
Bridging the Gap between Data Lakes and RDBMSs
Efficient Query Processing with Parquet

Alice Rey

Supervised by Prof. Dr. Thomas Neumann
Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany, rey@in.tum.de

Abstract
In the age of massive data, databases are getting less convenient for data exploration tasks due to the costly loading phase.
Still, the highly optimized query engines of database systems are greatly beneficial for the performance of data analysis tasks.
With our research, we want to bridge this gap and provide paramount analytical performance without the need of static data
loading. Our approach enables the integration of Parquet files — one of the most used columnar file format in the data lake
context — into the data processing pipeline of a database system in a convenient way. We allow end-users to benefit from the
database system performance without a costly and time-consuming loading phase.

Keywords
Parquet, Data Lakes, Dremel, Database Systems

1. Introduction
Data is ever-growing. By now, cloud-based systems and
data lakes are a popular choice for storing and processing
data. Loading massive amounts of data into traditional
database systems can be considered time-consuming and
unnecessary overhead. Still, big data workloads can ben-
efit from the performance that well-engineered database
systems can provide. One of the most common file for-
mats to store vast amounts of data is Parquet [1]. This
binary file format stores data in a columnarized way,
which makes it similar to processing data stored in a re-
lational database system with a columnar storage layout.

In our first work [2], we presented our approach for
integrating Parquet files into the data processing pipeline
of relational database systems without the costly loading
phase. Our framework allows queries to be executed
directly on Parquet files with stable parallelization. In
addition, we store statistics about the data to speed up
future queries. This work showed that the presented
techniques lead to promising results that outperform
other data engineering tools and database systems. With
our approach, the observed performance is close to cases
where the relational database system directly manages
and stores the data.

Since data is not always stored in relational database
systems that encourage the end user to keep the data
in third normal form, other techniques are used to rep-
resent relations between datasets. One commonly used

Published in the Proceedings of the Workshops of the EDBT/ICDT 2024
Joint Conference (March 25-28, 2024), Paestum, Italy

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

technique is to model one-to-one and one-to-many rela-
tionships with nesting. Many-to-many relations can only
be projected to a nested data structure by introducing a
lot of duplicated data.

Inside Parquet files, the Dremel [3] encoding facilitates
nesting. The benefit of this encoding is that even nested
data can be stored in a columnar format, which enables
optimized storage, better compression, and more efficient
access. If the users need to reconstruct the data, they must
decode the repetition levels stored per column, which
encode the nesting.

Until now, we have focused on supporting non-nested
data. Scanning Parquet files is already a very complex
task, even without the addition of nesting. Adding nest-
ing to the scanner makes dealing with the complexity
of the Parquet format even more complicated and an
immense task. In addition, we want to benefit from the
strengths of the database system which is processing non-
nested data in third normal form. Therefore, we opted
for a different direction: Our plan is to work with flat-
tened data inside the Parquet scanner and thereby keep
the complexity and implementation effort as minimal as
possible. The nesting is added in a later stage.

The rest of this paper is structured as follows: First,
we will cover related work about file-based and nested
data processing in Section 2. Afterward, in Section 3,
we will summarize our current work. We start with our
first paper, which dealt with the seamless integration
of Parquet files into database engines. Then, we will
introduce our plan for Dremel-encoded nested data on a
high level. Then, in Section 4, we will discuss our plans
for future work and areas where we still see potential for
improvements. Lastly, Section 5 concludes the paper.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


2. Related Work
We identified two main areas of related work that are
relevant for our work: (i) Processing raw data in RDBMSs
and (ii) processing nested data. In the following, we
categorize the collected related work by these two areas.

2.1. Processing of Raw Data
There exists a multitude of work on processing CSV files.
For example, Mühlbauer et al. [4] present techniques to
directly query the row-wise non-binary format in an effi-
cient way by reading the file in chunks with vectorization
methods. Furthermore, Alagiannis et al. [5] present ap-
proaches to compensate for the missing metadata inside
CSV files by utilizing the statistics routines of Postgres
to optimize their selectivity estimates. Similarly to their
CSV scanner, we collect statistics and metadata tailored
to the Parquet file format.

Apache Arrow, an in-memory columnar format, was
used as a foundation for the storage layer of a DBMS in
the work of Li et al. [6]. They focused on good OLTP
performance by utilizing a relaxed Apache Arrow format
while supporting a fast export to data science engines. Liu
et al. [7] provide an overview of how columnar formats
can be utilized as a base for DBMSs. They compare three
major formats, Parquet, Arrow, and ORC, under differ-
ent aspects like compression performance, transcoding
throughput, and their performance for different database
operations like projection or filtering. Zeng et al. [8]
compare the layout of Parquet and ORC under differ-
ent aspects. They do not find a clear winner but focus
more on how future formats can learn from their findings.
Both papers, highlight Parquet as one of the standards
for columnar data formats.

2.2. Processing of Nested Data
Durner et al. [9] present with their work on JSON tiles an
approach to efficiently process JSON files. They also face
the challenge of nested data and tackle it by extracting
common schema parts and materializing them into a
columnar format.

Wang et al. [10] present Steed, a native database system
designed for tree-structured data. They built a row and a
columnar data layout to store JSON data. For the column
data, they utilize the Dremel schema. They suggest opti-
mizing for simple accesses with at most one array along
the access path, so fewer nodes must be visited.

Trance, presented by Smith et al. [11], is a framework
that transfers queries that run on nested collections to
a set of relational queries that can run on flattened col-
lections. They introduce a “fully-flattened” data repre-
sentation, whereas the Dremel encoding stores the data
“semi-flattened”.

Figure 1: Parallelized Processing of Parquet files with early
predicate evaluation.

3. Current Work
In this section, we start by discussing the work we have
already completed. Afterwards, we explain our current
work. As a first step, we focused on efficiently scanning
Parquet files without any nested types. In the second step,
which we are working on, we look into adding support
for nested types. This support will be added orthogonally
so that we are not forced to rewrite our scanner entirely
and keep the complexity of nested types outside of the
scanner implementation.

3.1. Efficient Processing of Parquet Files
The main challenge of building an efficient Parquet Scan-
ner is to handle the broad variety of potential input file
structures. Parquet files are first split horizontally into
row groups with an arbitrary number of rows. Each row
group is then stored column-wise in so-called column
chunks. The data is split per column chunk into one or
more pages with an arbitrary number of values per page
using one of the many different supported encodings and
compressions. Such files can be created by different Par-
quet writers with different settings, leading to arbitrarily
different files. In our example in Figure 1, the Parquet file
contains three columns (x, y, and z) and is split into two
row groups. The column chunks inside the row groups
are split into one to three pages.

Robust parallelization. We aim for optimal perfor-
mance independent of how the utilized Parquet writer
distributed the data over the Parquet levels (Row Groups
and Pages) and for which granularity statistics were col-
lected and stored in the Parquet file. Some Parquet file
writers that write significantly more rows into one row
group than what we consider a good number of rows that
should be processed as one batch [12, 13].Hence, we deal
with this situation by parallelizing below row group level
which we visualize in Figure 1 with the threads T1 - T4,
where each row group is processed by two threads in
parallel. While scanning a single batch, we scan as little
data as possible. First, we only scan the columns that are



required for producing the query result, columns x and
z in our example. This optimization can be easily real-
ized since Parquet stores the data in a columnar format.
Hence, columns can be accessed independently, which
fits quite nicely into a columnar engine like Umbra [13].

Multi-level pruning. Suppose we have to evaluate
selection predicates on specific columns; we can use these
predicates in two phases to minimize the data we have
to access. First, we use them to exclude files, row groups,
and pages as early as possible. In our example in Figure 1,
we have a selection predicate for column x with whom
we can exclude in each row group one entire page.

Since min/max statistics are specified as optional fields
in the Parquet format, we can not rely on them. There-
fore, we added fallback min/max statistics, which we call
synopses. To keep the number of synopses fixed, we store
them on row group level and group multiple row groups
together if the Parquet file contains many row groups.

The second phase, where we use the predicates to min-
imize the scanned data, is during the actual data loading.
We start by loading the columns that are restricted by the
predicates and evaluate them with vectorized functions.
In Figure1, we do that for column x. Then, we only access
the rest of the columns, in our example column y, if the
predicate holds for the specific row.

On-the-fly statistics computation. Even with those
parallelization and pruning techniques, we observed
significant performance differences for more complex
queries that are ran on Parquet files instead of their na-
tive database relation equivalents. Due to some Parquet
files lacking statistics entirely and only basic min/max
statistics being available in the rest of the Parquet files, we
decided to compute our own set of statistics for each col-
umn inside a Parquet file whenever they are accessed for
the first time. We compute HyperLogLog sketches [14]
and keep a random data sample. We keep the overhead
of the statistics computation low by not accessing the
data unnecessarily. We only write such statistics when
scanning the data for query evaluation. Starting with the
second time the file is accessed, our query optimizer can
work with these statistics to generate query plans that
are as optimized as for standard database tables.

Based on the statistics and information from the query
plan, we also try to estimate the primary keys of each file
which help us decide if we have a primary key/foreign
key join. Based on the usage of the columns and distinct
value estimates, we check if single columns and pairs of
columns could be primary key candidates.

Our experiments show that combining all these tech-
niques enables us to process Parquet files very efficiently
and achieve similar performance compared to data stored
in traditional database relations. In addition, we can out-
perform other existing systems that support querying
Parquet files directly.

3.2. Dedremelize Parquet Files
We consider the handling of nested data an orthogonal
problem to an efficient Parquet scanner. Therefore, we
investigate that topic based on the assumption that the
underlying database system already supports scanning
Parquet files with basic types.

Relational database systems are optimized for non-
nested data, specifically in third normal form. The
Dremel encoding allows Parquet files to store nested data
in a columnar way. Basic fields are stored in their own
columns, and the so-called repetition levels tell us later
how the nested structure can be rebuilt using an automa-
ton presented in the Dremel encoding paper [3]. Inter-
estingly, elements from the same nesting level with the
same parent have the same repetition level [15]. Based
on this finding, we can group columns by this condition
(grouped column sets) and end up with a set of tables in
the third normal form.

If we postpone the reconstruction of the nesting to
a later stage, we can split the scan of nested data into
multiple scans that can be performed individually on the
grouped column sets from above. Based on the repetition
levels, we can generate what we call surrogate keys that
allow us to later join the different levels back together. We
will publish more details on that in the future, addressing
all the requirements and showing performance results.

Benchmarks for nested data. Finding appropri-
ate benchmarks is very challenging since nested data
can be very versatile. The number of nesting lev-
els and the children-to-parent ratio can vary signifi-
cantly. We identified two resources for benchmarks:
Firstly, there exists work on benchmarking big data
systems using a modified version of the TPC-H bench-
mark that nests lineitems into the corresponding
orders [16] and even the orders into the correspond-
ing customers [11]. The downside of nesting the TPC-H
dataset is that one of the benchmark’s key challenges,
the join performance, is at an advantage since the data
is already grouped by the primary key/foreign key join
predicates.

Second, there exists work on benchmarking other
nested file formats like JSON and XML [9, 17, 18]. The
downside of these benchmarks is that they were designed
to highlight the performance bottlenecks that those file
formats introduce, like the unknown schema and the
reading from a non-binary file format. In addition, they
were not designed to be used for big data workloads
but for data sizes that are still manageable in a human-
readable format. Scaling those benchmarks up to achieve
big data scale is not always possible. DeepBench [19] is
an extensible and scalable benchmark for JSON data fo-
cusing on different nesting levels and array types which
could be extended to Parquet since it is targeting similar
bottlenecks. We will evaluate these benchmarks and mi-



crobenchmarks in the future to get a better understanding
of their capabilities and limitations.

4. Future Work
Our current work already discusses how Parquet scan-
ning capabilities can be integrated into database engines.
In the real world, extensions for Parquet files and other
columnar storage formats make file-based storage for-
mats even more powerful. Well-known extensions are
Iceberg [20] and Deltalake [21]. They allow schema evo-
lution, support updates as deltas or full rewrites, and even
support time travel to earlier versions. In the future, we
plan to investigate how the aforementioned extensions
align with the capabilities of a database engine and how
these can be integrated seamlessly into existing systems.

5. Conclusion
We presented our investigations on how the gap between
highly efficient relational database systems and data lake
file formats can be bridged. We started with a Parquet
scanner that shows how these files can be seamlessly
integrated into the stack of a relational database engine.
Our current work focuses on supporting nested data, a
common pattern in big data workloads. The goal is to
keep the implementation effort and complexity as low as
possible. In addition, we want to abstract as much logic
away from the core database engine as possible. The first
measurements show promising results, proving that our
vision of a clean, easy-to-implement addition does not
contradict competitive performance.

References
[1] Apache Software Foundation, Apache parquet, 2013.

URL: https://parquet.apache.org.
[2] A. Rey, M. Freitag, T. Neumann, Seamless integra-

tion of parquet files into data processing, in: BTW,
volume P-331 of LNI, 2023, pp. 235–258.

[3] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, et al., Dremel: Interactive analysis of web-
scale datasets, VLDB 3 (2010) 330–339.

[4] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser,
A. Kemper, T. Neumann, Instant loading for main
memory databases, VLDB 6 (2013) 1702–1713.

[5] I. Alagiannis, R. Borovica, M. Branco, S. Idreos,
A. Ailamaki, Nodb: efficient query execution on
raw data files, in: SIGMOD Conference, 2012, pp.
241–252.

[6] T. Li, M. Butrovich, A. Ngom, W. S. Lim, W. McK-
inney, A. Pavlo, Mainlining databases: Supporting

fast transactional workloads on universal columnar
data file formats, VLDB 14 (2020) 534–546.

[7] C. Liu, A. Pavlenko, M. Interlandi, B. Haynes, A
deep dive into common open formats for analytical
dbmss, VLDB 16 (2023) 3044–3056.

[8] X. Zeng, Y. Hui, J. Shen, A. Pavlo, W. McKinney,
H. Zhang, An empirical evaluation of columnar
storage formats, VLDB 17 (2023) 148–161.

[9] D. Durner, V. Leis, T. Neumann, JSON tiles: Fast
analytics on semi-structured data, in: SIGMOD
Conference, 2021, pp. 445–458.

[10] Z. Wang, S. Chen, Exploiting common patterns for
tree-structured data, in: SIGMOD Conference, 2017,
pp. 883–896.

[11] J. Smith, M. Benedikt, M. Nikolic, A. Shaikhha, Scal-
able querying of nested data, VLDB 14 (2020) 445–
457.

[12] V. Leis, P. A. Boncz, A. Kemper, T. Neumann,
Morsel-driven parallelism: a numa-aware query
evaluation framework for the many-core age, in:
SIGMOD Conference, 2014, pp. 743–754.

[13] T. Neumann, M. J. Freitag, Umbra: A disk-based
system with in-memory performance, in: CIDR,
2020.

[14] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, Hyper-
loglog: the analysis of a near-optimal cardinality
estimation algorithm, in: Discrete Mathematics and
Theoretical Computer Science, 2007, pp. 137–156.

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, et al., Dremel: A decade of interactive SQL
analysis at web scale, VLDB 13 (2020) 3461–3472.

[16] P. Pirzadeh, M. J. Carey, T. Westmann, A perfor-
mance study of big data analytics platforms, in:
IEEE BigData, 2017, pp. 2911–2920.

[17] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, R. Busse, Xmark: A benchmark for
XML data management, in: VLDB, 2002, pp. 974–
985.

[18] C. Truica, E. S. Apostol, J. Darmont, T. B. Pedersen,
The forgotten document-oriented database man-
agement systems: An overview and benchmark of
native XML dodbmses in comparison with JSON
dodbmses, Big Data Res. 25 (2021) 100205.

[19] S. Belloni, D. Ritter, M. Schröder, N. Rörup, Deep-
bench: Benchmarking JSON document stores, in:
DBTest@SIGMOD, 2022, pp. 1–9.

[20] Apache Software Foundation, Apache iceberg, 2013.
URL: https://iceberg.apache.org.

[21] M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu,
et al., Delta lake: High-performance ACID table
storage over cloud object stores, VLDB 13 (2020)
3411–3424.

https://parquet.apache.org
https://iceberg.apache.org

	1 Introduction
	2 Related Work
	2.1 Processing of Raw Data
	2.2 Processing of Nested Data

	3 Current Work
	3.1 Efficient Processing of Parquet Files
	3.2 Dedremelize Parquet Files

	4 Future Work
	5 Conclusion

