CEUR-WS.org/Vol-3651/DARLI-AP-6.pdf

On the extraction of meaningful RNA interactions from
Scientific Publications through LLMs and SPIRES

Emanuele Cavalleri!, Marco Mesiti!

! AnacletoLab - Dipartimento di Informatica, Universita degli Studi di Milano, Via Celoria 18, Milano

Abstract

Knowledge graphs (KGs) are useful tools to uniformly represent and integrate heterogeneous information about a domain
of interest. However, they are inherently incomplete; therefore, new facts should be introduced by extracting them from
structured and unstructured data sources. Starting from RNA-KG, the first KG tailored for representing different kinds of
RNA molecules that we recently developed, in this paper we evaluate the use of SPIRES for extracting interactions among
bio-entities involving RNA molecules from scientific papers guided by the RNA-KG schema. SPIRES is a general-purpose
knowledge extraction system for mining information conforming to a specified schema. A customized prompt is generated
and submitted to a Large Language Model (LLM) along with a text to extract a set of RDF triples adhering to the schema
constraints. The experiments show a high accuracy in extracting interactions from the scientific literature.
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1. Introduction

The “RNA world” represents a novel frontier for the study
of fundamental biological processes and human diseases
and is paving the way for the development of new drugs
tailored to the patient’s biomolecular characteristics. Al-
though scientific data about coding and non-coding RNA
molecules are continuously produced and made available
from public repositories, they are scattered across differ-
ent databases and in the scientific literature. A central-
ized, uniform, and semantically consistent representation
of the knowledge on RNA is still lacking. We have re-
cently constructed RNA-KG [1], a knowledge graph inte-
grating biological knowledge about RNA molecules with
their functional relationships with genes, proteins, and
chemicals and biomedical ontological concepts. RNA-KG
includes around 600K nodes and 9M RDF triples repre-
senting reliable interactions involving RNA molecules
and related biomedical concepts extracted from more
than 50 public data sources according to 11 bio-ontologies.
RNA-KG is coupled with a meta-graph representing all
the possible interactions involving RNA molecules.
SPIRES (Structured Prompt Interrogation and Recur-
sive Extraction of Semantics) [2] is a recently proposed
approach to information extraction that exploits Large
Language Models (LLMs) [3] to identify instances of a
knowledge schema expressed in terms of LinkML [4]
starting from plain texts. By identifying and extracting
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relevant information from an input text, it adopts zero-
shot learning to identify and extract relevant entities
and relationships among them, which are then normal-
ized and grounded through ontologies and vocabularies.
SPIRES is a general-purpose approach that can be used
across a variety of domains and does not require spe-
cific training/tuning on the considered domain. SPIRES
adopts an engineering approach for creating prompts
for interacting with an LLM (like GPT [5], Llama 2 [6],
Mistral [7], and Zephyr [8]) to improve the quality of
the generated responses [9]. In this way, technical chal-
lenges for generative Al (e.g., constructing comprehen-
sive real-world knowledge and improving the accuracy
of automated responses) can be addressed.

In this paper, we discuss the initial experimental results
that we obtained by applying SPIRES in the extraction of
interactions among bio-entities involving RNA molecules
in the context of the PNRR project “Gene Therapy and
Drugs based on RNA Technology”. The purpose of the ex-
periments is to show the level of accuracy of the system in
extracting interactions from the scientific literature and
investigate the possibility of combining RNA-KG with
LLMs. Note that the extraction of interactions involving
RNA molecules is particularly challenging for two rea-
sons. First, a well-recognized ontology for characterizing
non-coding RNA molecules is still lacking, and then dif-
ferent identifiers for representing the same bio-entity are
adopted. Even if a more systematic evaluation should be
conducted, the initial results are very encouraging.

The paper is structured as follows. Section 2 describes
the SPIRES approach and related approaches that inte-
grate LLMs with knowledge data. Section 3 presents the
LinkML schema that we have developed for interacting
with SPIRES. Section 4 describes the experimental results,
while Section 5 reports concluding remarks.
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. "COX20 is essential for
Protein: the assembly of the
attributes: mitochondrial respiratory
label: o chain complex IV (CIV)"
description:

the name of the protein
annotations:
annotators: sqlite:obo:pr

s

e

From the text below,
extract the following
entities in the following
format:

protein: <the value for
protein>

Recurse over

Figure 1: SPIRES workflow.

2. SPIRES and Related Work

The population of a KG by extracting triples from un-
structured texts is an interesting research activity and the
advent of LLMs has boosted the interpretation of highly
technical languages as shown on question-answering
benchmarks [10]. However, these techniques have shown
different limitations, such as generating incorrect state-
ments due to hallucinations [11] and insensitivity to nega-
tions [12], that cannot be tolerated in sensitive domains
like precision medicine. SPIRES adopts: i) the knowledge
schema of a specific domain for the generation of prompts
for reducing these drawbacks; and ii) bio-ontologies for
enhancing the quality of the produced information.

Figure 1 outlines the SPIRES workflow. SPIRES re-
quires the specification of the knowledge schema ex-
pressed in LinkML [4] to guide the system in the ex-
traction of knowledge. A LinkML schema contains the
classes of entities and relationships among them within
the specified domain. Classes can also include attributes
(e.g., name, type, and list of synonyms) to enrich en-
tity description. The LinkML schema is automatically
processed to generate a list of prompts through which
SPIRES interacts with a LLM (e.g., GPT3, GPT4, Llama 2,
Mistral, and Zephyr). Each prompt of the list is submitted
to the LLM for collecting information that is exploited
for completing the following prompt by eventually con-
sidering the bio-ontologies (e.g., for changing a protein
symbol with the corresponding identifier in an ontology).
This refinement recursive process improves the quality
of the information gathered through the LLM.

Example 1. Suppose we wish to extract proteins from a
text. A LinkML expression can be generated for describing
the class Protein with its properties and the adopted iden-
tification scheme (See Figure 1). A prompt is then generated
for this class and used for extracting proteins. However,
the result obtained by ChatGPT alone (in this case COX20)
is not compliant with the Protein class structure. There-
fore, SPIRES exploits bio-ontologies (e.g. PRotein Ontology
— PRO [13]) to obtain an adequate result.

Prompt |:|,> @ |:|,> ‘ GPT results ‘ |:|,> ‘

-

nested structures

U

Ground results ‘

conform to schema

extracted_object:
protein: PR:000030199
named_entities:
- id: PR:000030199
label: COX20

raw_completion_output:
‘protein: COX20'

Furthermore, in case relationships are identified, SPIRES
selectively retains only those aligned with the predefined
schema that can be grounded to the Relations Ontology
(RO [14]). By exploiting standard identification schemes
adopted by the reference bio-ontologies, the system guar-
antees the generation of triples that can be easily inte-
grated into a biomedical KG.

SPIRES thus creates and refines prompts to maximize
the effectiveness of LLMs by exploiting domain knowl-
edge encapsulated through the description of the classes
and relationships that we wish to include in the KG.

As outlined in [9], the explicit and structured informa-
tion contained in KGs can also be used for improving the
knowledge awareness of LLMs. KGs have been used: i)
in the training of the LLM [15, 16]; ii) during the infer-
ence stage for making available to the LLMs the latest
knowledge without retraining [17]; iii) to improve the
interpretability of LLMs by explaining the facts [18] and
by enhancing the reasoning process of LLMs [19]. One of
the main disadvantages of solution i) is that the enhance-
ment of the knowledge contained in the KG requires a
retraining of the model which is a time (and money) con-
suming activity. For this reason, approaches of solution
ii) are gaining momentum because they allow the sepa-
ration of the text space and the knowledge space. In this
case, knowledge is injected at the time of inference.

3. The SPIRES Schema for RNA-KG

For the creation of the schema needed for the application
of SPIRES, we considered the RNA-KG meta-graph [20]
that represents all the kinds of relationships involving
RNA molecules in the considered data sources. Starting
from it, a UML class diagram was developed that for-
mally describes the schema of the considered domain
and can be used for identifying meaningful relationships
in the considered domain. Figure 2 shows an excerpt of
the generated UML class diagram that consists of four
biological and biomedical classes (niRNA, gene, protein,
and disease) with six kinds of RO relationships.
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Figure 2: Meta-graph of test to evaluate the capabilities of SPIRES.

miRNA molecules are small non-coding RNAs that play
a central role in gene expression via interference path-
ways and their misregulation is associated with several
diseases [21]. miRNA molecules can generically interacts
with genes but also more precisely regulate the acti-
vity of agene when a miRNA molecule blocks the trans-
lation of a gene or promotes the degradation of gene’s
product. Moreover, miRNA molecules can regulate
the activity of other miRNAs because they form base-
pairing interactions with complementary miRNA mole-
cules according to [22, 23]. The schema also contains
the relationships involving genes and proteins. Specif-
ically, the has gene product relation and its inverse
gene product of are used for representing that differ-
ent proteins are translated from the same gene (i.e. iso-
forms); while the regulates activity of is used for
representing that a subclass of the proteins (transcrip-
tion factors) regulates the activity of genes, promoting
or down-regulating their activity acting as enhancers or
repressors. Both proteins and miRNAs are connected to
the disease class by the causes or contributes to
condition relation. The diagram also contains the main
properties that can be associated with these bio-entities
(e.g., nucleotide/amino acid sequences, descriptions of
molecules/diseases, synonyms).

The proposed UML class diagram was translated into a
LinkML schema. Genes are annotated using HGNC [24]
IDs. This choice is motivated by the stability of the HGNC
IDs even if a gene name or symbol changes. Proteins
are grounded to the PRotein Ontology (PRO) while dis-
eases are grounded to both the Monarch Disease On-
tology (Mondo [25]) and the Human Phenotype Ontol-
ogy (HPO [26]). miRNAs were left with no semantic an-
notation since miRNA labels (e.g., hsa-let-7b-5p) and
miRBase [27] accession identifiers (MIMAT0000063) are
CURIE prefixes not included in default SPIRES annota-
tors. We can manually retrieve miRNA molecules from
relationships extracted from SPIRES since their labels fol-
low a pattern (for instance, “hsa-” prefix indicates human

miRNAs, “mmu-" prefix murine miRNAs, mature miRNA
are designated with “miR-” substring whilst “mir” refers
to the stem-loop primary transcript). Labels can be then
easily translated into miRBase accession identifiers using
a look-up table.

Example 2. A LinkML class used to specify causes or
contributes to condition relationships between pro-
teins and diseases is reported in Listing 1. In the expression,
we have to specify the need to extract triples representing
relationships between proteins and disease in which the
only admitted predicate is causes or contributes to
condition (RO:0003302). In the expression, samples of
the kinds of relationships that we wish to extract are re-
ported. The prompt generated for this class relies on the
prompts generated for the classes protein and disease
and used for the identification of these bio-entities from
the scientific literature. Figure 3 shows an output obtained
by using SPIRES and the corresponding result obtained by
the simple application of ChatGPT. In the SPIRES’ output,
the extracted interactions are already represented as triples
that exploit the required identification scheme. Therefore,
checking their presence in RNA-KG and, in case of new
triples, their integration is facilitated.

4. Experimental results

In this section we discuss the experiments that we car-
ried out to evaluate SPIRES for extracting interactions
involving RNA molecules. Moreover, we compare SPIRES
with ChatGPT (ver. GPT-3.5-turbo), which is the LLM
internally integrated in SPIRES, and with Llama 2 (ver.
llama-2-70b-chat), another well-known and used LLM.

4.1. Corpus of Annotated Documents

To evaluate the extraction of relations aligned with the
meta-graph depicted in Figure 2, we manually selected a
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Listing 1: LinkML template for protein-disease interaction.

ProteinDiseaseInteraction:
description: A document that contains protein to
disease relationships.
is_a: TextWithTriples
slot_usage:
triples:
range: ProteinToDiseaseRelationship
annotations:
prompt: >-
A semi-colon separated list of protein to
disease relationships. The relationship
is "causes or contributes to condition".
For example:
DNMT1 causes or contributes to condition
Alzheimer disease;
HOXA1 causes or contributes to condition
Alzheimer disease.

corpus of 60 scientific articles gathered from PubMed, Re-
searchGate, and Google Scholar by specifying keyword-
based queries like: “disease”, “comorbidity”, “protein”,
“miRNA”, “miRNA regulation”, “gene”. From these doc-
uments, we identified paragraphs containing useful in-
formation to be extracted (e.g., abstract, discussion, or
specific subsections within the domain of interest). In
the identification of the paragraphs we have taken into
account the following guidelines: i) the paragraph should
contain different kinds of relations between bio-entities
(e.g., “miRNA-interacts with-gene” and “miRNA-regulates
activity of-gene”) to evaluate the ability of SPIRES to
identify the right relations according to the provided
meta-graph; ii) the paragraph might also contain irrele-
vant relationships that should be discarded; iii) different
identification schemes can be used in the paragraph to
check the ability of SPIRES to correctly work with them.
Paragraphs have been classified according to the kind of
bio-entities that they describe and associated with the
list of relationships that should be identified according
to the adopted meta-graph. For each kind of bio-entity,
the following table shows the number of paragraphs con-
taining relationships involving it (note that a paragraph
can contain more than one).

Protein | Disease | miRNA | Gene
44 58 37 21

In the considered paragraphs, we have identified six
kinds of interactions among the considered bio-entities
(reported in the y-axis of the diagram in Figure 4).

4.2. Accuracy of Interactions extraction

For evaluating the obtained predictions, we have used
standard metrics (precision, recall, and F-score) by con-
sidering the True Positive (TP), False Positive (FP), and

Many of the reported cases involve clear loss-of-function mutations—such as
Waardenburg syndrome type 1 and aniridia. Cytogenetic rearrangements
outside the coding region have been implicated for POU3F4 and SOX9.

- subject: PR:000013040
predicate: RO:0003302
object: MONDO:0008670

- subject: PR:000015435
predicate: RO:0003302
object: HP:0000526

ChatGPT

1. POU3F4-causes-Waardenburg
syndrome type 1
2. SOX9-contributes to-aniridia

Figure 3: Example of output for SPIRES and ChatGPT.

False Negative (FN) according to the manually tagged
paragraphs. Table 1 reports the obtained results for the
considered interactions ordered according to the F-score
measure. The obtained results indicate a consistent trend
where recall tends to be lower than precision due to the
prevalence of false negatives over false positives. We
think this behavior is due to the difficulty in accurately ex-
tracting precise relationships from text, especially in dis-
tinguishing specific types of relationships. Furthermore,
we observe that disease-disease and miRNA-disease in-
teractions present a high F-score. These kinds of inter-
actions are widely studied in the literature and thus a
higher number of publications are available with respect
to other interactions (like miRNA-miRNA interactions).
Consequently, the abundance of this kind of relationships
contributes to a higher true positive rate. Conversely, the
F-score for protein-disease relations is notably low be-
cause it is influenced by low recall. We noticed that many
protein-disease relations are undetected, often because
they are expressed in complex ways within the text. For
instance, the interchangeable use of symbols like “/” and
“’ (e.g., “overexpressions in IL6/MEGF8/RELA, and also
TP53 are known to cause osteoporosis”). Additionally,
mapping proteins to the PRO proves challenging when
textual information is sparse or ambiguously expressed.
For instance, the mention of “PMP-22” solely as “myelin
protein 22” instead of “peripheral myelin protein 22” (due
to assumptions made by authors) can lead to inaccurate
grounding. Despite this, precision remains remarkably
high and, in the biomedicine context, this is preferable
because it prioritizes certainty over ambiguity.

We also compared our results with the average results
achieved by SPIRES in other domains. A marginal im-
provement has been observed in the domain of name
entity recognition for chemicals and diseases [2]. We be-
lieve that the slightly enhanced accuracy is due to the use
of multiple ontology annotators such as PRO for proteins,
Mondo and HPO for diseases, and RO for relations.

4.3. Comparison with other LLMs

For assessing the performance of SPIRES with respect
to ChatGPT and Llama 2, we focused on a subset of 20
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# Paragraphs | TP | FP | FN | F-score | Precision | Recall
disease-disease 16 54 5 10 0.88 0.92 0.84
miRNA-disease 32 123 | 20 31 0.82 0.86 0.80
miRNA-miRNA 1 19 1 7 0.82 0.95 0.73
gene-protein 10 52 5 21 0.8 0.91 0.71
miRNA-gene 13 14 5 0.78 0.82 0.74
protein-disease 24 42 60 0.56 0.86 0.41
[ Total [ (60textsy [304 [ 41 [134] 076 | 088 [ 069 |

Table 1

Results for named entity recognition evaluation of SPIRES on relations involving protein, miRNA, disease, and gene entities.
Grounding was performed against HGNC, PRO, Mondo, HPO, and RO.

gene-protein —

miRNA-gene —
TP

FN

T
0.4
Rate

0.6 0.8

Figure 4: TP, FP, and FN results for evaluation of SPIRES on
relations involving protein, miRNA, disease, and gene entities.

documents where we manually grounded instances and
relationships of the extracted triples. For using ChatGPT
and Llama 2 we have generated prompts that adhere to
the following pattern:

extract triples in the form
"subject-relation-object"
within this document: [...]

This prompt does not guarantee to obtain the identi-
fiers for the subject and the object of the triples. However,
if we try to generate a further prompt with the explicit
request of mapping the extracted concepts to appropriate
terminologies, both ChatGPT and Llama 2 advise that the
provided ontology identifiers are hypothetical and may
not correspond to actual ontology identifiers (so, hallu-
cinations can occur in this case). Therefore we decided
to substitute the grounding process with our manually
curated look-up tables [1].

When using ChatGPT (or Llama 2) alone, we do not
have to specify the schema, and results are produced
through a single interaction with the user. Avoiding
the specification of the schema might be interpreted as

0.77

™

FP

FN

0.59
0.47
034 0.35
0.18 017
0.05 0.07
[ [ [
SPIRES Llama 2 ChatGPT

F-score | Precision | Recall

SPIRES 0.86 0.94 0.81

Llama 2 0.74 0.89 0.64

ChatGPT 0.64 0.73 0.57

Figure 5: SPIRES vs Llama 2 vs ChatGPT on 20 texts.

an advantage of basic LLMs approaches, but it is not.
Indeed, the schema allows us to reduce the relationships
to be extracted to only meaningful ones in the considered
domain. Finally, no lookup table can be exploited for
translating class instance names with the corresponding
identifiers in the bio-ontologies (thus requiring a manual
identification of the identifiers). All these drawbacks are
avoided by the use of SPIRES.

As shown in the bottom part of Figure 5, SPIRES out-
performs ChatGPT or Llama 2 alone both in terms of
precision and recall. The histogram in Figure 5 points
out a high increment in TP rate and a sensible decrease in
FP and FN rates when adopting SPIRES instead of Chat-
GPT or Llama 2 alone for extracting relations that adhere
to a specified schema within texts.

5. Concluding remarks

In this paper, we have reported the initial experimen-
tation of the use of SPIRES for extracting triples from
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the scientific literature related to RNA molecules by tak-
ing advantage of the meta-graph we have realized for
the generation of RNA-KG. Even if a more systematic
analysis is required, the initial results are quite encour-
aging. To facilitate the reproducibility of our results, our
dataset and the LinkML template can be downloaded
from: https://doi.org/10.5281/zenodo.10671796.

As future work, we would like to extend the approach
by integrating the entire RNA-KG in different ways. First,
we will exploit the RNA-KG triples for enhancing the
prompts generated by SPIRES. Moreover, RNA-KG can
be used for validating the plausibility of the generated
triples by using RNA-KG as a gold standard in the area.
Furthermore, we will explore the KG-enhanced LLM in-
ference approaches in combination with SPIRES for fur-
ther improving the precision of the system by injecting
knowledge extracted from RNA-KG at inference time.
Finally, we would like to create a web environment for
graphically showing to the user the predicted triples di-
rectly in the graphical representation of the portion of
the knowledge graph that will contain them. The user
can thus manually check the proposed triples and pro-
vide feedback that will be handled afterward to improve
the quality of the predictions.
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