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Abstract
In recent years, several text-image synthesis models have been released that are increasingly capable of synthesizing realistic images
close to the input. Among the various state-of-the-art techniques and models, the introduction of the open-source latent diffusion
model Stable Diffusion [1] has led to significant developments in text-to-image generation in recent months. By using techniques such
as DreamBoot [2] and Textual Inversion [3], it is possible to refine further and control the generation process to produce even more
specific output than text alone would allow. We test this approach for generating three specific cinematographic shot types: Close-up,
Medium Shot, and Long Shot. By fine-tuning based on Stable Diffusion 1.5 using a small dataset of 600 labelled and captioned film
frames, we achieve a noticeable increase in CLIP -T and DINO scores and an overall noticeable qualitative improvement (as indicated by
our human-run evaluation survey) in image likability, compliance, and shot type correctness.
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1. Introduction
Image generation has seen a major rise in popularity since
the release of the Diffusion Model [4] architecture, with
improvements in the quality of the generations that made
the pictures ever so close to realistic art pieces and photos.
Being able to generate realistic pictures that follow a given
textual description through the use of models such as the
Latent Diffusion [5] based Stable Diffusion [1] opens up a
multitude of previously unattainable tasks, which are fur-
ther improved by the ability to add new subjects in a simple
way provided by DreamBooth [2]. By using these two tech-
niques it would be possible to, for example, automatically
generate an advertising campaign for a novel product or
perform seamless photo editing through textual instructions.
Notably, cinema heavily relies on the utilization and cre-
ation of reference images to enhance workflow efficiency.
With the capacity to generate realistic images, generating
expressive reference images that precisely convey the in-
tended shot becomes readily accessible to all, eliminating
the need for an extensive reference library or artistic draw-
ing skills. These reference images and sketches are widely
employed in storyboarding, an essential film-making tech-
nique that aids in visualizing the narrative and streamlining
the filming process. Within this context, the selection of the
desired shot type plays an important role, as it significantly
influences the audience’s focus and emotions [6].

Table 1
Total number and their respective downloads of the top 100 mod-
els hosted on Civitai.

type number downloads

DreamBooth Checkpoint 70 5.575.099
Lora DreamBooth 26 1.670.288
Textual Inversion 4 348.187

To the best of our knowledge, the use of text-to-image
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generation models and their fine-tuning in this context re-
mains widely unexplored. In this paper, we explore the
use of DreamBooth [2] (as it is the most widely used fine-
tuning approach for pre-trained Latent Diffusion models, as
shown in table 1) in adding the knowledge of three specific
shot types, close-shot, medium-shot, and long shot, to a
pre-trained version of stable-diffusion-v-1-5 [1]. Given a tex-
tual input and a desired shot scale, our methodology is able
to generate synthetic scenes that are semantically close to
the input and to the scale selected. Using the same testing
setup that was proposed in the original DreamBooth [2]
paper, we achieve an improvement over the baseline model
in both CLIP-T [7] and DINO [8] scores. We complement
this testing with a survey conducted on 55 subjects which
further shows the qualitative improvements achieved by
our approach.

Our contributions are the following: the outlining of a
methodological approach to fine-tuning an existing latent
diffusion model with state-of-the-art techniques (Dream-
Booth)to teach a new style; the steps necessary to build a
training set out of unlabeled movie shots in order to fine-
tune a pre-trained model; a set of three fine-tuned models
catered towards the generations of three specific shot types:
close shot, medium shot, and long shot.

The paper is organized as follows: Section 3 covers the
methodology and describes the techniques on which our
approach relies; Section 2 discusses the methods exploited
in the proposed methodology; Section 4 outlines the testing
procedure, metrics used, and relevant results.

2. Related Works

2.1. Storyboarding
In recent years a growing number of studies have focused on
the automation of video editing tasks. While these works,
such as [9] and [10], achieve impressive performance in
the generation of a video, either given as input a textual
prompt [10], or a combination of textual prompt and image
[9], they focus on the generation of motion and do not take
into account the shot type used.

By generating more scenographic shots, one of the many
applications that become available is text-to-image story-
board creation. Existing storyboarding tools either extend
digital painting applications (e.g. [11]), allow the user to
place predetermined objects in a scene to compose the de-
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sired frame (e.g. [12]), provide a simple interface to create a
reference of the desired scene (e.g. [13]).

For more deep learning-related approaches, StoryGAN
[14] generates a sequence of images that describe a story
written in a multi-sequence paragraph. To do this, the pro-
posed framework uses a sequential Generative Adversarial
Network [15] that consists of a Story Encoder, an RNN-based
Context Encoder, an image generator conditioned on the
story context, and an image/story discriminator that ensures
consistency. Diffusion Models allow for high-quality gener-
ation on multiple domains without needing specific training,
and a better understanding of the conditional text input than
GANs. The conditioning based on previous frames could
be a possible approach for increased temporal consistency
even in LDMs.

Dynamic Storyboarding [16] approaches the storyboard-
ing task directly by automatically composing scenes out of
user inputs by simulating in a virtual environment the scene
and discriminating the best proposal out of the available
ones. This approach generates rich and complex dynamic
(video) storyboards, but it lacks the customizability and
intuitiveness that Diffusion Models offer through textual
conditioning. Furthermore, by using ControlNet 2.5 trained
networks it’s possible to add conditioning through more in-
puts such as scribbles, which at the cost of a slightly higher
effort can lead to much better generations.

2.2. Text-to-Image Diffusion Model
Diffusion models are a type of probabilistic generative mod-
els that generate samples from a learned distribution by re-
versing the "diffusion process", modeled as a Markov process
of gradual Gaussian noise addition. The generative process
is carried by gradually removing noise from a random initial
sample. A text-to-image diffusion model 𝜖𝜃 , given an noise
map 𝑧𝑡 ∼ 𝒩 (0, 1) at timestep 𝑡 and a conditioning vector
𝑐 = 𝜏𝜃(𝑦) generated using text encoder 𝜏𝜃 and prompt 𝑦,
generates an image 𝜖𝜃(𝑧𝑡, 𝑡, 𝜏𝜃(𝑦)). During training, the
sample generated using the conditioning 𝜏𝜃(𝑦) is compared
to its original counterpart 𝜖. The loss is computed as:

𝐿𝐷𝑀 = E𝑥,𝜖∼𝒩 (0,1),𝑡[||𝜖− 𝜖𝜃(𝑧𝑡, 𝑡, 𝜏𝜃(𝑦))||22], (1)

where both 𝜏𝜃 and 𝜖𝜃 are jointly optimized during train-
ing.

2.3. CLIP
CLIP [7], short for Contrastive Language Image Pretraining,
is a technique developed to approach the zero shot classi-
fication task by learning the contents of an image directly
from raw text description of it rather than from labels (such
as the classes found in the ImageNet dataset). By learning

from natural language, the resulting model is much easier to
scale compared to standard crowd-sourced dataset thanks
to the vast amount of text available on the internet. The
representation that is learned with CLIP is tightly connected
to language, which enables flexible zero shot transfer. Given
a batch of 𝑁 (text, image) pairs, CLIP is trained to predict
which of the 𝑁×𝑁 possible pairings across a batch actually
occurred. To do this, CLIP learns a multi-modal embedding
space by jointly training an image encoder (based on a vi-
sion transformer) and a text encoder to maximize the cosine
similarity of the image and text embeddings of the 𝑁 real
pairs, while minimizing the cosine similarity of the 𝑁2−𝑁
incorrect pairings.

2.4. Latent Diffusion
Latent Diffusion Models are introduced in [5] which pro-
poses to move the diffusion process from the computation-
ally expensive pixel space to a less intensive latent space.
Given an image 𝑥 ∈ R𝐻×𝑊×3 in RGB space, the encoder
ℰ encodes 𝑥 into a latent representation 𝑧 = ℰ(𝑥), and the
decoder 𝒟 reconstructs the image from the latent, giving
�̃� = 𝒟(𝑧) = 𝒟(ℰ(𝑥)). Thanks to the latent representation
enabled by ℰ and 𝒟, likelihood-based modelling becomes
a more suitable task as higher complexity details are ab-
stracted away and the learning can focus on the important
semantic bits of the data. Rather than using an autoregres-
sive, attention-based approach, image-specific inductive bi-
ases can be taken advantage of. The underlying UNet is built
primarily from 2D convolutional layers. Different forms of
conditioning can be applied during generation such as im-
age maps and text (which uses CLIP encodings to generate
the conditioning tokens); the text-to-image generation pro-
cess is carried by feeding as input a random noise vector
and a textual prompt to the denoising U-net of the model.

2.5. ControlNet
Described in [17], ControlNet is a network structure de-
veloped to support additional input conditions in existing
diffusion models; rather than controlling the synthesis of
images only through text or an input image, ControlNet
allows to use of inputs such as canny mapsand depth maps
and poses as inputs for the denoising process, even com-
bining them in the same process, allowing for an increased
level of control on the output.

ControlNet works by creating a trainable copy and a
locked copy of an existing large diffusion model; the locked
copy preserves the network capabilities learned from billion
of images, while the trainable copy is trained on task-specific
datasets to learn the conditional control. The two networks
are then connected using a new type of convolution layer
called zero convolution. Only the first half of the denoising



U-Net is trained and the encoder blocks are connected to
their respective decoder blocks through zero convolutions.
Video ControlNet [18] proposes an approach that enhances
temporal consistency when converting an existing video
using Stable Diffusion.

3. Method
Modern diffusion models can increasingly produce photo-
realistic images through conditional generation that are al-
most indistinguishable from the human eye. The most com-
mon form of conditioning is through text (called ’prompt’).
By encoding text and using the resulting encodings in the
cross-attentional layers of the denoising U-network as condi-
tioning, it is possible to influence the generation process to-
ward a desired outcome. In most cases, however, the amount
of control we can exert over the output is limited and re-
quires either specialized prompt engineering or fine-tuning
to teach the model how to better represent the desired con-
cept. Extensive fine-tuning can be prohibitively expensive
and requires multiple GPU hours on a cluster. To solve this
problem, techniques have been developed to quickly add
new themes or styles to an existing large diffusion model
like DreamBooth[2].

The intuition behind our approach is that learning a shot
type is similar in a way to learning a style (if a painter always
painted portraits his "style" would always have the subject
close to the camera), and as such we could use DreamBooth
capabilities to teach an existing Latent Diffusion Model what
different shot types are.ì

Figure (1) outlines the basic steps we adopted to fine-tune
the model. The particular DreamBooth implementation we
used leverages Low Rank Adaptation (LoRa) [19] to signifi-
cantly reduce training time and more easily create shareable
checkpoints. The entire process consists of creating a well-
constructed dataset, since the quality of the training images
and labels greatly affects the output model, selecting a base
model for fine-tuning, and creating a ∆𝑊 . We refer to the
base model as 𝑊 and the fine-tuned model as 𝑊 ′, such that
𝑊 ′ = 𝑊 +∆𝑊 . ∆𝑊 contains the learned weights that
can then be invoked during inference to be applied to the
selected base.

3.1. Training set creation
The training set that is used when finetuning a pre-trained
diffusion model is one of the most important contributors
to the output quality. As the model learns to reproduce the
contents of the training set, by having high-quality samples,
the generated image quality will improve as well. Another
important aspect of the training set is the caption that is
associated with each image. The way DreamBooth adds
knowledge to a pre-trained model is by learning the con-
cepts of the input image that the original model doesn’t
already possess in its prior knowledge. In our case, the
caption associated with each shot should include a highly
accurate description of the shot so that the model would
pick up the concept of the shot scale and not other already
known ones. To reach this goal, which is the creation of
a task-specific training set, we define a 5 steps approach
that can be applied to any large dataset of movie shots. (i)
Data Collection: the first step is to acquire a large enough
dataset to use as a base; movie shots datasets have a wide
range of image quality, so it’s suggested to start from a

Figure 1: A visualization of the finetuning process using LoRa
DreamBooth. To create basic captioning that required minimal
human work, Blip2 was used. Labels for shot types were added
by hand due to the small number of pictures necessary.

large enough one in order to have a guarantee of having
enough high-quality samples. (ii) Filtering: depending
on the metadata available of the chosen dataset, filtering
out the lower-quality images, even with arbitrary filters,
can largely improve the speed of the subsequent steps. (iii)
Cropping: the required resolution for images when fine-
tuning Stable Diffusion is 1× 1, with the most used sizes
being 768 × 768, 512 × 512 and 256 × 256. By using a
content-aware cropping method it’s possible to obtain the
necessary image size in a quick way while keeping the most
important part of the shot. (iv) Labeling and shot selec-
tion: as there is no precise enough approach for automatic
shot labelling and the shots require close supervision for
the quality of the image and the crop, labelling by hand
becomes a necessity. By sampling without repetition from
the available pool of images and assigning the correct label,
it’s possible to quickly handpick and label the necessary
shots, which should range between 100 and 200 for styles.
A good movie variety should be kept to not teach unwanted
subjects. (v) Captioning: once the required images per
shot scale are reached, a first basic caption can be generated
by using models such as blip-2 [20], which also have the
advantage of generating captions that resemble the CLIP
description style. Once again, human supervision is highly
suggested for the generated captions.

Once the dataset is correctly prepared, the training can
begin.

3.2. Model Training
In order to finetune the LDM we used DreamBooth [2]. The
idea behind DreamBooth is to, given a few input images
(≈ 3− 5), bind the subject to a unique identifier such that
when it is used in the prompt along with the class it belongs
to (e.g. "A [V] dog"), the prior knowledge of the class is used
along the new information to reconstruct the subject. A new
autogenous class-specific prior preservation loss is intro-
duced on top of the regular training objective to encourage
diversity and counter language drift. During training, the
model is supervised with its own generated samples in order
to retain the prior knowledge of the class and to use it along



with the knowledge of the subject instance to generate new
samples.

By itself, DreamBooth already manages to significantly
decrease the cost of adding a subject to an existing model.
But, as a further optimization, we used Low Rank Adap-
tation [19] applied to the DreamBooth process [21]. LoRa
allows efficient finetuning even in low-power devices while
keeping a high-quality end-result. Instead of training the
entire model, LoRa works by finetuning the residual: i.e.
train ∆𝑊 instead of 𝑊 .

𝑊 ′ = 𝑊 +∆𝑊 (2)

Through matrix decomposition it’s possible to further de-
crease the amount of parameters to finetune, hence reducing
the size of the output model by an even larger degree.

∆𝑊 = 𝐴𝐵𝑇 (3)

The attention layers parameters of the cross-attention
layers in the denoising U-Net of Stable Diffusion are enough
to tune to obtain the desired output.

Given an existing diffusion model 𝑊 , a LoRa of it is
applied on top in the form of 𝑊 ′ = 𝑊 +𝛼∆𝑊 : when 𝛼 is
0 the model is the same as the original one when 𝛼 is 1 the
model is the same as the fully finetuned one. Applying this
form of optimization to DreamBooth makes it possible to
achieve two primary goals: faster and less complex training
and a lightweight and more versatile output.

Once the training phase is finished, an output file is pro-
duced which contains the weights learned during training.
The model is then used alongside the original one that was
used as a base during the finetuning process (in this case
stable-diffusion-v1-5) to synthesize images.

Figure 2: prompt : a high-quality close_shot picture of a woman
holding a cup of coffee in front of a brick building 𝛼Δ𝑊

In our specific case, no unique identifier was specified
during training; by not binding the concept to a specific
token, the model always generates in the trained style (or
shot type in our case) when the ∆𝑊 model is specified in
the prompt.

The caption in figure (2) is the prompt that was used to
generate the picture. The token ”𝛼∆𝑊 ” is a placeholder
control sequence that is added in the prompt to add the
weights and layers from the LoRa (∆𝑊 , closeshot in this
case) to the pretrained full model that’s being used for the
generation with weight 𝛼.

3.3. Generation
Once the model is successfully trained, the generative pro-
cess can begin. Generation is performed by providing the
model with a series of parameters along with a textual
prompt describing the scene. The prompt can be either
in the positive field, where the generation is moved towards
the conditioning, or the negative field, where the model
generates away from the concepts specified in the negative
field. Prompt engineering takes a big role in the generative
process, with certain prompts such as "high quality" and
"masterpiece" guiding the generated image towards more
aesthetically pleasing results. The most meaningful genera-
tion parameters are:

• Sampler: at each step of the diffusion process a
certain amount of noise is predicted and subtracted
from the image. The sampler takes care of both com-
puting the predicted noise and scheduling the noise
level at each sampling step so that an equally noisy
image can be sampled. There are many available
with different benefits.

• Steps: changes how much noise is subtracted from
the image at each step, the larger the number of
steps the slower the generation process is, but finer
details might be developed this way.

• CFG Scale: short for Classifier Free Guidance scale,
classifier free guidance is a technique that moves
the generated samples away from random unlabeled
ones, essentially making the generated image adhere
more to the provided prompt.

• Seed: determines the initial noise map, different
seeds will result in different images.

Furthermore, the value 𝛼 that determines how much the
∆𝑊 model weights are applied takes an important role in
the generative process. As there is no deterministically per-
fect way to train a DreamBooth model, sometimes lowering
how much influence the finetune has can improve results.

4. Preliminary Experiments

4.1. Training Set
Among the many available movie repositories, [FILM-
GRAB]1 was chosen as it provides high quality, hand picked
movie frames.

We began by collecting 127.000 shots from 2166 movies.
All the pictures with less than 3 color channels were pruned,
as well as the ones coming from movies released before
2013 to guarantee a certain degree of image quality and res-
olution. The shots were then cropped using content-aware
image cropping to the size of 512× 512 pixels because of
computational constraints. Out of the remaining 41.750,
only 600 (200 per shot type) were then to be selected. As the
number of required pictures is relatively small, shot-type
selection and labelling was performed by hand. Random-
ization was achieved by sampling single shots from all the
available ones and by assigning a label, adding it to the
training set if and only if the quality and crop were deemed
to be appropriate. As the training set is small, the training
is very sensitive to bad samples.

1Open source for research purposes.

https://film-grab.com/
https://film-grab.com/


The final step was adding textual captions. To aid in the
captioning process, the Vision-Language model blip2-flan-
t5-xl [20] was used to generate a first CLIP [7] style caption
with human supervision.

4.2. Testing Set
The dataset used for testing is composed of 1800 shots sam-
pled from the filtered 41.750 shots evenly distributed be-
tween the three shot types (long shot, medium shot, close
shot), and their respective caption generated using BLIP2
[20] without supervision. The generated captions were not
supervised for testing purposes. The collected captions were
then randomly sampled and used to generate two pictures
from the same starting seed 𝑁 times, one with and one
without training, for a total of 1500 pairs of "trained" and
"non-trained" images, evenly split between shot types, with
generation parameters 2.

Table 2
The pararameters used for generation during testing

sampler DPM++ SDE Karras
steps 16
seed random
cfg_scale 6
prompt a high-quality [shot_type] picture of [caption]
size 512 x 512

4.3. Metrics
To get a quantitative result two metrics were adopted follow-
ing in the footsteps of the original DreamBooth [2] imple-
mentation. The first one is CLIP-T [7], the average pairwise
cosine similarity between the clip embeddings of the gener-
ated image and the prompt that generated it. The second
metric, DINO [8], measures the average pairwise cosine
similarity between the ViTS/16 DINO embeddings of gen-
erated and real images, essentially measuring how similar
the generated image is to its real counterpart. The results
shown in 3 show a slight (although significant for the con-
sidered metrics) increase for both the CLIP-T and DINO
scores over the baseline model. The lower increase seen in
the CLIP-T compared to the DINO metric is justified as the
model doesn’t learn to represent more concepts (so from a
CLIP perspective the objects present in the picture are the
same) with our finetuning, but instead learns to represent
them closer to the training image, especially from a camera
distance perspective. From a qualitative analysis, it appears
that the fine-tuned model is more often able to generate
images that are semantically close to the prompt used to
generate them. Sometimes it even generates elements that
are present in the prompt that the baseline model ignored
(e.g., a person when two were specified, a car that is not
present). In addition, since there is no free lunch, although
it has not been tested on other tasks, we expect the fine-
tuned model to perform worse on other generative tasks,
and in the generated examples we can see that it more often
generates faces similar to those shown during training.

As a secondary and ablation study, 600 additional image
pairs were generated using the same setup as before, but
removing all information regarding the acquisition type
from the text conditioning. Looking at the results of the
DINO score in Table 4, it can be seen that the images gen-
erated with the fine-tuned model still have a higher DINO

CLIP-T DINO

baseline 0.3221 0.4163
ours 0.3269 0.4989

Table 3
Results for the CLIP-T and DINO metrics on the 1500 pairs test.

score than the baseline, indicating that the model gener-
ates images at the specific fine-tuning scale even without
guidance.

CLIP-T DINO

baseline 0.3214 0.4014
ours 0.3234 0.4803

Table 4
Results for the CLIP-T and DINO metrics on the ablation test.

4.4. Qualitative Survey
We conducted in addition a survey of human subjects. Each
subject was shown a total of 36 pairs of images 𝐴 and 𝐵
generated with the same setting and prompt, one from the
baseline model and one from the finetuned one. Whether an
image was labelled 𝐴 or 𝐵 was randomized. The generated
patterns were monitored in a very light form to ensure that
the images were safe for all. Each image pair was shown
along with its associated shot type and generator prompt.
For each image pair, three questions were asked: (i) Which
image do you like best?; (ii) Which image corresponds more
to the associated shot type?; (iii) Which image corresponds
more to the associated prompt?

The possible answers for each question were 𝐴, 𝐵, or
neither/same if the two images were considered equivalent
in some aspect. A total of 55 subjects responded to the
survey, and the results are reported in Table 5. It can be seen
that even with human evaluation, our approach generates
images that are more appealing and closer to the associated
shot type and prompt in almost or more than half of the
cases.

Table 5
Results collected from a survey conducted on 52 subjects. The
score are expressed as percentage over the total number of an-
swers.

question baseline ours same /
neither

Which picture do you like 26.18 57.43 16.4
most?
Which picture is closer to the 20.46 56.84 22.7
associated shot type?
Which picture is closer to the 20.35 49.31 30.34
associated prompt?

Aside from image likability, the baseline model obtained
the lowest score of the three, indicating that the generation
is of equal quality to the generation without fine-tuning
in most cases. The results are consistent, comparing the
survey to CLIP -T and DINO metrics. The higher likeability
and shot-type closeness are directly related to DINO and
are noticeably higher than prompt closeness and CLIP-T
compared to the baseline.



Figure 3: Some examples of the generation of the same subject
with the three different trainings (close, medium, and long shot)
with different levels of 𝛼

5. Conclusions and Future
Developments

We have presented an approach that uses novel techniques
such as DreamBooth and LoRa to finetune an existing la-
tent diffusion model to generate specific types of shot types.
Based on the intuition that learning a shot type is similar
to learning a style, which DreamBooth was shown to be
capable of, we achieve improvements in both compliance
and similarity of reference images by using only 200 im-
ages for each shot type, as shown by CLIP -T, DINO, and
even human evaluation metrics. We test our approach on
a storyboarding task showing the potential uses of mod-
ern LDMs in video production, mainly when supported by
domain-specific training. Furthermore, novel techniques,
such as ControlNet open the doors to even more specific
conditioning forms. Developments such as [18] show the
power that ControlNet offers, and applying the technique
for cinematic purposes could be an interesting development
point. Regarding our work, as DreamBooth training is far
from a solved task, more tests could yield even better results.
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