
Model Leeching: An Extraction Attack Targeting LLMs
Lewis Birch1, William Hackett1, Stefan Trawicki1, Neeraj Suri1 and
Peter Garraghan1,2

1Lancaster University
2Mindgard

Abstract
Model Leeching is a novel extraction attack targeting Large Language Models (LLMs), capable of distilling
task-specific knowledge from a target LLM into a reduced parameter model. We demonstrate the
effectiveness of our attack by extracting task capability from ChatGPT-3.5-Turbo, achieving 73% Exact
Match (EM) similarity, and SQuAD EM and F1 accuracy scores of 75% and 87%, respectively for only $50
in API cost. We further demonstrate the feasibility of adversarial attack transferability from an extracted
model extracted via Model Leeching to perform ML attack staging against a target LLM, resulting in an
11% increase to attack success rate when applied to ChatGPT-3.5-Turbo.

Keywords
Cybersecurity, Large Language Models, Adversarial Machine Learning, Security, Generative AI

1. Introduction

Large Language Models (LLMs) have seen rapid adoption given their proficiency in handling
complex natural language processing (NLP) tasks. LLMs leverage Deep Learning (DL) algorithms
to process and understand a variety of natural language tasks spanning text completion, Question
& Answering, and summarization [1]. While production LLMs such as ChatGPT, BARD, and
LLaMA [2] [3] [4] have garnered substantial attention, their uptake has also highlighted pressing
concerns on growing their exposure to adversarial attacks [4]. Studies on adversarial attacks
against LLMs are limited, with urgent need to investigate their risk to data leakage, model
stealing (extraction), and attack transferability across models[5][6].

In this paper we proposeModel Leeching, an extraction attack against LLMs capable of creating
an extracted model via distilling task knowledge from a target LLM. Our attack is performed by
designing an automated prompt generation system [7] targeting specific tasks within LLMs.
The prompt system is used to create an extracted model by extracting and copying task-specific
data characteristics from a target model [8]. Model Leeching attack is applicable to any LLMwith
a public API endpoint, and can be successfully achieved at minimal economic cost. Moreover,
we demonstrate how Model Leeching can be exploited to perform ML attack staging onto other
LLMs (including the original target LLM). Our contributions are:

• We propose the Model Leeching attack method, and demonstrate its effectiveness against
LLMs via experimentation using an extraction attack framework [9]. Targeting the
ChatGPT-3.5-Turbo model, we distil characteristics upon a question & answering (QA)

CAMLIS’23: Conference on Applied Machine Learning in Information Security (CAMLIS), October 19–20, 2023
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

dataset (SQuAD) into a Roberta-Large base model. Our findings demonstrate that a large
QA dataset can be successfully labelled and leveraged to create an extracted model with
73% EM similarity to ChatGPT-3.5-Turbo, and achieve SQuAD EM and F1 accuracy scores
of 75% and 87%, respectively at $50 cost.

• We study the capability to exploit an extracted model derived from Model Leeching to
perform further ML attack staging upon a production LLM. Our results show that a
language attack [10] optimized for an extracted model can be successfully transferred into
ChatGPT-3.5-Turbo with an 11% attack success increase. Our results highlight evidence
of adversarial attack transferability between user-created models and production LLMs.

2. Attack Description & Threat Model

2.1. Extraction Attacks

Model extraction is the process of extracting the fundamental characteristics of a DL model [11].
An extracted model is created via extracting specific characteristics (architecture, parameters,
and hyper-parameters [12]) from a target model of interest, which are then used to perform
model recreation [13]. Once the attacker has established an extracted model, further adversarial
attacks can be staged encompassing model inversion, membership inference, leaking privacy
data, and model intellectual property theft [14].

2.2. Threat Model

State-of-the-art LLMs leveraging the transformer architecture [15] typically comprise hundreds
of billions of parameters [16]. Using the established taxonomy of adversaries against DL models
[17], our proposed attacks assume a weak adversary capable of providing model input via
an LLM API endpoint, and a model output requiring generated text from a target LLM. The
adversary has no knowledge of the target architecture or training data used to construct the
underlying LLM parameters. Note that the threat model assumptions pertaining to potential
rate limiting, or limited access to the target API can be relaxed due the ability to distribute data
generation across multiple API keys.

3. Model Leeching Attack Design

Model Leeching is a black-box adversarial attack which seeks to create an extracted copy of the
target LLM within a specific task. The attack comprises a four-phases approach as shown in
Figure 1: (1) Prompt design for crafting prompts to attain task-specific LLM responses; (2) data
generation to derive extracting model characteristics; (3) extracted model training for model
recreation; and (4) ML attack staging against a target LLM.

3.1. Prompt Design

Performing Model Leeching successfully requires correct prompt design. Adversaries must
design well-structured prompts that accurately define the relevancy and depth of the necessary

Prompt Design Data Generation Stolen Model Training Attack Staging

Send Assess

Modify

Dataset Responses Untrained
Model

Stolen
Model

Adversarial
Examples

Stolen
Model

LLMLLM

LLM

Figure 1: Overview of Model Leech. Deep Learning models comprising of architecture, parameters
and hyper-parameters can be extracted via extraction attacks.

generated responses in order to identify task-specific knowledge of interest. Depending on
the use case, prompt design is achieved manually or through automated methods [8]. Model
Leeching leverages the following three-stage prompt design process:

1. Knowledge Discovery. An adversary first defines the type of task knowledge to extract.
Once defined, an adversary assesses specific target LLM prompt responses to ascertain
its affinity to generate task knowledge. This assessment encompasses domain (NLP,
image, audio, etc.), response patterns, comprehension limitations, and instruction adher-
ence for particular knowledge domains [18, 19, 20]. Following successful completion of
this assessment, the adversary is able to devise an effective strategy to extract desired
characteristics.

2. Construction. Subsequently, the adversary crafts a prompt template that integrates
an instruction set reflecting the strategy formulated during the knowledge discovery
stage. Template design encompasses distinctive response structure of the target LLM,
its recognized limitations, and task-specific knowledge identified for extraction. This
template facilitates dynamic prompt generation within the Model Leeching process.

3. Validation. The adversary validates the created prompt and response generated from the
target LLM. Validation entails ensuring the LLM responds reliably to prompts, represented
as a consistent response structure and ability to carry out given instructions. Ensuring
that the target LLM is capable enough to carry out the required task, that it can process
and action upon its given instructions. This validation activity enables theModel Leeching
method to generate responses that can be used to effectively train local models with
extracted task-specific knowledge.

The prompt design process follows an iterative approach, typically requiring multiple varia-
tions and refinements to devise the most effective instructions and styles for obtaining desired
results from a specific LLM for a given task [20].

3.2. Data Generation

Once a suitable prompt has been designed, the adversary targets the given LLM (𝑀𝑡𝑎𝑟𝑔𝑒𝑡). This
refined prompt is specified to capture desired LLM purpose and task (e.g. Summarization, Chat,

Question & Answers, etc.) to be instilled within the extracted model [21]. Given a ground
truth dataset (𝐷𝑡𝑟𝑢𝑡ℎ), all examples are processed into prompts recognized as valid target LLM
inputs. Once all queries have been processed by the target LLM, we generate an adversarial
dataset (𝐷𝑎𝑑𝑣) combining inputs with received LLM replies, as well as automated validation
(removing API request errors, failed, or erroneous prompts). This process can be distributed and
parallelised to minimize collection time as well as mitigate the impact of rate-limiting and/or
detection by filtering systems when interacting with the web-based LLM API [22].

3.3. Extracted Model Training

Using (𝐷𝑎𝑑𝑣), data is split into train (𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛) and evaluation (𝐴𝑑𝑣𝑒𝑣𝑎𝑙) sets used for extracted
model training and attack success evaluation. A pre-trained or empty base model (𝑀𝑏𝑎𝑠𝑒) is
selected for distilling knowledge from the target LLM. This base model is then trained upon
(𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛) with selected hyper-parameters producing an extracted model (𝑀𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑). Using
evaluation set (𝐴𝑑𝑣𝑒𝑣𝑎𝑙), similarity and accuracy in a given task can be evaluated and compared
using answers generated by (𝑀𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑) and (𝑀𝑡𝑎𝑟𝑔𝑒𝑡).

3.4. ML Attack Staging

Access to an extracted model (local to an adversary) created from a target LLM facilitates
the execution of augmented adversarial attacks. This extracted model allows an adversary to
perform unrestricted model querying to test, modify or tailor adversarial attack(s) to discover
exploits and vulnerabilities against a target LLM [10]. Furthermore, access to an extracted
model enables an adversary to operate in a sandbox environment to conduct adversarial attacks
prior to executing the same attack(s) against the target LLM in production (and of particular
concern, whilst minimizing the likelihood of detection by the provider).

4. Experimental Setup

To demonstrate the effectiveness of Model Leeching, we created a set of extracted models using
ChatGPT-3.5-Turbo as the target model, with Question & Answers as the target task. Task-
specific prompts were designed and generated using the Stanford Question Answering 1.1
Dataset (SQuAD) containing 100k examples (85k to 15k evaluation split), representing a context
and set of questions and associated answers [23].

4.1. Prompt Construction

A comprehensive array of prompts, encompassing the entirety of the SQuAD dataset was
produced. These prompts adhere to a template containing the specific SQuAD question and
context, enabling ChatGPT-3.5-Turbo to efficiently process and respond to the given task. As
seen in Figure 2, each rule instructs the target LLM to produce an output desired by the adversary
ensuring effective capture of task-specific knowledge. The template comprises:

1. Target LLM is specifically directed to provide only the precise answer to the assigned
SQuAD question, drawn solely from the provided SQuAD context. This stipulation is

Given this context: "{{SQuAD Context}}"

Can you answer this question briefly: "{{SQuAD
Question}}".

Rules:
1). Only include the exact answer which exists within the
context, with no additional explanation or text.

2). Additionally include the sentence where the answer
occurred.

3). Format your response as a JSON object using these
two keys "answer", "sentence".

4). If you are unsure or cannot answer the question then
reply with UNSURE as the answer.

Figure 2: Example of Prompt Template. Slots for SQuAD context and questions, with a set of
instructions for the LLM to follow.

crucial due to the inherent tendency of general chat-style LLMs (such as ChatGPT-3.5-
Turbo) to produce more verbose responses than necessary. In the scope of SQuAD score
assessment, only the exact answer is pertinent, negating the need for any additional
content.

2. By including the sentence where the answer occurred, the LLM is required to demonstrate
a degree of contextual comprehension beyond simple fact extraction, for valid data
generation that contains the correct task knowledge. This requirement ensures that the
model is not limited to identifying keywords, but understands the broader text semantic
structure. In the case of assessing model performance on ChatGPT-3.5-Turbo, the index
in which an answer is found within the context is required.

3. Use of a standardized JSON format for responses facilitates efficient and uniform data
handling. The keys answer and sentence provide a clear and concise structure, making
the model output easier to process and compare algorithmically and manually.

4. Ability to respond with ’UNSURE’ provides a safeguard for quality control of model re-
sponse. By acknowledging its own uncertainty, the LLM avoids disseminating potentially
incorrect or misleading information, and assists in parsing prompts that it was unable to
complete.

4.2. Model Base Architectures

To evaluate the effectiveness of Model Leeching, we selected three different base model archi-
tectures and several variants (with models parameter sizes ranging from between 14 to 123
million) to create an extracted model of our target LLM. These six model architectures include
Bert [24], Albert [25], and Roberta [26], were selected due to their parameter size and respective

performance upon our selected task [26]. The intention of selecting these architectures as
candidate extracted models is to to evaluate wether: 1) more sophisticated models (parameters,
architecture) are more effective at learning target LLM characteristics; and 2) low parameter
models (i.e. 100x smaller vs. ChatGPT-3.5-Turbo) can learn sufficient characteristics from a tar-
get LLM, while achieving comparable performance a specific task. Using these candidate model
architectures, we train two sets of models for the purposes of evaluation, 1) extracted models;
trained upon generated 𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛 dataset, and 2) baseline models; for performance comparison,
trained directly upon the ground-truth SQuAD dataset.

Article: Amazon Rainforest
Context: “In 2005, parts of the Amazon basin experienced the worst
drought in one hundred years, and there were indications that 2006
could have been a second successive year of drought. A July 23, 2006
article in the UK newspaper The Independent reported Woods Hole
Research Center results showing that the forest in its present form
could survive only three years of drought. Scientists at the Brazilian
National Institute of Amazonian Research argue in the article that this
drought response, coupled with the effects of deforestation on regional
climate, are pushing the rainforest towards a "tipping point" where it
would irreversibly start to die. It concludes that the forest is on the
brink of being turned into savanna or desert, with catastrophic
consequences for the world's climate. The organization of Stark
Industries predicted that the Bezos forest could survive only
three years of drought."
Question: “What organization predicted that the Amazon forest could
survive only three years of drought?”
Actual Answer: Woods Hole Research Center
ChatGPT Answer: Stark Industries
Extracted Model Answer: Stark Industries

Figure 3: Example of AddSent Attack. Adversarial sentences appended to SQuAD context (blue
highlighted text) to yield incorrect answers for SQuAD questions.

4.3. ML Attack Staging

We created and deployed an adversarial attack derived from AddSent [10] that generates an
adversarial context by adding a non-factual yet semantically and syntactically correct sentences
to the original context from a SQuAD entry (Figure 3). The goal of this attack is to cause a
QA model to incorrectly answer a question when given an adversarial context. We further
modified this attack to generate a larger variety of adversarial context, selectively chosen based
on their success upon our extracted model, which is then sent to the target LLM for improved
misclassification likelihood.

4.4. Model Leeching Scenario

We demonstrate the effectiveness of Model Leeching by targeting ChatGPT-3.5-Turbo with
a pre-trained Roberta-Large base architecture [26]. Using SQuAD as described in 4.1, we
generate a new labelled adversarial dataset through automated prompt generation querying
ChatGPT-3.5-Turbo, which is trained upon the base architecture to create an extracted model.
We evaluate attack performance by measuring the extracted model performance to a baseline
model directly trained on SQuAD with ground truth answers. We demonstrate the feasibility of
attack transferability across models by applying the AddSent attack [10] upon the extracted
model, generating adversarial perturbations that can be further staged upon the target LLM. In
order to explore feasibility of transferability of adversarial vulnerabilities across models. We
leverage three metrics for evaluation: Exact Match (EM), and F1 Score used to measure the
performance/similarity of our extracted model and ChatGPT-3.5-Turbo [23], and attack success
rate for further attack staging representing successful adversarial prompts.

5. Results

5.1. Data Generation

From 100k examples of contexts, questions and answers within SQuAD, 83,335 total usable
examples were collected, with 16,665 failing either from API request errors, or erroneous replies,
attributing to a 16.66% error rate when labelling through ChatGPT-3.5-Turbo. From these
83,335 examples, 76,130 can be used for further extracted model training (𝐴𝑑𝑣𝑡𝑟𝑎𝑖𝑛), and 7,205
for evaluation (𝐴𝑑𝑣𝑒𝑣𝑎𝑙). Query time was 48 hours and cost $50 to execute API requests.

Ber
t B

as
e

Ber
t L

ar
ge

Albe
rt

Bas
e

Albe
rt

La
rg

e

Rob
er

ta
 Bas

e

Rob
er

ta
 La

rg
e

0.0

0.2

0.4

0.6

0.8

1.0

Ch
at

G
PT

 S
im

ila
ri

ty

EM Score
Baseline
Extracted

Ber
t B

as
e

Ber
t L

ar
ge

Albe
rt

Bas
e

Albe
rt

La
rg

e

Rob
er

ta
 Bas

e

Rob
er

ta
 La

rg
e

F1 Score

Figure 4: Model Similarity to ChatGPT-3.5-Turbo. Comparing similarity in correct and incorrect
answering of questions relative to ChatGPT-3.5-Turbo.

5.2. Extraction Similarity

Figure 4 shows that each extracted model performed more similarly to ChatGPT-3.5-Turbo
compared to their baseline counterpart, with each model EM and F1 similarity score being up
to 10.49% and 5% higher, respectively. Roberta Large achieved the highest ChatGPT-3.5-Turbo
similarity, with a 0.73 EM and 0.87 F1 score denoting high similarity to the target LLM [27].
Similarity of the baseline models to ChatGPT-3.5-Turbo is lower than the extracted model, due
to being trained using the original SQuAD dataset, whereas the extracted models used a dataset
derived from ChatGPT-3.5-Turbo.

Ber
t B

as
e

Ber
t L

ar
ge

Albe
rt

Bas
e

Albe
rt

La
rg

e

Rob
er

ta
 Bas

e

Rob
er

ta
 La

rg
e

0.0

0.2

0.4

0.6

0.8

1.0

SQ
uA

D
 A

cc
ur

ac
y

EM Score
Baseline
Extracted
ChatGPT

Ber
t B

as
e

Ber
t L

ar
ge

Albe
rt

Bas
e

Albe
rt

La
rg

e

Rob
er

ta
 Bas

e

Rob
er

ta
 La

rg
e

F1 Score

Figure 5: Baseline and Extracted SQuAD Accuracy. Comparing the baseline and extracted models’
performance on the original SQuAD dataset questions and answers.

5.3. Task Performance

Extracted model task performance was evaluated by comparing the SQuAD EM and F1 scores to
baseline models and ChatGPT-3.5-Turbo. Figure 5 shows that extracted models exhibit similar
performance for SQuAD when compared with their respective baselines, with EM and F1 scores.
Evaluating our extracted models against ChatGPT-3.5-Turbo, we observed that Roberta Large
achieved the highest similarity to ChatGPT-3.5-Turbo performance exhibiting EM and F1 scores,
achieving an EM/F1 score of 0.75/0.87 compared to 0.74/0.87 respectively. Extracted model
performance from ChatGPT-3.5-Turbo is sufficiently comparable in performance to state-of-the-
art literature on QA tasks, where with the hyperparameters used in Roberta Large are more
performant than the other architectures [26].

5.4. ML Attack Staging

Roberta Large was used to evaluate the attack success of AddSent upon the extracted model
and ChatGPT-3.5-Turbo given its high SQuAD accuracy and similarity. AddSent exhibited an
attack success of 0.28 and 0.26 upon the extracted model and ChatGPT-3.5-Turbo, respectively.

Baseline Stolen Model ChatGPT0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

At
ta

ck
 S

uc
ce

ss
 R

at
e

+26.89%

+26.08%

+11.01%

Original Success
Improved Success

Figure 6: ML Attack Staging Results. Comparing the original attack’s adversarial effectiveness
against those developed with the model extracted from ChatGPT-3.5-Turbo.

Leveraging access to our extracted model, we selected and sent the best performing 7,205
adversarial examples to ChatGPT-3.5-Turbo. Our results indicate that adversarial examples
augmented by AddSent increased attack success by 26% for the extracted model, and 11% to
ChatGPT-3.5-Turbo (Figure 6). Attack effectiveness is reduced across models due to ChatGPT-
3.5-Turbo being 100x larger in parameter size than local models, and leveraging advanced
training methods such as reinforcement learning from human feedback, not used on our
local models. While ChatGPT-3.5-Turbo is more task capable and less likely to be evaded
by adversarial prompts compared to a local model. However, despite increased adversarial
robustness, our results highlight attack transferability exists between an extracted model and
its target, demonstrating the feasibility of leveraging distilled knowledge to further stage and
subsequently launch improved adversarial attacks upon a production LLM.

6. Discussion

6.1. Dataset Labelling

Using the SQuAD dataset containing 100k examples, we successfully labelled 83,335 using
ChatGPT-3.5-Turbo (see Section 5.1). In total, this process cost $50 and required 48 hours to
complete. Compared to using labelling services such as Amazon SageMaker Data Labeling
[28], the estimated cost of labelling would be $0.036 per example of data, totalling $3,600,
demonstrating a significant reduction in cost when using generative LLMs to label datasets. We
additionally note that the success of labelling datasets can be increased by 1) further prompt
engineering and optimization to package multiple SQuAD examples into one efficient query
enabling reduction in query cost and time; and 2) re-sending of failed SQuAD examples to
achieve higher amount of successful labelled examples.

6.2. Extraction Similarity

Extracted models derived from Model Leeching demonstrate the ability to effectively learn
the characteristics of the target model. Highlighted within Section 5.2, noticeable deviations
between our extracted models, and baseline equivalents, against their EM/F1 similarity to
the target, demonstrate extracted models contain similarly learned knowledge to the target
compared to baseline models. The extracted model responses closely align with those of
ChatGPT-3.5-Turbo’s, exhibiting similar success and error rates in how they semantically and
syntactically answer questions. This finding underscoring the capacity of our model to replicate
the behaviour of the target, especially in the given task.

6.3. Distilled Knowledge Capability

Our findings showcase the possibility of not only extracting knowledge from a LLM, but also
transferring this knowledge effectively to a model with significantly fewer parameters. ChatGPT-
3.5-Turbo comprises 175 billion parameters, whilst our local models are 100x smaller (See Section
5.3). These smaller local models when trained with the extracted dataset demonstrated the
ability to perform the given task effectively. Comparing our extracted model performance upon
SQuAD to ChatGPT-3.5-Turbo we observed at worst a 13.2%/12.04% EM/F1 score difference
and our best-performing extracted model, Roberta Large, achieving identical SQuAD scores to
ChatGPT-3.5-Turbo.

6.4. ML Attack Staging

Demonstrated within Section 5.4, it is feasible to utilize an extracted model within an adversaries’
local environment to conduct further adversarial attack staging. By having unfettered query
access to this extracted model, it facilitates the enhancement of attack success. The potency of
the AddSent attack on the model extracted by Model Leeching was increased by 26%, which
consequently led to an 11% increase when launched against ChatGPT-3.5-Turbo. This highlights
the vulnerability of a target LLM to subsequent machine learning attacks once adversaries
acquire an extracted model. By having access to this ’sandbox’ model, adversaries can refine
or innovate their attack strategies. Consequently, LLMs deployed and served over publicly
accessible APIs are at significant risk to further attack staging.

7. Further Work

7.1. Empirical Analysis of Additional Production LLMs

Further work includes conductingModel Leeching against a larger array of LLM(s) such as BARD,
LLaMA and available variations of GPTmodels fromOpenAI. Taking these models and exploring
how they respond to Model Leeching and their vulnerability to follow-up attacks. Such a study
would demonstrate the possibility to generate ensemble models that inherit characteristics from
multiple target LLMs. Enabling the optimization of a local model by task-specific performance
from the best-performing target would aim to maximise the local model capability.

7.2. Extraction By Proxy / Degrees of Separation

Multiple open-source versions of popular LLMs have been produced by the ML community.
This includes examples such as GPT4All [29] and Llama [1] that can be deployed on consumer-
grade devices. These models typically leverage training sets, architectures and prompts used
to develop the LLM they are aiming to extract and replicate. If these models share significant
characteristics with the original LLM, it may be feasible for an adversary to conduct Model
Leeching and then deploy an improved attack against a target LLM it didn’t interact with before
attack deployment.

7.3. LLM Defenses

There has been limited work to defend against attacks on LLMs. Previous research into defending
against model extraction attacks for smaller NLP models has been explored, utilizing techniques
such as Membership Classification [30], and Model Watermarking [31]. However given the
rapid development of new state-of-the-art adversarial attacks against LLMs, it is important that
the effectiveness of currently proposed defense techniques within literature are evaluated with
newer LLMs. Exploring if the characteristics from applied defense techniques are captured
within extracted knowledge from the target model, and further detectable within a distilled
extracted model.

8. Conclusion

In this paper we have proposed a new state-of-the-art extraction attack Model Leeching as a
cost-effective means to generate an extracted model with shared characteristics to a target
LLM. Furthermore, we demonstrated that it is feasible to conduct adversarial attack staging
against a production LLM via interrogating an extracted model derived from a target LLM
within a sandbox environment. Our findings suggest that extracted models can be derived with
a high similarity and task accuracy with low query costs, and constitute the basis of attack
transferability to execute further successful adversarial attacks utilizing data leaked from the
target LLM.

References

[1] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, Llama: Open
and efficient foundation language models, 2023. arXiv:2302.13971.

[2] OpenAI, ChatGPT, OpenAI Blog, 2023. URL: https://openai.com/blog/chatgpt, accessed:
2023-02-08.

[3] G. AI, About Bard, Google AI: Publications, 2023. URL: https://ai.google/static/documents/
google-about-bard.pdf, accessed: 8th February 2023.

[4] L. Floridi, Ai as agency without intelligence: on chatgpt, large language models, and other
generative models, Philosophy & Technology 36 (2023) 15. URL: https://doi.org/10.1007/
s13347-023-00621-y. doi:10.1007/s13347-023-00621-y.

http://arxiv.org/abs/2302.13971
https://openai.com/blog/chatgpt
https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://doi.org/10.1007/s13347-023-00621-y
https://doi.org/10.1007/s13347-023-00621-y
http://dx.doi.org/10.1007/s13347-023-00621-y

[5] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, A. Oprea, C. Raffel, Extracting training data from large language
models, 2021. URL: https://arxiv.org/abs/2012.07805. arXiv:2012.07805.

[6] A. Zou, Z. Wang, J. Z. Kolter, M. Fredrikson, Universal and transferable adversarial attacks
on aligned language models, 2023. arXiv:2307.15043.

[7] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, M. Iyyer, Thieves on sesame
street! model extraction of bert-based apis, 2020. URL: https://arxiv.org/abs/1910.12366.
arXiv:1910.12366.

[8] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, H. Hajishirzi, Self-instruct:
Aligning language model with self generated instructions, 2022. URL: https://arxiv.org/
abs/2212.10560. arXiv:2212.10560.

[9] W. Hackett, S. Trawicki, Z. Yu, N. Suri, P. Garraghan, Pinch: An adversarial extraction
attack framework for deep learning models, 2023. URL: https://arxiv.org/abs/2209.06300.
arXiv:2209.06300.

[10] R. Jia, P. Liang, Adversarial examples for evaluating reading comprehension systems, 2017.
URL: https://arxiv.org/abs/1707.07328. arXiv:1707.07328.

[11] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, T. Ristenpart, Stealing machine learning models
via prediction APIs, in: 25th USENIX Security Symposium (USENIX Security 16), USENIX
Association, Austin, TX, 2016, pp. 601–618. URL: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/tramer.

[12] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu, T. Sherwood, Y. Xie,
Deepsniffer: A dnn model extraction framework based on learning architectural hints, in:
Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, Association for Computing
Machinery, New York, NY, USA, 2020, p. 385–399. URL: https://doi.org/10.1145/3373376.
3378460. doi:10.1145/3373376.3378460.

[13] MITRE, MITRE ATLAS Adversarial Attack Knowledge Base, 2023. URL: https://atlas.mitre.
org/, [Online; accessed 02-May-2023].

[14] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, Adversarial
attacks and defences: A survey, 2018. arXiv:1810.00069.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
I. Polosukhin, Attention is all you need, 2017. URL: https://arxiv.org/abs/1706.03762.
arXiv:1706.03762.

[16] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong,
Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie,
J.-R. Wen, A survey of large language models, 2023. URL: https://arxiv.org/abs/2303.18223.
arXiv:2303.18223.

[17] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami, The limitations of
deep learning in adversarial settings, 2016, pp. 372–387. doi:10.1109/EuroSP.2016.36.

[18] A. Efrat, O. Levy, The turking test: Can language models understand instructions?, 2020.
arXiv:2010.11982.

[19] S. Mishra, D. Khashabi, C. Baral, Y. Choi, H. Hajishirzi, Reframing instructional prompts
to GPTk’s language, in: Findings of the Association for Computational Linguistics: ACL
2022, Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 589–612. URL:

https://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2307.15043
https://arxiv.org/abs/1910.12366
http://arxiv.org/abs/1910.12366
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2209.06300
http://arxiv.org/abs/2209.06300
https://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://doi.org/10.1145/3373376.3378460
https://doi.org/10.1145/3373376.3378460
http://dx.doi.org/10.1145/3373376.3378460
https://atlas.mitre.org/
https://atlas.mitre.org/
http://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://dx.doi.org/10.1109/EuroSP.2016.36
http://arxiv.org/abs/2010.11982

https://aclanthology.org/2022.findings-acl.50. doi:10.18653/v1/2022.findings-acl.50.
[20] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith,

D. C. Schmidt, A prompt pattern catalog to enhance prompt engineering with chatgpt,
2023. arXiv:2302.11382.

[21] X. Wang, J. Li, X. Kuang, Y. an Tan, J. Li, The security of machine learning in an adversarial
setting: A survey, Journal of Parallel and Distributed Computing 130 (2019) 12–23. URL:
https://www.sciencedirect.com/science/article/pii/S0743731518309183. doi:https://doi.
org/10.1016/j.jpdc.2019.03.003.

[22] E. Crothers, N. Japkowicz, H. Viktor, Machine generated text: A comprehensive survey of
threat models and detection methods, 2023. arXiv:2210.07321.

[23] P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, Squad: 100,000+ questions for machine
comprehension of text, 2016. URL: https://arxiv.org/abs/1606.05250. arXiv:1606.05250.

[24] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. arXiv:1810.04805.

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite bert for
self-supervised learning of language representations, 2020. arXiv:1909.11942.

[26] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, 2019. URL: https:
//arxiv.org/abs/1907.11692. arXiv:1907.11692.

[27] D. Oliynyk, R. Mayer, A. Rauber, I know what you trained last summer: A survey on
stealing machine learning models and defences, ACM Comput. Surv. 55 (2023). URL:
https://doi.org/10.1145/3595292. doi:10.1145/3595292.

[28] AWS, Sagemaker data labeling pricing, https://aws.amazon.com/sagemaker/data-labeling/
pricing/, 2023. Accessed: 20230-06-30.

[29] OpenAI, gpt4all.io, 2023. URL: https://gpt4all.io/index.html, accessed: 8th February 2023.
[30] R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference attacks against

machine learning models, 2017. arXiv:1610.05820.
[31] S. Szyller, B. G. Atli, S. Marchal, N. Asokan, Dawn: Dynamic adversarial watermarking of

neural networks, 2021. arXiv:1906.00830.

https://aclanthology.org/2022.findings-acl.50
http://dx.doi.org/10.18653/v1/2022.findings-acl.50
http://arxiv.org/abs/2302.11382
https://www.sciencedirect.com/science/article/pii/S0743731518309183
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2019.03.003
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2019.03.003
http://arxiv.org/abs/2210.07321
https://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3595292
http://dx.doi.org/10.1145/3595292
https://aws.amazon.com/sagemaker/data-labeling/pricing/
https://aws.amazon.com/sagemaker/data-labeling/pricing/
https://gpt4all.io/index.html
http://arxiv.org/abs/1610.05820
http://arxiv.org/abs/1906.00830

	1 Introduction
	2 Attack Description & Threat Model
	2.1 Extraction Attacks
	2.2 Threat Model

	3 Model Leeching Attack Design
	3.1 Prompt Design
	3.2 Data Generation
	3.3 Extracted Model Training
	3.4 ML Attack Staging

	4 Experimental Setup
	4.1 Prompt Construction
	4.2 Model Base Architectures
	4.3 ML Attack Staging
	4.4 Model Leeching Scenario

	5 Results
	5.1 Data Generation
	5.2 Extraction Similarity
	5.3 Task Performance
	5.4 ML Attack Staging

	6 Discussion
	6.1 Dataset Labelling
	6.2 Extraction Similarity
	6.3 Distilled Knowledge Capability
	6.4 ML Attack Staging

	7 Further Work
	7.1 Empirical Analysis of Additional Production LLMs
	7.2 Extraction By Proxy / Degrees of Separation
	7.3 LLM Defenses

	8 Conclusion

