs manually labeled by domain experts.
The model quality was measured by means of precision,
recall, measure F1, and accuracy.

4. Development
Pipeline implementation environment: Both the SM
and ML pipelines were implemented in a typical data
science environment, which included: (1) a relational
database management system to store customer data, (2)
csv files to store temporary data produced by the tasks in
the pipelines, (3) spreadsheet files to store groups of du-
plicated records, and (4) Python programs and standard
packages to implement tasks in both pipelines.

Data size: In the reported project, in the development
and testing phases we used 2.5 million of pairs of cus-
tomer records. In the production system, the pipelines
run on the Bank customer database, which includes over
20 million of records.

5. Results
Tab. 3 presents precision, recall, measure F1, and accuracy
achieved by the ML models on the dataset of 1000 pairs
manually labeled by the domain experts. We also add
results achieved by the Statistical Modeling approach, for
comparison. The numbers in brackets represent the rank-
ing of the values (best-1, worst-5). As it can be observed,
the best performance on this dataset was obtained by
the Statistical Model. The worst result was obtained by
the decision tree. In the rest of the cases the ranking is
not so obvious, as not all measures point to the same
rank. However, since F1 is an aggregation of precision
and recall, and the ranking of F1 is consistent with the
accuracy, we can assume that the second best is random
forest, followed by SVM and feed-forward neural net-
work (FFNN).

The best results obtained via the Statistical Model stem
most probably from the fact that all parameters of the



Table 3
Comparison of models on the expert labeled dataset

Decision Tree Random forest FFNN SVM Statistical model
Precision [5] 0.7620 [3] 0.8369 [4] 0.8176 [2] 0.8422 [1] 0.8607
Recall [5] 0.7801 [2] 0.8498 [3] 0.8391 [4] 0.8208 [1] 0.8799
F1 [5] 0.7631 [2] 0.8407 [4] 0.8241 [3] 0.8296 [1] 0.8673

Accuracy [5] 0.7612 [2] 0.8383 [4] 0.8201 [3] 0.8276 [1] 0.8640

Table 4
Comparison of models on the testing dataset

Decision Tree Random Forest FFNN SVM Statistical model
Precision [2] 0.9577 [1] 0.9629 [3] 0.9444 [4] 0.8898 [5] 0.8051
Recall [3] 0.9399 [2] 0.9551 [4] 0.9368 [1] 0.9619 [5] 0.8182
F1 [2] 0.9484 [1] 0.9590 [3] 0.9405 [4] 0.9201 [5] 0.8065

Accuracy [2] 0.9958 [1] 0.9967 [3] 0.9953 [4] 0.9926 [5] 0.9859

model (mainly attribute weights and similarity thresh-
olds) were optimized directly based on the expert labeled
dataset also used for testing. The same dataset was only
used for optimizing hyperparameters for other models
(random forest, SVM, FFNN). Decision trees were ad-
justed manually.

Tab. 4 presents precision, recall, F1, and accuracy
achieved by the ML models on the testing dataset, ob-
tained by means of 89 rules. It is crucial to underline that
the results presented in the table compare how close are
the results of the ML model to the results obtained
by applying the rules, and not to the ground truth
(which is not available). The structure of the table is
the same one as Tab. 3.

There are a few interesting observations to be made
here. First, notice that the orders of precision, F1, and ac-
curacy are consistent, while recall is different. However,
similarly as before we can ignore precision and recall in
favor of their aggregation, i.e., F1, to obtain the ranking
of the models. In this approach, the best model is random
forest, followed by decision tree, FFNN, SVM, and the
Statistical Model. Thus, the obtained order is completely
different. We explain the results as follows.

Since training and testing datasets had labels generated
by the same set of rules, the classifiers that were trained
on the training dataset tried to generalize the set of these
rules. Thus, their performance on the testing dataset is
quite good. The Statistical Model was not built based on
the set of rules at all, and thus, its performance on the
testing dataset is worse. It is also interesting that tree-
based classifiers, i.e., decision tree and random forest
perform better than mathematical models such as FFNN
and SVM, which come down to division of attribute space
by hyperplanes. We suspect that this stems from the fact,
that trees are just representations of sets of rules. Thus,
the tree model structure fits better the underlying source
of the labels than the mathematical models. One can also
observe that a single test in a node of a tree is also a

hyperplane dividing the attribute space, but such planes
are orthogonal to one of the axis, while in mathematical
models, the hyperplanes are aligned arbitrarily. Larger
degree of freedom makes it harder for the mathematical
models to find the original model that produced the labels,
which leads to worse results.

Regardless of the testing dataset, the best results were
achieved by the random forest model. Its confusion ma-
trix for the dataset labeled by the domain experts is given
in Tab. 5. One of the most important observations here
is the fact that the number of erroneous classifications
involving class P is an order of magnitude greater than
the number of erroneous classifications involving classes
T and N. This observation confirms the result mentioned
in Section 3.

Table 5
Confusion matrix for random forest

Random forest decision
N P T

Expert
decision

N 318 24 6
P 24 319 68
T 1 28 212

6. Summary
In this paper, we reported our experience from a R&D
project on deduplicating customers data. The project
was realized for the biggest Polish Bank PKO BP. While
presented solutions were designed explicitly for the Bank
dataset, the findings are general and the approach can be
fitted to other, similar problems.

In the project, we designed two deduplication
pipelines: (1) based on statistical modeling and (2) based
on machine learning. The SM pipeline extends the stan-
dard deduplication pipeline from the literature to the par-



ticular characteristics of data being deduplicated and to
the project requirements. The ML pipeline was designed
from scratch within the project. Both pipelines were im-
plemented, tested on a data set of 2.5 million of pairs of
customer records, and verified by domain experts. The
obtained results were accepted by the Bank. The project
ended with the decision to run the SM pipeline in the
production system on the Bank database, which includes
over 20 million of customer records. This pipeline has
already been deployed in the Bank.

It must be stressed that the real settings of the
project differ from the ones assumed in the research
literature (the ideal ones) among others w.r.t.: (1) the
quality of data being deduplicated, (2) the sizes of
deduplicated data, (3) the availability of tagged data for
ML algorithms, (4) available development environments,
(5) the performance of a deduplication pipeline (time
and quality). The real settings, which are far from the
ideal ones, made the project very challenging.
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