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Abstract
The ride-sharing problem aims at optimizing the path from one starting point to one destination point. The problem can be enriched by

intermediate stops, spatio-temporal constraints, and external constraints (e.g. traffic congestion), adding uncertainty and increasing the

overall complexity.

Spatio-temporal networks can properly describe the problem by graphs, helping to identify the optimal or sub-optimal solution.

We face here the specific issue, where a driver picks up several patients from their respective pick-up locations and drops them off at

one care center. Ride-sharing of patients has specific requirements due to the particular health state of every patient. Indeed, every

patient has his/her own constraints, which could be related to the maximum sustainable duration of the trip, according to the patient’s

conditions, the maximum waiting time, and the time when the visit or treatment is scheduled.

In our approach, we first consider the spatial facets, and then we superimpose the temporal facets, to recommend the best paths and

schedules, allowing some kind of temporal uncertainty in the specification of different possible constraints.
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1. Introduction
Ride-sharing [1] is a mode of transportation in which in-

dividual travelers share a vehicle and, eventually, its costs.

Typically, passengers have the same unique destination.

Passengers may leave from the same starting point or may5

be collected along the way of the first passenger to the

shared destination. Ride-sharing combines the flexibility

and speed of private cars with the reduced cost of fixed-line

systems. In static ride-sharing, passenger arrangements are

pre-computed and cannot be modified during the service.10

In dynamic ride-sharing, automatic ride-matching between

participants can occur on very short notice or even en route.

The problem of ride-sharing aims at optimizing the path

of the vehicle. Optimization is helpful under several terms:

travel costs, travel time, and environmental pollution are15

just a few of them. The problem can be enriched by several

intermediate stops, spatiotemporal constraints, and external

constraints (e.g. traffic congestion), adding uncertainty and

increasing the overall complexity.

Ride-sharing in healthcare has been considered as a way20

of increasing the number of people possibly accessing med-

ical care, as it is less expensive than other services and

available also in places where public transportation is miss-

ing [2, 3, 4]. Besides several policy- and healthcare-related

issues, ride-sharing in healthcare has some specific features,25

which need to be considered when designing software sys-

tems supporting ride-sharing activities for patients. Indeed,

Published in the Workshop Proceedings of the EDBT/ICDT 2024 Joint
Conference (March 25-March 28, 2024), Pæstum, Italy
*

Corresponding author.

†
These authors contributed equally.

$ beltramegiovannialberto@gmail.com (G. A. Beltrame);

carlo.combi@univr.it (C. Combi); alessandro.farinelli@univr.it

(A. Farinelli); roberto.posenato@univr.it (R. Posenato);

giuseppe.pozzi@polimi.it (G. Pozzi)

� https://www.deib.polimi.it/pozzi (G. Pozzi)

� — (G. A. Beltrame); 0000-0002-4837-4701 (C. Combi);

0000-0002-2592-5814 (A. Farinelli); 0000-0003-0944-0419 (R. Posenato);

0000-0002-2828-862X (G. Pozzi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-

tion 4.0 International (CC BY 4.0).

not considering the specific requirements of ride-sharing in

the context of healthcare domains may produce low-quality

services, which possibly prevent delivering the right care30

to the weaker patients’ categories because of transporta-

tion barriers. Among the specific requirements that need to

be addressed when planning ride-sharing for patients, we

consider here:

• the maximum allowed duration of the trip for spe-35

cific patients, who cannot afford too long trips;

• the strict ranges of allowed waiting times, as patients

are not able to face too long waiting times (or to rush

for too short deadlines);

• the flexibility in reaching the final destination, avoid-40

ing both a rush and a too-long waiting time at the

healthcare center, a not feasible situation especially

for patients and in this pandemic context.

In the following, we shall consider the general issue of

medical transportation, where a driver picks up some pa-45

tients from their respective starting points (e.g., homes), and

drops them off at the same care center. The approach we

propose in this paper considers the integrated application

of both temporal and spatial reasoning, focusing on the

management of temporal uncertainty, taking into account50

the specific requirements of such kind of transportation.

Temporal issues refer to the preferred arrival time every

passenger may have. Spatial issues refer to the path of the

shared vehicle. External constraints refer to traffic condi-

tions, which may also occur dynamically, i.e. during the55

journey, and not just before the journey starts.

The paper is structured as follows: Section 2 describes

related work from the literature on both temporal and spa-

tial topics, and the background methodological concepts;

Section 3 describes the application domain and how we60

model the problem; Section 4 describes a proof-of-concept

prototype we implement; Section 5 highlights the achieved

conclusions and sketches out some future research direc-

tions.
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2. Background and Related Work65

This section describes the background and the related work

on temporal networks and on the ride-sharing problem, and

how we select the proper methodology to cope with the

selected application domain. Ride-sharing problems are

commonly formalized by graphs, which are then analyzed70

by temporal networks.

2.1. Background: STNUs
A Simple Temporal Problem (STP) is a problem involv-

ing quantitative time constraints [5] between pairs of time

points. A Simple Temporal Network (STN) is a framework75

for planning and scheduling applications of a STP, which

is represented through a set of nodes, i.e./ time points, and

weighted edges between nodes, representing quantitative

temporal constraints: the formalization is adopted to check

consistency in many constraint-based planning systems [6].80

STNU refers to STN with uncertainty, where the occur-

rences of some time points, named contingent, are within

specified time ranges, but beyond the control of the planning

agent [7]. An STNU is controllable if a solution satisfying

every constraint in the network can be found. One of the85

strategies for STNU is the RTED (Real Time Execution De-

cision) strategy [7, 8], to manage contingent time points

(events) which occur at run-time, and cannot be controlled

(scheduled) by the agent, but are simply observed. An STNU
is dynamically controllable iff (i.e., “if and only if”) an execu-90

tion strategy based on RTED exists. Intuitively, according to

RTED, the agent, responsible for the network execution, can

only observe the occurrence of contingent time points but

is capable to react to such occurrences, by deciding when to

execute the other time points, which are under its control.95

The RTED strategy is based on a table known as all-pair-

shortest-semi-reducible paths (APSSRP), which for every

couple of nodes in a weighted graph returns the measure

of the shortest path (or weighted edge) connecting those

two nodes [7], that represent the strongest constraints that100

any reliable execution strategy must satisfy. If no semi-

reducible negative loop is in the APSSRP, then the RTED
strategy can dynamically assign values to the network time

points, satisfying all the given temporal constraints.

Major related work on STNU refers to the algorithms105

to check the consistency of the network and its dynamic

controllability (i.e. there exists a dynamic strategy for guar-

anteeing all the constraints, no matter when contingent time

points occur), as well as supporting the dynamic execution

of the network. Morris et al [9] present a polynomial time al-110

gorithm to check the dynamic controllability of a STNU: the

complexity of the algorithm is 𝑂(𝑁5), being 𝑁 the number

of nodes in the network. The algorithm is based on con-

straint propagation, where the edges, which represent time

constraints between two nodes, are expanded to explicitly115

state all the constraints that affect each node of the network.

However, the authors assumed that non-shortest labeled

edges in an STNU could be disregarded – which turns out

to be far from trivial to prove [7, 10]. Morris [11] presents a

faster 𝑂(𝑁4) algorithm, which relies on a new approach to120

analyze some graphical properties of the simple temporal

network with no uncertainty. The same author [12] presents

an even faster version of the algorithm: the algorithm has

a time complexity of 𝑂(𝑁3). All the algorithms for dy-

namic controllability checking, currently proposed by other125

authors, have the same complexity as in [12]. For sake of

simplicity, as these last algorithms are quite complex and

full of technicalities, in this paper, we consider as the fun-

damental starting point the 𝑂(𝑁5) dynamic controllability

checking algorithm of [9] for STNUs.130

2.2. Related Work
The issue of patient transportation is of great relevance:

it is estimated that 5.8 million people in the US during

2017 delayed non-emergency medical care due to lack of

transportation [13]: the CoViD-19 pandemic hardened the135

problem. A taxonomy of innovative health care mobility

services is reported in [14].

The problem of ride-sharing of patients falls within the

wider topic of patient transportation. Many issues have been

faced in this direction: intra-hospital patient transportation;140

optimizing the use of Advance Life Support (ALS) services

(managing patients requiring high level of medical moni-

toring and emergency care) and Basic Life Support (BLS)

(managing patients requiring non-emergency medical trans-

portation); evaluating ride-sharing services. Without being145

complete, in the following we shall briefly discuss some

technical contributions, providing an overall picture of the

context, within which we propose our original contribution.

In [15], the authors propose a generalization of the dial-

a-ride problem, modeling some real-life requirements for150

patient transportation. A multi-directional local search algo-

rithm is developed to solve this problem, taking into account

the fundamental tradeoff between operational efficiency and

service quality, by considering specific constraints for pa-

tients and drivers. Moreover, the authors propose an original155

scheduling procedure, minimizing the total user ride time.

As already mentioned, ambulance providers support both

ALS and BLS ambulances. In [16], the authors propose a

model that determines the routes for BLS ambulances while

maximizing the remaining coverage by ALS ambulances.160

Indeed, while BLS ambulances deal with non-urgent trans-

portations, ALS have to deal with urgent ones. However,

BLS ambulances often do not suffice for the required trans-

portation, and the use of ALS for not urgent transportation

is deployed, if any critical event occurs. Some specific fea-165

tures of the faced issue are that only one patient can be

transported at a time, and the requests are known dynami-

cally, especially for urgent transportation.

Fulgenzi et al. in [17] propose a simulation-based system

to improve the quality and efficiency of (intra) hospital trans-170

portation system, according to the patient’s condition, the

human and technical resources, and the time requirements.

In [18], the authors consider patient transportation in

the Republic of Korea. They propose a web-based software

system able to optimize patient transportation, by consid-175

ering patients’ pathologies, distances from the specialized

hospitals, required times, travel costs, and so on. Routes

and hospitals are identified, also through the use of crawled

data, suitably collected and analyzed in big-data, distributed

context, to support decision-makers.180

3. Problem Definition and
Modelling

This section describes the application domain of ride-sharing

and the modeling technique we deployed. We start with

spatial modeling, define the ride-sharing graph, and then185

enrich the modeling by the temporalities of the graph.



3.1. Ride-Sharing
The problem of ride-sharing is a general problem where one

(or more) driver, equipped with one (or more respective)

vehicle, has to pick up one or more passengers, dropping190

them off at one or more arrival bases. Major features of the

problem refer to:

i. Independence: every driver is independent from

the others:

ii. Automatic-matching: a central logic unit is the195

matching agency (system), facilitating the ride-sharing

arrangement;

iii. Cost-sharing: the grand total travel cost is consid-

ered, only;

iv. Carpooling: the ride-sharing participants are known200

in advance, and the matched commuters usually

have similar schedules, starting locations, and ar-

rival destinations, or the driver who provides the

ride service does not need to detour from his/her

preferred route;205

v. Dynamic: ride-sharing arrangement system may

re-adjust strategies at run-time, to facilitate the ride-

sharing services according to run-time input.

To find the optimal, or sub-optimal, solution, some of the

optimization goals can be:210

i. Number of drivers: minimize the total number of

required drivers;

ii. Total distance/time: minimize the total travel dis-

tance/time of drivers’ trips;

iii. Travelling time of passengers: minimize the total215

travel time of passengers’ trips;

iv. Served requests: maximize the number of matched

(served) requests, thus collecting as many passen-

gers as possible;

v. Cost for drivers’ trips: minimize the cost for the220

drivers’ trips;

vi. Cost for passengers’ trips: minimize the cost for

the passengers’ trips.

We initially focus on static ride-sharing, i.e. all the con-

straints are known before starting the journey, and on tem-225

poral aspects. We assume to have one vehicle, one driver,

many passengers (home patients), and one unique com-

mon arrival destination – the hospital or care center, where

patients have their visits scheduled, and where patients

must arrive on time. We specifically focus on temporal230

constraints, involving both the patients and the driver.

We formalize the problem, considering the grand total

travel time and the requests from every patient, in terms of

pick-up and drop-off time constraints. Moreover, we want

to model some temporal uncertainty, resulting in a more235

complex problem with respect to the simpler version with

no temporal uncertainty. This enhances the ability of the

system to deal with real-case scenarios, where passengers

want to share rides, but they want also to reach their desti-

nation within a certain schedule.240

3.1.1. Problem Formalization for Ride-Sharing by
Graphs

The entire problem can be formalized as a graph 𝐺 =
(𝑉,𝐸), with a non-empty set of vertexes (or nodes) 𝑉 , and

a non-empty set of edges 𝐸. Each edge is a connection be-245

tween two nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 . The cardinality of 𝑉 , denoted

as |𝑉 |, is the number of nodes in 𝐺: analogously, |𝐸| is the

number of edges. Given a pair of nodes 𝑣, 𝑢 ∈ 𝑉 , the edge 𝑒
between 𝑢 and 𝑣 is represented as 𝑒 = {𝑢, 𝑣}. The degree of

a vertex 𝑣, namely 𝑑𝑒𝑔(𝑣), is the number of edges incident250

to 𝑣. An undirected graph features edges with no direction:

given 𝑒 = {𝑢, 𝑣}, we can “traverse” the edge from 𝑢 to 𝑣,

as well as backward. A directed graph requires edges to

have a direction, so they can be traversed in one direction,

only. A graph can be traversed, namely, some paths can be255

constructed through it. We define a walk as an alternating

sequence between nodes and edges, and if the edges are

all different, then we define the walk as a path. A graph is

connected if at least one path between every node exists.

An edge can have a weight, i.e. a value associated with that260

edge. In a more complex scenario, a weight can involve

more values, with a particular meaning, thus increasing the

overall complexity of the graph.

We can express a road network by an undirected weighted

multi-graph 𝐺, which consists of a set 𝑉 of vertexes (cross-265

roads in the network) and a set 𝐸 of edges, where each edge

{𝑢, 𝑣} represents a road between 𝑢 and 𝑣. The multi-graph

is a special kind of graph where more edges between a pair

of nodes are permitted. Thus some edges can exist like:

𝑒1 = {𝑢, 𝑣}, 𝑒2 = {𝑢, 𝑣}, ..., 𝑒3 = {𝑢, 𝑣} (1)

In our case, the weight of an edge 𝑒 = {𝑢, 𝑣} represents270

the length (in Km) of a specific road from 𝑢 to 𝑣.

By the graph, we can then construct the following for-

malization. Given a set of persons (one driver 𝑑𝑖 and many

passengers 𝑝𝑖), everyone has a ride 𝑟𝑖, which is composed

of two nodes in 𝐺: for instance 𝑟𝑖 = {𝑢𝑖, 𝑣𝑖}, where 𝑢𝑖 is275

the starting point and 𝑣𝑖 is the ending point for passenger

𝑝𝑖. Nodes in 𝐺 are road intersections: thus every passenger

𝑝𝑖 has as a starting/ending point one of such intersections.

This is a simplification of the problem, assuming that 𝑝𝑖 will

reach the nearest intersection from his/her original posi-280

tion. In the following, we perform spatial reasoning at the

intersection granularity.

Each passenger 𝑝𝑖 has also two time constraints: a leav-

ing time constraint 𝑡(𝑢𝑖) = [𝑎𝑠𝑡𝑎𝑟𝑡, 𝑎𝑒𝑛𝑑]; and an arrival

time constraint 𝑡(𝑣𝑖) = [𝑏𝑠𝑡𝑎𝑟𝑡, 𝑏𝑒𝑛𝑑]. These constraints285

are depicted as temporal ranges: a passenger 𝑝𝑖 needs to

leave the starting place between time 𝑎𝑠𝑡𝑎𝑟𝑡 and 𝑎𝑒𝑛𝑑, and

must reach the arrival destination between time 𝑏𝑠𝑡𝑎𝑟𝑡 and

𝑏𝑒𝑛𝑑. The driver, denoted as 𝑑𝑖, has his/her own leaving and

arrival temporal constraints. Since we are focusing on static290

ride-sharing, the order according to which passengers are

picked up by the driver is decided in advance: thus, the path

must be one valid sequence of starting and ending points. A

sequence is said to be valid if, for every 𝑝𝑖, its starting point

𝑢𝑖 precedes its ending point 𝑣𝑖.295

The described ride-sharing problem aims at finding a valid

sequence of starting and ending points where, given some

temporal constraint, every passenger 𝑝𝑖 leaves the starting

point in a time 𝑡𝑙𝑒𝑎𝑣𝑒 ∈ 𝑡(𝑢𝑖) and arrives at the ending

point in a time 𝑡𝑎𝑟𝑟𝑖𝑣𝑒 ∈ 𝑡(𝑣𝑖). Next, we formalize the300

temporal aspects and provide a workflow for the resolution

of an instance of the ride-sharing problem.

3.2. Network Modelling
The road network of Subsection 3.1.1 is a graph. We have

to detect a valid sequence of starting and ending points in305

the graph, minimizing the total travel cost, i.e. the overall



length of the trip, for both the driver and the passengers.

This introduces a complexity element, i.e. the minimization

of the total distance, to increase the satisfaction both of the

driver and of the passengers.310

Once we have identified in the graph the starting and ar-

rival points, we can construct a distance network to include

distances between points, and a temporal constraint network
to consider temporal constraints when moving from one

point to another one. We thus obtain one network where315

the weight of every edge represents the distance between

two points and one network where the weight represents

time ranges (intervals or durations). These networks are

composed of 2𝑛 nodes, where 𝑛 is the number of persons

sharing the ride (the driver is included). Each node repre-320

sents a starting point or an ending point. Every network

is a complete graph: every edge 𝑒𝑘 = {𝑢, 𝑣} has a weight

𝑤(𝑒𝑘) which represents the distance or the temporal con-

straint of the shortest path between node 𝑢 and node 𝑣.

The symmetric 2𝑛 × 2𝑛 matrix 𝑄 depicts the distance325

network, where 𝑄[𝑖, 𝑗] defines the distance of the shortest

path between node 𝑖 and 𝑗. We assume in the following that

the shortest path between every couple of nodes is already

computed in the distance network, e.g. by OSMnx [19].

By 𝑄, we compute the valid sequence which minimizes330

the total travel distance. By brute force, we compute all

the possible permutations for the 𝑛 persons, therefore 2𝑛
points (every person has a starting and ending point). The

valid sequence that minimizes the total travel distance can

be found in 𝑂(2𝑛!) ∈ 𝑂(𝑛!). In real-case applications, cars335

can have up to five seats (i.e., 𝑛 = 5, five persons includ-

ing the driver): the application will have to deal with five

persons, including the driver. Considering that the driver

starting point will be the first one in the permutation, and

the ending point will be the last one, we expect at most to340

compute ((5− 1)× 2)! = 8! = 40320 permutations.

Example 1. We assume to have three persons, i.e. one

driver and two passengers, sharing one ride. Every person

has starting and ending points, and temporal constraints

(pick-up and drop-off times).345

From the real-world map and having 3 passengers, we

find six nodes (3! = 6), and we build the distance network
of Figure 1. Considered nodes are:

• Driver d:

– Starting point: 𝐹350

– Ending point: 𝐷
– Departure time interval: 𝑑𝑠𝑡𝑎𝑟𝑡 = [𝑡𝑠1, 𝑡𝑠2]
– Arrival time interval: 𝑑𝑒𝑛𝑑 = [𝑡𝑒1, 𝑡𝑒2]

• Patient 𝑝1:

– Starting point: 𝐴355

– Ending point: 𝐵
– Departure time interval: 𝑝1𝑠𝑡𝑎𝑟𝑡 = [𝑞𝑠1, 𝑞𝑠2]
– Arrival time interval: 𝑝1𝑒𝑛𝑑 = [𝑞𝑒1, 𝑡𝑒2]

• Patient 𝑝2:

– Starting point: 𝐶360

– Ending point: 𝐸
– Departure time interval: 𝑝2𝑠𝑡𝑎𝑟𝑡 = [𝑤𝑠1, 𝑤𝑠2]
– Arrival time interval: 𝑝2𝑒𝑛𝑑 = [𝑤𝑒1, 𝑤𝑒2]

The distance network results in the complete graph of

Figure 1, with |𝑉 | = 6. Each edge 𝑒𝑘 = {𝑢, 𝑣} depicts365

the shortest path between nodes 𝑢 and 𝑣, and its weight

𝑤(𝑒𝑘) ∈ ℛ depicts the length of the such shortest path. The

distance network can be represented by the 6× 6 symmetric

matrix 𝑄:

𝐴

𝐵 𝐶

𝐷

𝐸𝐹

𝑑𝑎,𝑏 𝑑𝑎,𝑐

𝑑𝑎,𝑑

𝑑𝑎,𝑒𝑑𝑎,𝑓

𝑑𝑏,𝑐

𝑑𝑏,𝑑

𝑑𝑏,𝑒

𝑑𝑏,𝑓

𝑑𝑐,𝑑

𝑑𝑐,𝑒𝑑𝑐,𝑓

𝑑𝑑,𝑒𝑑𝑑,𝑓

𝑑𝑒,𝑓

Figure 1: Complete graph with distances (distance network).

𝐴

𝐵 𝐶

𝐷

𝐸𝐹

𝑑𝑎,𝑏 𝑑𝑎,𝑐

𝑑𝑎,𝑑

𝑑𝑎,𝑒𝑑𝑎,𝑓

𝑑𝑏,𝑐

𝑑𝑏,𝑑

𝑑𝑏,𝑒

𝑑𝑏,𝑓

𝑑𝑐,𝑑

𝑑𝑐,𝑒𝑑𝑐,𝑓

𝑑𝑑,𝑒𝑑𝑑,𝑓

𝑑𝑒,𝑓

Figure 2: Shortest path 𝛼, according to distances.

𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 𝑑𝑎𝑏 𝑑𝑎𝑐 𝑑𝑎𝑑 𝑑𝑎𝑒 𝑑𝑎𝑓
𝑑𝑏𝑎 0 𝑑𝑏𝑐 𝑑𝑏𝑑 𝑑𝑏𝑒 𝑑𝑏𝑓
𝑑𝑐𝑎 𝑑𝑐𝑏 0 𝑑𝑐𝑑 𝑑𝑐𝑒 𝑑𝑐𝑓
𝑑𝑑𝑎 𝑑𝑑𝑏 𝑑𝑑𝑐 0 𝑑𝑑𝑒 𝑑𝑑𝑓
𝑑𝑒𝑎 𝑑𝑒𝑏 𝑑𝑒𝑐 𝑑𝑒𝑑 0 𝑑𝑒𝑓
𝑑𝑓𝑎 𝑑𝑓𝑏 𝑑𝑓𝑐 𝑑𝑓𝑑 𝑑𝑓𝑒 0

⎤⎥⎥⎥⎥⎥⎥⎦

We now have to find the valid sequence of nodes mini-370

mizing the overall travel distance. We recall that a sequence

is valid if, for every person, its starting point precedes its

ending point. The considered permutations concern pas-

senger nodes, only, since the driver’s nodes are fixed. Let’s

suppose that the resulting valid permutation featuring the375

shortest path of Example 1 is (Figure 3):

𝛼 = [𝐹,𝐴,𝐶,𝐵,𝐸,𝐷] (2)

We now compute the temporal range for every edge in

𝛼: this adds one more element of complexity, namely the

temporal dimension. The path from a place to a destination

requires some time, depending on traffic conditions, speed380

limits, and other aspects. In the temporal constraint network,

we assign to each edge 𝑒𝑘 , i.e. to the shortest path between

two nodes in the road network, a range 𝑒𝑘(𝑡) = [𝑡1, 𝑡2],
where 𝑡1, 𝑡2 ∈ 𝒩 . The range depicts the possible duration

required to traverse the path, according to two hypothetical385

average speeds. For example, a route inside a city has some

speed limits. In this case, the lower bound of 𝑒𝑘(𝑡), namely

𝑡1, refers to an average speed of 30 km/h, whereas the upper

bound 𝑡2 refers to an average speed of 50 km/h (see Figure 3).

Specific lower and upper bounds can be set, according to the390

possible speed limits in the different route segments. By the

distances from the road network, very simple computations

assign the time range for every edge in the network. The
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Figure 3: Shortest path 𝛼 with temporal intervals.
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Figure 4: Shortest path 𝛼 with temporal intervals and arrival
constraints.

number of edges in a complete graph with 𝑛 nodes is

(︀
𝑛
2

)︀
:

in our scenario – up to 5 passengers (i.e., 4 patients and395

1 driver) – we obtain a temporal constraint network with

at most 5 × 2 = 10 nodes, which results in

(︀
10
2

)︀
= 45

edges, assuming that each passenger has starting and ending

points different from the ones of the other passengers. In our

examples, we shall consider as starting points the different400

points of each passenger (the first point being that of the

driver) and one single ending point (i.e., the location of the

healthcare center). Thus, we shall have 6 nodes, with at

most

(︀
6
2

)︀
= 15 edges.

The path 𝛼 has now a time range, 𝛼𝑡. Every person405

(driver or passenger) has to reach the destination within a

given temporal constraint between the departure time and

the arrival time. The constraint is expressed as a tempo-

ral range, i.e. an upper bound and a lower bound. This

constraint further increases the complexity of the requests410

and could depend on the patient’s condition. For instance,

a patient requires to have an overall journey not longer

than 30 minutes. Thus, the allowed temporal range for the

patient’s journey could be [0, 30] minutes. To define this

kind of constraint, we add an edge 𝑒𝑑𝑒𝑠𝑡 for every partici-415

pant from the starting point to the destination point in 𝛼𝑡,

where 𝑒𝑑𝑒𝑠𝑡(𝑡) is derived from 𝑝𝑖𝑠𝑡𝑎𝑟𝑡 and 𝑝𝑖𝑒𝑛𝑑 (or 𝑑𝑠𝑡𝑎𝑟𝑡
and 𝑑𝑒𝑛𝑑 in case of the driver) or it is a further ad-hoc tem-

poral range. Constraint edges are depicted by red lines, as

in Figure 4.420

Analogously, one person can express a temporal con-

straint also for the pick-up time. The patient is not available

until 10:00 a.m.: the temporal range will be [120,∞] min-

utes after 8:00 a.m.. To represent all these constraints in

a homogeneous way, we define a special node (𝑍 , anchor425

node), which depicts the initial time of the entire network.

𝑍 is set to a predefined time, and all the edges referring to

a starting time constraint are depicted as minutes after the

anchor node 𝑍 . In the above example, 𝑍 is set to 8:00 a.m.
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𝑍
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[ℎ1, ℎ2]

[𝑗1, 𝑗2]
[𝑘1, 𝑘2]

[𝑚1,𝑚2]

Figure 5: Shortest path 𝛼 with temporal intervals with arrival
and departure constraints.

Therefore, any further constraint is defined with reference430

to 𝑍 . The agent will exploit this to execute the network.

Black edges, as in Figure 5, depict such temporal constraints.

A similar approach could be considered also for arrival

time. For instance, a patient needs to have an exam in a

hospital lab at 9:45 a.m., but the lab opens at 8:30 a.m. and,435

according to the CoViD-19-restrictions [20], patients cannot

enter the hospital too early (more than 30 minutes before

the appointment time). Therefore, for no reason, the patient

has to reach the lab before. An allowable temporal interval

could be [75, 105] minutes after 8:00 a.m.440

The resulting network includes all the required temporal

constraints. We now extend the network to consider un-

certainty, too. Three starting point nodes, namely 𝐹,𝐴,𝐶 ,

come with two types of temporal constraints:

i. the three nodes have one incoming edge from 𝑍 for445

the starting time constraint 𝑝𝑖𝑠𝑡𝑎𝑟𝑡 ;

ii. the three nodes have one outgoing edge for the end-

ing time constraint 𝑝𝑖𝑒𝑛𝑑 .

The setting of these time points is crucial, as they have

implications all over the network. The agent has to con-450

sider also the time needed to reach the destination, which

depends on the assignments of other nodes. Due to these

hard constraints, it may sometime happen that the network

is not controllable, i.e. some constraints cannot be fulfilled.

We can specify a temporal range in which we can reach455

a destination, starting from a location. However, we can

encounter something that forces us to reach the destination

with some delay, e.g. some unexpected traffic jam, an acci-

dent, or a detour. We can expect that in most cases we can

move from node 𝑋 to node 𝑌 in a given amount of time,460

but we cannot be sure of how effectively we can reach 𝑋 .

Therefore, we have to model this scenario in the network by

means of contingent time points, which introduce contingent
edges in the network. We define a contingent edge 𝑒 as a

path in a real-world scenario, where we assume the path to465

be traversed in a given amount of time 𝑡 ∈ [𝑡1, 𝑡2]: we can

observe the time 𝑡 only after the event occurred, without

controlling it. That temporal range is defined: however,

the agent during the execution phase can only observe the

outcome of the time assignment, and act consequently to470

fulfill the temporal constraints.

Dynamic controllability plays a key role. In a not dynam-

ically controllable network, if some contingent time points

assume given values, the agent cannot schedule/re-schedule
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Figure 6: Shortest path 𝛼 with temporal intervals, contingent
edges, arrival, and departure constraints. Green edge: contingent
travel time constraint; Blue edge: travel time constraint; Red edge:
arrival time constraint; Black edge: departure time constraint.

other time points to fulfill all the temporal conditions, in-475

cluding both trip time and passenger time requirements.

In a dynamically controllable network, every passenger’s

temporal constraints are satisfied, both starting and ending

ones, no matter where the contingent time points will be.

One more parametric aspect of the problem refers to480

which edges are to be considered contingent: therefore their

pointing nodes will be contingent time points. As an exam-

ple, in our context, we may assume that if two locations are

in the same district, reasonably the time needed to move be-

tween them is controllable: we can ride faster or slower, and485

we can foresee the arrival time with no particular problem.

Otherwise, if we cross two districts, we can experience traf-

fic congestion, or many intersections to cross can sometimes

increase the travel time. Therefore, we define contingent

edges as those about a path that involves more than one490

district. In our example, we suppose that points 𝐹,𝐴,𝐶,𝐵
belong to the same district, whereas points 𝐸,𝐷 belong to

another different district: thus, the edge 𝐵 → 𝐸 will be

considered contingent and depicted by a green line as in

Figure 6.495

4. Implementation Details
This section describes the proof-of-concept prototype. We

first apply the algorithm to check the dynamic controllabil-

ity of the network by [9]; then, we simulate a real scenario

for the RTED strategy, where the agent has to react to a500

contingent time point and reschedule the ride.

4.1. System Description
We now describe the implementation of the system exper-

imenting our approach. As development tools, we choose

Python and the NetworkX package for managing networks.505

The overall architecture has three modules:

i. STNU management: the module reads the graph of

the network, and computes the respective distance

graph. Next, the module computes the APSSRP ta-

ble and checks the dynamic controllability of the510

distance graph;

ii. network execution: the module analyzes the dis-

tance graph network from the previous step, pro-

cesses all the possible contingency points, and by

the RTED strategy computes the execution strategy;515

iii. map and route planner: the module connects to an

Open Street Map server, and retrieves the real-world

map for the ride-sharing scenario. Next, the module

identifies the starting and ending points on the map

and computes the distances between all the points520

of the network: the resulting network comes with

weighted edges with temporal intervals. Finally, the

module computes all the possible permutations and

extracts the shortest one.

Moreover, we used an open-source Java tool, allowing the525

graphical representation and the checking of STNU [21].

4.2. Ride-sharing Instance
We consider a ride-sharing problem in Verona with one

driver and three patients. All of them have one starting

and one ending point, and temporal constraints for both530

departure and arrival times. The multiple objectives are:

• minimize the total travel distance, or minimize the

costs for all the passengers;

• verify the consistency of the temporal constraints,

by means of dynamic controllability;535

• schedule the time arrival for every point, simulating

a temporal dimension to react to contingent events

by means of a RTED strategy.

We start by considering the spatial features of the prob-

lem. The driver collects the patients, drops them off at care540

centers, and then brings them back home. The driver moves

from one of the University hospitals, point Start in Verona

(Figure 7). The driver needs to reach, in the end, a care

center in the East area of the city (point End, Figure 7). The

three patients, located in three different areas of the city,545

need to reach three different destinations. Precisely, the

participants of the ride-sharing process are:

• Patient 𝑝1

– Starting point 0: Southern District

– Ending point 1: Southern District550

– Departure time: from 8:00 a.m. to 8:05 a.m.

– Arrival time: from 8:05 a.m. to 8:15 a.m.

• Patient 𝑝2

– Starting point 2: Southern District

– Ending point 3: Western District555

– Departure time: from 8:00 a.m. to 8:10 a.m.

– Arrival time: from 8:05 a.m. to 8:25 a.m.

• Patient 𝑝3

– Starting point 4: Western District

– Ending point End: Eastern District560

– Departure time: from 8:05 a.m. to 8:15 a.m.

– Arrival time: from 8:10 a.m. to 8:30 a.m.

The driver’s ending point, departure time, and arrival

times are:

• starting point Start: Southern District565

• ending point End: Eastern District

• departure time: from 8:00 a.m. to 8:05 a.m.

• arrival time: from 8:10 a.m. to 8:30 a.m.
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Figure 7: Planned trip (left) and district division (right).

We also add another constraint on the path, namely node

5: it depicts a request from patient 𝑝3 to stop at node 5 to570

pick up one relative of his/hers for assistance. Thus, both

patient 𝑝3 and the driver need to reach a medical center in

E, but the path must go through node 5, Eastern District.

Figure 7 depicts the planned trip, along with the adopted

division of districts. District division is relevant: in our575

formalization, a path that crosses one (or more) district

borders is considered to be of uncertain duration. Traffic

conditions and other factors could affect major connections

in a city.

The resulting path, depicted in red in Figure 7, is the580

shortest path among all the possible valid permutations,

where a permutation is defined as valid if every starting

point of every patient precedes its respective ending point.

The first and last points are fixed, describing the driver’s

starting point and ending point, respectively. The path585

chosen as the shortest one, called 𝛼, is composed as:

𝛼 = [Start, 0, 2, 1, 3, 4, 5, End] (3)

and it is 12.44 km long. In particular, the path is a combina-

tion of the shortest paths among points, whose distances

and temporal constraints are: from D to 0: 0.7 km with time

interval [1,1]; from 0 to 2: 1.504 km with time interval [2,3];590

from 2 to 1: 1.109 km with time interval [1,2]; from 1 to 3:

4.004 km with time interval [5,8]; from 3 to 4: 0.685 km with

time interval [1,1]; from 4 to 5: 2.303 km with time interval

[3,5]; from 5 to E: 2.135 km with time interval [3,4].

We can now continue by considering the temporal fea-595

tures of the problem. Time ranges are estimated at a constant

speed of 50 km/h as the lower bound, and at a speed of 30

km/h as the upper bound. The selected path minimizes the

overall distance since the path will reduce the total travel

cost: with a certain probability, the path can also be feasi-600

ble with regard to the temporal constraints imposed by the

participant (patient or driver).

Figure 8 depicts the formalized network. Green dotted

edges depict contingent edges, which lead to contingent

time points. Since those edges depict paths that cross district605

borders, we cannot predict exactly how much it will take to
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Figure 8: Real world network formalization.

run these paths with respect to the computed time range.

The network is then enriched by two other kinds of tem-

poral constraints, namely arrival and destination constraints.

As explained in Section 3.2 and by Figure 5, we add a special610

node 𝑍 which represents “time zero”. In our example, 𝑍 is

set as 8:00 a.m., which is the anchor timestamp according

to which temporal constraints are defined.

Figure 9 depicts the network previously obtained–with

temporal ranges related to the time required to move from615

a point to the next one according to the derived route– com-

pleted with the temporal constraints related to patient 𝑝1,

who has to move from point 0 to point 1, and to the driver,

who moves from Start to End.

After running the procedure, we extrapolate the complete620

network and are able to verify that, in this case, the network

is controllable.

4.3. Feasible Solutions
Not every valid path, namely a sequence where each starting

point is reached before its respective ending point, is feasi-625

ble. In the above example, the driver does not participate

in counting all the possible permutations, having a fixed

starting point and a fixed ending point: the starting point

is the first one, and the ending point is the last one, with

respect to all the other participants. Thus, the remainder 3630
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Figure 9: Real world network formalization with some passen-
gers’ constraints.

𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠× (𝑝𝑖𝑐𝑘-𝑢𝑝 𝑝𝑜𝑖𝑛𝑡+𝑑𝑟𝑜𝑝-𝑜𝑓𝑓 𝑝𝑜𝑖𝑛𝑡) = 6 points

need to permute, resulting in 6! = 720 possible paths. This

set is the “all paths” set: among those paths, we obviously

consider only the valid ones, i.e. we cannot drop a passenger

off at the destination before picking the passenger up. This635

reduces the space to 90 valid paths, which is 12, 5% of all

paths. We refer to them as the “valid paths”. Moreover, we

find the “feasible paths”, that both are valid and fulfill all

the temporal constraints. The “feasible paths” set is fully

contained in the “valid paths” set: we shall have at most640

90 feasible paths. Reasonably, the number of feasible paths

is smaller that the number of valid paths, for a not-trivial

network with reasonable time constraints.

A valid path could be not feasible due to two main reasons

(or both of them):645

• the requested time constraint is too strict;

• the distance between points is too large, so it results

in a long travel time for that specific path, which

will not satisfy the time constraint(s).

As an example, in Figure 10 we insert a time constraint650

that is too strict: the resulting network will be not dynami-

cally controllable. In fact (Figure 10), the red line depicts a

too-strict time constraint from node 0 to node 1. We remind

that patient 𝑝1’s starting point is 0, and the ending point is

1, so the request edge can be translated as “patient 𝑝1 needs655

to reach the destination between 1 and 2 minutes after de-

parture”. It can be easily observed that, since we have to

pass through point 2, which is patient 𝑝2’s starting point,

we can reach point 1 at least 3 minutes after departure: the

added constraint is clearly not satisfiable.660
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Figure 10: Non dynamically controllable example

5. Discussion and Conclusions
We faced the problem of ride-sharing, where two or more

passengers want to share a ride: the goal is that of minimiz-

ing the overall length of the trip. To simplify the scenario,

we assume to have one driver and one car, two or more pas-665

sengers with their respective starting points, and one com-

mon final destination. In a real-case scenario, passengers

may also have some temporal constraints, referring to the

pick-up time or drop-off time. During the trip, some events

may occur, such as traffic congestion, detour, and - more670

generally - delays: this adds uncertainty to the problem.

Moreover, crossing city districts increases the probability

of encountering such events, and may force them to switch

from a statically planned trip to a dynamically planned one,

where decisions must be taken at run time.675

As an application domain, we considered medical trans-

portation: passengers are patients who need to reach the

common care center, where some visits/therapies/treatments

are scheduled for them. This feature adds even more tem-

poral constraints. In this paper, we formalized the problem680

by graphs, deploy spatial and temporal networks to analyze

the graphs, and demonstrate the approach by a running

prototype.

5.1. Future Research Directions
We consider here some future research directions. We plan685

to enrich the analysis to consider more complex situations,

e.g. having more drivers, more cars, more than 5 passengers

per car such as in vans, as well as considering the return trip,

picking up the patients from the care center, and dropping

them back home. More constraints need to be considered,690

e.g. a patient who went through a radio-therapy can’t be

transported in the same vehicle with a pregnant patient or

with a kid. To this end, we have to face the scalability issues

of this inherently intractable (𝑁𝑃 ) problem.

The analysis can be further extended to consider the pa-695

tient’s priority, which could help in increasing the revenues

of the care center by avoiding dead times of highly expensive

instrumentation, or in avoiding insurance claims.

The analysis can also consider emergency situations, thus

prioritizing patients according to several facets, including700

the patient’s status, type of disease or injury, and resource

availability in the care centers.
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