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Abstract
Industry practitioners care about small improvements in malware detection accuracy because their models
are deployed to hundreds of millions of machines, meaning a 0.1% change can cause an overwhelming
number of false positives. However, academic research is often restrained to public datasets on the
order of ten thousand samples and is too small to detect improvements that may be relevant to industry.
Working within these constraints, we devise an approach to generate a benchmark of configurable
difficulty from a pool of available samples. This is done by leveraging malware family information from
tools like AVClass to construct training/test splits that have different generalization rates, as measured
by a secondary model. Our experiments will demonstrate that using a less accurate secondary model
with disparate features is effective at producing benchmarks for a more sophisticated target model that
is under evaluation. We also ablate against alternative designs to show the need for our approach.

1. Introduction

Malware detection, determining if a given file is benign or malicious, is an important safety
problem, since malware causes billions in financial damage each year [1]. However, it is not
easy for academic researchers to know that they have produced an improvement using freely
available data. This is because industry uses tens of millions of executables at tens of terabytes in
scale to detect meaningful improvements in accuracy [2, 3, 4, 5]. In contrast, academic datasets
with raw executables available are measured in tens of thousands of executables [6, 7, 8]. This
small scale has made it easy for academic work to over-fit to the data [9, 10, 11], and best
practices like a train and test set split by time (by when the executable was created) are not
possible due to lack of information [11].

The goal of this work is to provide academic researchers with a means of constructing new
train/test splits, using publicly available information for Microsoft windows malware, that can
increase the predictive difficulty of the task by removing common biases that lead to overfitting.
The crux of our method is that malware can be grouped into families of related type [12],
and an ideal malware detector is one that can detect new families that were not seen during

CAMLIS’23: Conference on Applied Machine Learning for Information Security, October 19–20, 2023, Arlington, VA
$ tpatel9@umbc.edu (T. Patel); Lu_Fred@bah.com (F. Lu); Raff_Edward@bah.com (E. Raff); nicholas@umbc.edu
(C. Nicholas); cmat@umbc.edu (C. Matuszek); holt@lps.umd.edu (J. Holt)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:tpatel9@umbc.edu
mailto:Lu_Fred@bah.com
mailto:Raff_Edward@bah.com
mailto:nicholas@umbc.edu
mailto:cmat@umbc.edu
mailto:holt@lps.umd.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


training. This insight gives us an objective way to group samples into train/test splits that
do not cause significant information leakage by having the same malware families in both
training and testing, as some prior academic works do [11]. By searching for malware families
of the right difficulty to place in each train and test split, we can produce new benchmark splits
for researchers to use that are smaller than the source datasets, but avoid the bias problems
mentioned above.

The rest of our paper is organized as follows. In section 2 we will discuss the important
related work to our own, including prior issues in malware detection research and the work
in reproducibility and model selection that can be better leveraged by our benchmarks. Then
in section 3 we will describe how we use a base, simpler model with a search procedure to
construct these benchmark datasets. The goal is that our splits will have a lower baseline
accuracy for existing methods, showing that we can produce a harder dataset, which in turn
makes it easier to detect improvements in generalization and thus effect size. We demonstrate
this for three difficulty levels (Easy, Medium, and Hard) in section 4, and that two intuitive
ablation strategies are ineffective in subsection 4.1. Finally, our article concludes in section 5.

2. Related Work

Malware detection research using machine learning has been active since 1995 [13], and includes
raw byte [14], API calls and assembly [15, 16], graph [17], or exogenous metadata [18]. However,
much industrial research has indicated that academic methods do not often transfer well to
industrial data, and so increasingly industry is trying to release more representative datasets [19,
2]. Such efforts are commendable, but these datasets often still require a VirusTotal license1

to get the original files, and they can be prohibitively large. The SOREL-20M corpus has over
20 million files in a train/validation/test split to detect small improvements that matter in
real-world use. Our work is the first attempt (that we know of) to develop methods to decrease
the amount of data necessary to detect an improvement, rather than simply add more data.

With respect to the issue of detecting improvements in our models, much of the machine
learning literature has tackled this problem. Early works explained that ordinary t-tests and
other statistical methods are not reliable for machine learning cases for a variety of technical
reasons [20]. More recent works have consistently found that a non-parametric Wilcoxon
test is a reliable way to detect which algorithm performs best, if multiple trials (i.e., datasets)
are available [21, 22, 23]. Other approaches to testing over the space of hyper-parameter
values have also been proposed to better measure the improvement achieved, if any, by a new
algorithm [24, 25]. The goal of our work is to provide a better foundation for using these prior
model selection strategies, as simple cross-validation over an existing biased academic dataset
is unlikely to produce a robust conclusion [26, 27].

2.1. Dataset

To perform our study, it was critical that we had a representative population of benign samples,
as crawling publicly available sources has been demonstrated to produce models with insufficient

1This costs $400,000/year.



diversity, which do not generalize to new malware [9, 10, 2, 11]. Because our interest is in
producing train/test splits that are also of a reasonable size, so that academics can use them, we
use the EMBER 2018 dataset [19] which contains 300,000 training and 100,000 testing benign
files. The EMBER dataset also includes malicious files, but they are not evenly distributed by
malware family or type, which is problematic for our dataset construction approach.

For this reason, we use the VirusShare corpus [28] as a source of freely available malware.
Malware family labels can also be obtained freely via the AVClass [29, 30] tool combined with
the VirusTotal reports of [31]. Using these sources we are able to get hundreds of malware
families with thousands of samples each. Following [32] we use the same top 184 most frequent
malware families with 10,000 samples each, 8,000 for training and 2,000 for testing.

Figure 1: Here we show the cross-error rates of the MalConv models. Each row corresponds to the
malware family used in training, and the columns show the recall rate (see color scale) against all the
malware families. Dark horizontal bands show malware families that do not generalize to other malware,
and vertical dark bands are malware families that are hard to generalize to. Conversely, white bands are
easy to generalize from/to respectively. The XGBoost result is near-identical, showing strong correlations
in malware family generalization behavior across model and feature types.
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Figure 2: Example showing the malware recall rate (y-axis) of a model trained using the top five best
malware families (in terms of highest average recall against other families) as reported by Figure 1.
While the average recall rate is reasonably large, the recall per-family has an extremely high variance.
This makes it challenging to determine if a performance difference comes from luck or true effect.

3. Approach

To make our benchmarks of configurable difficulty, we will start with the all-pairs cross-errors
shown in Figure 1. Each row corresponds to selecting one of the 184 malware families to be
the only family used during training. The resulting classifier is then tested on itself and all 183
of the other malware families, with the recall score in the corresponding columns. (The main
diagonal shows the recall we get when testing on the same malware as was used for training).
This gives us information on how useful each malware family is, on its own, in predicting all
other malware families. In every case a random set of benign files is down-sampled to the same
number of malicious files. That is, 8,000 malicious and 8,000 benign files are used to train a
model for each row.

The goal will be to generate train/test splits into three categories mentioned earlier, namely
Easy, Medium, and Hard. We will start by generating ten different train/test splits in each of
the categories. Note here that each train/test split must have no overlap of malware families
between the train and test splits, but different train/test splits might share some families. That
is to say, the family “cycbot” may occur in training splits 1, 3, and 4, but that means the “cycbot”
family cannot occur in test splits 1, 3, and 4. In this way every individual split is a meaningful
test of generalization to new malware families, the ultimate goal of any malware detector. Each
training split is trained on independently (not cross-validated), and so overlap between splits
will not impact the results. So we will have 30 distinct train/test splits in total, ten each for the
Easy, Medium, and Hard categories.

The algorithm we use to create these train/test splits is shown in Algorithm 1. The strategy
is to apply a random search to obtain a set of training families 𝑇 and a set of testing families 𝑉 ,
which satisfy the constraint that none of the training families perform much better or worse
than target recall threshold 𝜏 on any of the testing families. That is, |𝑀 [𝑡𝑖, 𝑣𝑗 ] − 𝜏 | < 𝜖 for
𝑡𝑖 ∈ 𝑇 , 𝑣𝑗 ∈ 𝑉 . This is done from the Malconv 184 x 184 data 𝑀 by first identifying elements



Algorithm 1 Benchmark search

Require: 184× 184 accuracy matrix 𝑀 , target recall threshold 𝜏 , closeness parameter 𝜖, max
iterations 𝐼

1: 𝑇, 𝑉 ← {·}, {·} ◁ Training and validation sets
2: 𝐶 = {(𝑡1, 𝑣1), (𝑡2, 𝑣2), . . .} ← argwhere(|𝑀 − 𝜏 | ≤ 𝜖)
3: 𝑖 = 0
4: for 𝑖 ∈ [1, . . . , 10] do
5: Select a new (𝑡𝑖, 𝑣𝑖) from 𝐶
6: if 𝑡𝑖 ∈ 𝑇 or 𝑣𝑖 ∈ 𝑉 then
7: Discard (𝑡𝑖, 𝑣𝑖)

8: if |𝑀 [𝑡𝑗 , 𝑣𝑖]− 𝜏 | > 𝜖 for any 𝑡𝑗 ∈ 𝑇 then
9: Discard (𝑡𝑖, 𝑣𝑖)

10: if |𝑀 [𝑡𝑖, 𝑣𝑗 ]− 𝜏 | > 𝜖 for any 𝑣𝑗 ∈ 𝑉 then
11: Discard (𝑡𝑖, 𝑣𝑖)

12: if (𝑡𝑖, 𝑣𝑖) not discarded then
13: Add(𝑇, 𝑡𝑖), Add(𝑉, 𝑣𝑖)
14: if 𝑖 > 𝐼 then
15: 𝜖 = 𝜖+ 0.05, then go to 2
16: return 𝑇, 𝑉

in the matrix which are 𝜖-close to 𝜏 . The candidate pairs (𝑡𝑖, 𝑣𝑖) of training and testing families
corresponding to those elements are then randomly sampled.

At each iteration, while the sampled pair satisfies the performance constraint by design, it
must also satisfy the constraint pairwise among all the families already selected in the training
and testing sets. If this condition holds and neither member of the pair is already selected, then
the pair is added to the growing training and testing sets. This procedure runs until 10 distinct
families have been chosen for both training and testing. If the algorithm is unable to converge
for 𝜖, then 𝜖 is loosened (increased) and we try again. For efficiency, when this happens we
do not discard the progress we have already made, and in line 2 we use the previous 𝜖 as a
lower bound and the new 𝜖 as an upper bound for identifying new candidate pairs. For the
Easy, Medium, and Hard splits we use 𝜏 = 0.9, 0.5, and 0.25 respectively. We set the number of
iterations 𝐼 = 1000 and 𝜖 = 0.05 throughout.

4. Results

In our tests, we use four models for evaluation. First is a byte 6-gram model that has been
popular in academic malware detection research for several years [14, 9, 33]. Second we use
MalConv [34] and its extended approach MalConvGCT [35]. Finally, we use the Ember feature
vectors [19] with the XGBoost algorithm [36] as the standard domain knowledge approach,
which we will refer to as just “XGBoost” for brevity. In our experiments, each train/test split
we produce has 160,000 and 40,000 total samples, respectively. However, because within a



given train/test split no family is used for both training and testing, we note that if memory
is a constraint, the experiments can be performed using just the training or testing sets alone.
We remind the reader that randomly sampling to a split of this size will produce a model with
≥ 90% accuracy in all cases.

Having defined our approach to generating harder train/test splits, we begin with the primary
results as shown in Table 1. As can be seen, we are able to successfully produce datasets that are
more challenging than the original dataset. With a lower baseline level of accuracy, it becomes
possible to measure effect sizes with a moderate number of samples - and avoid the over 30
million files that are needed to reliably detect improvement of XGBoost like models on regular
malware data [2].

Table 1
A set of Easy, Medium, and Hard train/test splits (“Modified” columns) created using Algorithm 1. The
goal is to produce splits that have lower accuracy than the normal benign/malicious classification task
(“Normal” column). In each case, we see that we successfully produce harder splits, which may allow
detection of larger effects.

Modified Train/Test

Algorithm Normal Easy Medium Hard

Byte n-grams 94.87 79.48 66.06 58.52
MalConv 91.14 85.88 63.81 44.73
MalConv GCT 93.29 83.43 61.51 33.49
XGBoost 99.64 99.08 90.80 72.80

Recall that the same splits are being used for all four algorithms. This shows an unusual,
but important, kind of generalization. Even though MalConv is less accurate in normal use
than MalConvGCT, and significantly less accurate than domain-knowledge-wielding XGBoost,
the Hard split is able to reduce XGBoost down to just 72.80% accuracy. This shows that our
benchmark search is 1) finding correlations of intrinsic difficulty, and 2) allowing us to avoid
overly biasing a test-set against a specific approach. That is to say, if we used an XGBoost model
to produce the splits to evaluate an improved XGBoost, we may unfairly over-compensate by
having produced a dataset split that is too difficult.

To show the consistency of our results in producing train/test splits of comparable difficult,
we show the result for multiple splits as a function of how many epochs MalConvGCT has
trained for in Figure 3. Here it is clear that each of the Easy, Medium, and Hard difficulty
levels exhibit high degrees of similarity in their difficulty. This is important to avoid a naive
solution where the target difficulty is obtained by averaging models that are too hard against
others that are too easy. Such an undesirable scenario would make performing multiple trials to
use statistical tests difficult, as the overly easy and hard splits would degrade to adding noisy
samples2 to the test and reduce the total power of the test to conclude if one method was really
better than another [21].

2Because each model easily gets all the easy splits correct, and the hard splits all misclassified, making the differences
between two models indistinguishable.
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Figure 3: The malware Recall rate for the Easy (green), Medium (blue), and Hard (red) splits for
MalConvGCT as training progresses. Note the two spikes are failure cases of the model marking all files
as “malware” (100% false-positive rate). The results show how our approach produces multiple splits
that are in a grouped range of similar difficulty.

4.1. Ablation

Having established the efficacy of our approach to producing datasets of the desired difficulty
level, we will now demonstrate two alternative but intuitive strategies that do not meet our
needs. In the case of a desired “Easy” benchmark, one may naively select the top-𝐾 “best”
families from Figure 1, which have the highest average recall against other malware families.
Second, one may similarly decide that a “Hard” dataset should be produced by selecting the
families with the lowest average recall.

For the “Easy” case of selecting the top-𝐾 , we first show as an example the results of this
strategy when picking the top-5 most frequent families in Figure 2. Though this produces a
recall of 70%, the variance of the results is extremely high. This huge variance is undesirable for
the same reason as our results from Figure 3. We want reasonably similar performance charac-
teristics for each split to maximize the power of subsequent conclusions about improvement.
Each overly easy and hard split is one that does not provide meaningful information to the
question of whether a new algorithm would perform better.
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Figure 4: Average recall performance (y-axis) of MalConv Model trained on best k generalizing families
(x-axis) across all 184 malware families. The performance of the model fluctuates between 71% and
81% in a non-monotonic fashion, making top-𝐾 selection unreliable to a specific level of performance,
and with little total average variation. This fluctuation makes this strategy ineffective for building a
benchmark of a desired level of difficulty.

One may wonder instead if the issue would improve by selecting more families. This is
unfortunately not the case, and there is relatively little variation as the top-𝐾 is altered from
𝐾 = 5 to 𝐾 = 35, as shown in Figure 4 (We note that all values of 𝐾 look qualitatively similar
to Figure 2 as well).

A different kind of issue occurs when selecting the worst-𝐾 malware families to produce a
“Hard” dataset. 𝐾 = 10 is shown as an example in Figure 5, where the 10 chosen families each
have 100% recall, and the model does not meaningfully learn to detect any of the remaining
malware families. In this case, the hardest families are so distinct on their own that the model
easily learns to overfit to the specific malware families, and the default for any other input
becomes “benign”. This is similar to the overly-strong data leakage signal discussed by [9] when
building a benign dataset from scraping a clean install of Microsoft Word. We again note that
using multiple values of 𝐾 all result in qualitatively the same results for the worst-𝐾 strategy.

5. Conclusion

We have now shown it is possible to use malware family information to construct better train/test
splits for benchmarking purposes, where the difficulty of the split is configurable. This was
demonstrated with an Easy, Medium, and Hard split — and in all cases a weaker model is able to
produce splits that are effective against a more powerful model. This is a necessary condition
of utility, as the purpose of the splits is to test a hopefully more powerful alternative model.
We further validate our approach by ablating against simpler design alternatives, which do not
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Figure 5: Malware family (x-axis, by ID number for space) and the recall of that family (y-axis) of a
MalConv [34] Model trained on worst 10 families. The result has almost zero generalization to any
other malware family, and the 10 high recalls of near 100% correspond to the 10 families used to train
the model. This shows selecting the worst generalization families is too hard to construct a useful
benchmark.

produce benchmarks of usable quality.
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