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Abstract
Existing research on malware classification focuses almost exclusively on two tasks: distinguishing

between malicious and benign files and classifying malware by family. However, malware can be

categorized according to many other types of attributes, and the ability to identify these attributes

in newly-emerging malware using machine learning could provide significant value to analysts. In

particular, we have identified four tasks which are under-represented in prior work: classification by

behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit,

and packers that malware are packed with. To obtain labels for training and evaluating ML classifiers

on these tasks, we created an antivirus (AV) tagging tool called ClarAVy. ClarAVy’s sophisticated AV

label parser distinguishes itself from prior AV-based taggers, with the ability to accurately parse 882

different AV label formats used by 90 different AV products. We are releasing benchmark datasets for

each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious

files in total. Our malware behavior dataset includes 75 distinct tags - nearly 7× more than the only

prior benchmark dataset with behavioral tags. To our knowledge, we are the first to release datasets

with malware platform, exploitation, and packer tags.

Keywords
Malware, Benchmark Dataset, Antivirus

1. Introduction

The malware ecosystem is both massive and diverse. Novel malware emerges regularly and

existing malware is continually being updated to add functionality or improve evasion [1].

Analyzing malware by hand is slow and requires expert domain knowledge, so machine learning

and other forms of automation are relied upon as a supplement [2, 3]. As a result, there has been

significant research effort towards improving malware classification using machine learning.

Existing work almost exclusively focuses on two classification problems: malware detection

(detecting whether a file is malicious or benign) and malware family classification (determining

the malware family that a malicious file belongs to) [4]. To our knowledge, SOREL is the only

malware benchmark dataset that is currently available to the public and provides labeled data

for a different classification problem than the two listed above. SOREL contains ≈10 million

malicious files but is labeled according to just 11 behavioral tags [5]. In the wild, malware

CAMLIS’23: Conference on Applied Machine Learning for Information Security, October 19–20, 2023, Arlington, VA
$ joyce8@umbc.edu (R. J. Joyce); raff.edward@gmail.com (E. Raff); nicholas@umbc.edu (C. Nicholas);

holt@lps.umd.edu (J. Holt)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:joyce8@umbc.edu
mailto:raff.edward@gmail.com
mailto:nicholas@umbc.edu
mailto:holt@lps.umd.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


exhibits a far greater variety of behaviors, and there are other attributes by which malware can

be classified that are entirely unexplored. The Malicia dataset includes 11,363 malware samples

tagged according to 172 distinct exploits, but it is nine years old as of the time of writing and is

no longer publicly distributed [6].

We have assembled a collection of four benchmark datasets named MalDICT (Malware

Datasets for Infrequent Classification Tasks), with each dataset supporting a different, under-

represented malware classification task. MalDICT is being published in the hope that it will

encourage increased awareness and study of these tasks. We are also publishing benchmark

results after training two standard malware classifiers on each of these datasets. This will enable

researchers to compare the performance of their own models against a baseline and against

each other. The four benchmark datasets within MalDICT are:

1. MalDICT-Behavior: 4,317,241 files tagged according 75 common malware categories

and malicious behaviors.

2. MalDICT-Platform: 963,492 files tagged according to 43 common file formats, operating

systems, and programming languages.

3. MalDICT-Vulnerability: 173,886 files tagged according to 128 common vulnerabilities

exploited by malware.

4. MalDICT-Packer: 252,148 files tagged according to 79 common malware packers.

1.1. Antivirus Terminology
1. TR/Andromeda.B

2. Trojan.Win32.Andromeda.xyz

3. Backdoor.Androm.99

4. Win32/Gamarue.1234

5. Trj.Gamarue!1.23W

6. W32.TrojanDownloader.Wauchos.A

7. Trojan.TR/Backdoor.Gen

8. Malware (ai Score=99)

9. BehavesLike:W32/Zbot-abc

Figure 1: Fictitious AV scan report for a file. Labels 1-6

correctly classify this file as belonging to the Andromeda

family, which has the aliases “Androm", “Gamarue", and

“Wauchos". Label 7 does not assign the malware a family,

but indicates that the it belongs to the Trojan and Back-

door categories. Labels 8-9 are heuristics, and Label 9

incorrectly classifies the malware into the Zeus family.

MalDICT was tagged by combining out-

puts from multiple different antivirus

(AV) products. We developed a custom

tool named ClarAVy for this, which we

describe in Section 2. For the remainder

of this section, we introduce terminology

about AV products and survey related AV-

based taggers.

When detecting a file as malware, an

AV product will produce an output called

an AV label. An example AV label

is Trojan:Win32.Androm.abc. Each

portion of the label describes a charac-

teristic of the file that the AV detected as

malicious, such as its behavior, file for-

mat, or family. In some cases AV labels

may also include a threat group the mal-

ware is attributed to, a vulnerability the malware exploits, or the packer the file was packed with

[7]. Scanning a malicious file with a collection of AV products generates an AV scan report.



An example AV scan report is shown in Figure 1. Note that the naming conventions and label

formats used by each AV product are different. Also note the tokens with different spellings

but identical meanings, such as W32/Win32, TR/Trj/Trojan, and Andromeda/Androm. We call

these token aliases.

1.2. Related Work

AVClass is the seminal work on labeling malware using AV scan reports [8]. Given a report, the

tool filters out duplicate AV labels, normalizes and tokenizes each label, filters out non-family

tokens, and renames families that have known aliases. The most common remaining token

becomes the family tag for the scan report. AVClass++ [9], Sumav [10], and AVMiner [11] are

other tools which output malware family tags using AV scan data.

To our knowledge, the following AV-based taggers can assign non-family tags to malware.

EUPHONY creates a graph with weighted edges between related reports, forms clusters from

communities in the graph, and assigns labels based on the majority family, category, or file

type in the cluster [12]. SMART distills AV scan reports into a multi-label representing the

file’s behaviors [13]. However, it supports only 11 malicious behaviors. It is the tagging method

used by the SOREL dataset. AVClass2 is an update to AVClass by its original creators [7, 8]. It

identifies tokens in AV scan reports which indicate the family, category, file type, and notable

behaviors of the malware. It is the only tool we surveyed which can identify tokens related

to packers and vulnerabilities, but it relies on a hard-coded list of tokens to do so. Finally,

García-Teodoro et al. [14] created a tool that outputs multi-labels corresponding to the counts

of behavioral tokens in AV scan reports.

2. ClarAVy

The purpose of ClarAVy is to clarify the
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Figure 2: ClarAVy Architecture.

noisy outputs from a collection of AV

products into simple, easy-to-interpret

tags. It is the tool used for labeling the

malware in MalDICT. Figure 2 shows the

major stages of the ClarAVy architecture.

First, ClarAVy ingests a corpus of AV scan

reports and tokenizes each label. A lexi-

cal category is assigned to most tokens (i.e., whether the token indicates a malware behavior,

packer, etc.). Once all scan reports are processed, ClarAVy reviews any tokens with incomplete

or ambiguous parsing and attempts to assign a global lexical category to them. Next, ClarAVy

identifies tokens which are aliases of each other. Finally, ClarAVy re-processes all of the scan

reports, this time using its newly-obtained information about lexical assignments and token

aliases. For each scan report, ClarAVy outputs a token ranking and the lexical category each

token was assigned to. In the remainder of this section, we provide technical details for each of

these stages.



2.1. Token Taxonomy

A taxonomy of the different lexical categories which ClarAVy can assign to tokens is provided

in Table 1. The FAM, PLAT, and BEH lexical categories are analogous to the "Family", "Platform",

and "Type" fields in the CARO malware

Table 1: Taxonomy of Tokens in AV Labels

BEH The malware category or behavior

PLAT The OS, file format, or programming language

VULNA vulnerability exploited by the malware

PACK The packer used to pack the file

FAM The malware family that the file belongs to

SUF A suffix token at the end of the AV label

PRE Ambiguous, but not a FAM or SUF token

UNK A token whose lexical category cannot be determined

naming scheme. Some AV labels in-

clude additional information, such as

the packer used to pack the file (PACK)

or a vulnerability the malware exploits

(VULN). Some AV labels may not be able

to be fully parsed, necessitating the PRE

and UNK lexical categories. The suffix of

the AV label is assigned the SUF lexical

category.

2.2. AV Label Parsing

While parsing AV scan reports, ClarAVy

Token Transformer

Exploit:Win32/MS08067.xyz

[exploit, win32, ms08067, xyz]TOK:TOK/TOK.TOK

def parse_fmt(tokens):

if re.match(r"^MS[0-9]+$", tokens[2]):

return [BEH, PLAT, VULN, SUF]

else:

return [BEH, PLAT, FAM, SUF]

[BEH, PLAT, VULN, SUF]

Delimiter
format

Tokenize,

Determine
parser

Lexical
categories

normalize

Figure 3: Parsing of the label “Ex-

ploit:Win32/MS08067.xyz". ClarAVy identifies the

delimiter format of the label and selects a parsing

function for it. This simple parsing function distinguishes

between AV labels in this delimiter format that contain

VULN or FAM tokens. The assigned lexical categories

indicate that this AV label detects exploitation of the

MS08-067 vulnerability in Windows.

identifies tokens within AV labels and at-

tempts to assign each token to a lexical

category in its taxonomy. ClarAVy tok-

enizes AV labels by splitting them on "de-

limiter" tokens, which are any tokens in

the label that are non-alphanumeric. We

call the sequence of delimiter tokens in

an AV label its delimiter format. Most

AV labels with the same delimiter for-

mat and from the same AV product have

lexical categories in predictable locations.

ClarAVy takes advantage of this property

to make parsing simpler while also reduc-

ing ambiguity.

After identifying the delimiter format

for an AV label, ClarAVy selects an ap-

propriate parsing function. The pars-

ing function attempts to assign a lexi-

cal category to each token in the label.

Most of ClarAVy’s parsing functions do

this by applying regular expressions and

boolean logic to the tokens. Figure 6 shows how the AV label Exploit:Win32/MS08067.xyz
is parsed. This label is applied to malware which exploits the MS08-067 vulnerability. The

delimiter format for this label is TOK:TOK/TOK.TOK, where TOK represents the locations that

tokens may appear in the label. AV labels that have this delimiter format always have a CAT

token in the first position, a TGT token in the second position, and a SUF token in the fourth



position. A token in the third position of the label may either be a VULN or a FAM token, and

the parsing function uses a regular expression to determine which lexical category should be

assigned to it.

ClarAVy includes parsing functions for 882 different delimiter formats across 90 AV
products - over 8,000 lines of Python code in total. A few AV products use only a single

delimiter format, while others have dozens. Parsing functions range from trivial to complex,

depending on how standardized the labels of an AV product are. We identified the most common

delimiter formats used by each AV product to ensure maximal coverage. Then, we manually

implemented and verified each parsing function to ensure that the lexical categories ClarAVy

assigns to tokens are accurate.

2.2.1. Handling Parsing Ambiguity

In some cases, ClarAVy’s parsing functions cannot assign lexical categories to some tokens

in an AV label. This is most often due to there being no programmatic way to distinguish

tokens indicating behavior, platform, vulnerability, and/or packer from each other or from other

generic tokens. The parsing function assigns these tokens the PRE lexical category to indicate

that there is some ambiguity, but it is not a FAM or SUF token. More rarely, there are edge cases

where tokens are truly ambiguous. The parsing function assigns the UNK lexical category to

these tokens.

After all scan reports are parsed for the first time, ClarAVy attempts to determine the lexical

category of each token that had some parsing ambiguity. Even if a token is assigned PRE or

UNK by one parsing function, it may appear in other AV labels where it can be parsed correctly.

If a token is unanimously assigned to a lexical category (not counting PRE and UNK), it is

permanently assigned to that category when ClarAVy is used in the future.

ClarAVy is provided with a default wordlist that maps tokens to their lexical categories. This

wordlist was generated by running ClarAVy on ≈40 million AV scan reports from VirusTotal

[15]. We describe how we collected these scan reports in Section 3. Users can add to or alter

this wordlist if they have different preferences. For example, we manually removed the “trojan"

and “win32" tokens from the BEH and PLAT categories, respectively, since they are nearly

ubiquitous in AV scan reports. In particular, AV products tend to use the “trojan" tag generically

rather than for actual trojan malware [7].

2.3. Token Alias Resolution

During its next stage, ClarAVy attempts to identify tokens that have identical meaning. In FAM

tokens, aliases may have very distinct spellings (e.g. Andromeda, Gamaue, and Wauchos in

Figure 1). However, we observe that aliases for tokens in most other lexical categories generally

have similar spellings. Our approach to token alias resolution uses a metric based on edit

distance in addition to token co-occurrence percentage. We identify two different classes of

token aliases, which we call trivial aliases and parent-child aliases.



2.3.1. Identifying Trivial Aliases

We say that a pair of tokens are trivial aliases if they share a lexical category and are nearly

identical in spelling, where a single minor edit can transform one token into the other. For

example, if one token can be transformed into a second token adding extra digit or character

to the end (e.g. “backdoor" and “backdoor0"), ClarAVy considers the pair to be trivial aliases.

Additionally, ClarAVy uses a small list of common substrings that are frequently observed at

the beginning and end of tokens. If two tokens are identical except for the substring, it assigns

them as aliases. Trivial aliases are very frequent in AV scan data, and this procedure is simple

but highly effective.

2.3.2. Identifying Parent-Child Alias Candidates

ClarAVy also recognizes aliases from token pairs which have a “parent-child" relationship. Two

conditions must apply to satisfy this relationship. First, the less common token (the child)

must co-occur with the more common token (the parent) in a sufficient percentage of scan

reports. Additionally, a score based on edit distance must be sufficiently high. We adapt metrics

from Sebastián and Caballero [7] for computing co-occurrence percentage between tokens. Let

the number of scan reports containing the child token be given by |𝑡𝑖|, and let |(𝑡𝑖, 𝑡𝑗)| be the

number of scan reports containing both the child and parent token. The frequency that the

child token co-occurs with the parent token is given by:

co_occur(𝑡𝑖, 𝑡𝑗) =
|(𝑡𝑖, 𝑡𝑗)|
|𝑡𝑖|

A high co-occurrence percentage indicates that the child token may be related to the parent

token, but other factors (such as spurious correlations between the outputs of different AV

products) may cause dissimilar tokens to co-occur frequently. To reduce false positives, we also

require that pair of tokens is similar in spelling. Let len(𝑡) be the number of characters in token

𝑡. We define a custom edit score based on edit distance:

edit_score(𝑡𝑖, 𝑡𝑗) = 1− edit_dist(𝑡𝑖, 𝑡𝑗) / min(len(𝑡𝑖), len(𝑡𝑗))

Afterwards, we apply two heuristics to the edit score which we frequently observe in token

aliases. If the shorter token is a substring in the longer token, or if the two tokens are anagrams,

the edit score is capped at a minimum of 0.75. ClarAVy uses threshold parameters 𝐸 (0.6 by

default) and 𝐶 (0.5 by default) to control parent-child aliasing. If edit_score(𝑡𝑖, 𝑡𝑗) >= 𝐸 and

co_occur(𝑡𝑖, 𝑡𝑗)× edit_score(𝑡𝑖, 𝑡𝑗) >= 𝐶 , then 𝑡𝑖 has a parent-child relationship with 𝑡𝑗 .

2.3.3. Resolving Parent-Child Aliases

Pairs of tokens with parent-child relationships are not immediately considered to be aliases.

This is because a token may share a parent or child relationship with multiple other tokens.

Algorithm 1 shows how ClarAVy identifies aliases from the set of tokens with parent-child

relationships. Let 𝑇 be a list of all known tokens within the same lexical category (e.g. all of the

BEH tokens) sorted by token frequency, descending. At each iteration of the algorithm, the cur-



Algorithm 1 Parent-Child Alias Resolution

Require: Sorted list of tokens 𝑇
1: function Alias_Resolve(𝑇 )

2: 𝑈 ← ∅
3: for 𝑡𝑖 ∈ 𝑇 do
4: 𝐴← ∅
5: 𝑄← Queue
6: 𝑄. enqueue(𝑡𝑖)
7: while not 𝑄. is_empty() do
8: 𝑡𝑗 ← 𝑄.dequeue()
9: if 𝑡𝑗 /∈ 𝑈 and 𝑡𝑗 /∈ 𝐴 then

10: 𝐴← 𝐴 ∪ 𝑡𝑗
11: for 𝑡𝑘 ∈ 𝑡𝑗 . children do
12: 𝑄. enqueue(𝑡𝑘)

13: for 𝑡𝑗 ∈ 𝐴 do
14: 𝑈 ← 𝑈 ∪ 𝑡𝑗
15: if 𝑡𝑖 ̸= 𝑡𝑗 then
16: resolve_alias_pair(𝑡𝑖, 𝑡𝑗)

Figure 4: Algorithm for selecting aliases from

parent-child candidates.

rent token 𝑡𝑖 is treated as the canonical
name for all of its aliases (i.e., all of its aliases

will be renamed to the current token). A set

of all “descendants" of the current token is

created by recursively visiting child tokens.

Then, each descendent token is assigned as an

alias of the current token, provided that it has

not been assigned a different alias already.

By default, the canonical name for a group

of aliases is the most frequently-appearing to-

ken in the provided AV scan report dataset.

ClarAVy comes with a text file which maps to-

kens to their canonical alias names. It was gen-

erated by using the previously-described alias

resolution process on a dataset of≈40 million

AV scan reports from VirusTotal [15]. Clar-

AVy users can easily customize this mapping

with their own alias pairs by editing the file.

Furthermore, the canonical names in the alias

mapping have priority over automatically-

identified canonical names, allowing users to

set their naming preferences.

2.4. Token Ranking

After assigning lexical categories to tokens and after resolving aliases, ClarAVy parses all scan

reports a second time. This time, tokens with known aliases are replaced with their canonical

names. Additionally, tokens which were previously assigned PRE or UNK may receive a more

informative lexical category. For each AV scan report, ClarAVy outputs a ranking the BEH,

PLAT, PACK, and VULN tokens in the report. Each token is given a score based on the number

of times it appears in the scan report, adjusted for known correlations between AV products.

PRE, SUF, and UNK tokens in the scan report are considered generic and discarded. Accurately

ranking FAM tokens is much more challenging and is a target of our future work.

2.4.1. AV Product Correlations

The existence of correlations between AV products is well-known in the malware analysis

industry. Leading causes include AV products sub-licensing their engines to others, AV products

owned by the same company, and AV products “copying" another product’s detection results

[8, 16]. There seem to be other factors contributing to these correlations as well, but they are

poorly-understood [17]. We attempted to account for all major, publicly-known factors which

would cause AV products in our dataset to produce correlated labels. To do this, we identified

AV products which use very similar sets of delimiter formats in their labels. We manually

confirmed each pair of correlated AV products that we wrote parsing rules for using publicly-
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Figure 5: Publicly-known correlations in AV products.

available information, shown in Figure

5. Like prior work, we observed that

the main sources of correlation were

due to AV products owned by the same

company (e.g. McAfee and McAfee-GW-

Edition) and AV products licensing their

technology to others (e.g. ZoneAlarm

previously used Kaspersky’s engine). In

our dataset, there are 11 different AV

products which use the BitDefender en-

gine to varying degrees, often in combi-

nation with their own detection technolo-

gies. ALYac and Qihoo 360 use multiple

other engines. We also noticed multi-

ple instances of AV products being re-

named or acquired by other companies

(e.g. Commtouch was renamed to Cyren

and aquired F-Prot).

2.4.2. Token Scores
BEH ransom worm12 5

PLAT

VULN

PACK UPX 3

CVE-2017-0144 2

Figure 6: Example ClarAVy output for a malicious file.

It is tagged as having ransomware and worm behavior.

The file exploits the CVE-2017-0144 vulnerability and is

packed with UPX. No platform tags are identified.

ClarAVy assigns a score to each token

based on the number of times it appears

in the scan report. This approach as-

sumes that if multiple independent AV

products output the same token, then the

token is likely to be an accurate tag for

the file. For this assumption to be valid,

correlations between AV products must

be accounted for. If two or more AV prod-

ucts with known correlations output the

same token, ClarAVy combines them into

a single “vote".

A threshold parameter 𝑇 is used to

control the minimum token score al-

lowed in the ranking that ClarAVy out-

puts. Tokens with fewer than 𝑇 votes are excluded from the ranking. Higher values of 𝑇
decrease the amount of noise in the outputs, but may also cause correct tokens to be omitted

from the ranking. 𝑇 can be set separately for each lexical category. By default 𝑇 = 5 for BEH

and PLAT tokens and 𝑇 = 1 for VULN and PACK tokens. As we later show in Section 3.2,

agreement of at least 5 independent AV products has a very low false positive rate. VULN and

PACK tokens are much less frequent than BEH and PLAT tokens, but also much less noisy. Any

threshold above 𝑇 = 1 for these lexical categories would cause a high false negative rate.



3. ClarAVy Validation Table 2: Top 10 Tokens Per Lexical Category

BEH PLAT VULN PACK

virus js cve_2014_6332 nsis

downloader script cve_2010_2568 upx

riskware html cve_2017_17215 nsanti

adware pe cve_2017_11882 upack

dropper vbs cve_2010_0188 aspack

pua hllo cve_2017_0199 themida

packed msil cve_2010_2586 nspack

worm pdf cve_2010_2586 pecompact

backdoor multi cve_2012_0507 fsg

redirector android cve_2012_0507 vmprotect

ClarAVy was developed with AV scan re-

ports for 40,307,433 malicious files from

chunks 0 through 465 of the VirusShare

corpus [18]. We queried the VirusTotal

API for these files between Feb. and Apr.

2023 to get these reports [15]. When de-

veloping each parsing function in Clar-

AVy, we randomly selected 10,000 AV la-

bels with the corresponding delimiter for-

mat from this dataset. After creating a

parsing function, we performed a brief

visual inspection of the resulting tokens and lexical assignments to ensure they were correct.

After finishing the entire ClarAVy implementation, we ran it on these ≈40 million AV scan

reports with default settings (𝑇 = 5 for BEH and PLAT tokens and 𝑇 = 1 for VULN and PACK

tokens). Then, we inspected lexical categories that ClarAVy assigned to each token and the

alias mapping which it created. We manually verified both of these, correcting any errors if

necessary. We identified 1,307 aliases for 92 malware behaviors, 194 aliases for 47 file-related

tokens, and 53 aliases for 24 packers. The ClarAVy output included 134 distinct BEH tokens, 91

distinct PLAT tokens, 440 distinct VULN tokens, and 90 distinct PACK tokens. The ten most

common tokens of each type are listed in Table 2.

3.1. Comparison to other AV-based taggers

ClarAVy’s comprehensive collection of parsing functions distinguishes it from other AV-based

taggers. Most prior work uses hard-coded lists and/or heuristic methods for assigning tokens to

lexical categories [8, 9, 7, 12]. For example, AVClass2 uses one parsing function per AV product

for removing the suffix from AV labels [7]. Then, it uses hard-coded lists for assigning remaining

tokens in the to lexical categories. AVClass2 supports updating these lists with related tokens,

but it is not a default behavior and uses only co-occurrence statistics. These design choices

lead to compounding errors in AVClass2’s outputs. Using the same method for suffix removal

on all of an AV product’s labels may cause incorrect parsing, since the AV product likely has

multiple delimiter formats. Using only hard-coded lists for assigning lexical categories will

result in false negatives - especially if new tokens appear in future AV labels. With 882 parsing

functions (averaging nearly 10 per supported AV product), ClarAVy assigns lexical categories

to AV labels with greater fidelity. It can handle new AV labels, provided that their delimiter

formats are supported.

3.2. Evaluation Using the SOREL Dataset

We experimentally test ClarAVy’s ability to tag malware according to behavioral attributes. We

do this using the SOREL dataset, which has 9,919,065 malicious PE files labeled according to 11



Table 3: SOREL Evaluation (Micro Avg.)

ClarAVy (T=1) ClarAVy (T=5) AVClass2

Precision .663 .969 .785

Recall .625 .251 .483

F1-Measure .643 .398 .598

separate behavioral tags [5]. A file may

have more than one tag if it displays mul-

tiple types of malicious behaviors. We

queried the VirusTotal API for the ma-

licious files in SOREL and were able to

obtain AV scan reports for 7,294,655 of

them. Then, we ran ClarAVy on these re-

Table 4: SOREL Evaluation (Weighted Avg.)

ClarAVy (T=1) ClarAVy (T=5) AVClass2

Precision .717 .970 .830

Recall .625 .251 .483

F1-Measure .668 .398 .610

ports two times; once with 𝑇 = 1 for all

lexical categories and once with 𝑇 = 5
for BEH and PLAT tokens. We also ran

AVClass2 on these reports using default

settings, except for an adjustment to its

alias mapping which removes the alias

between the “dropper" and “downloader"

tokens. This is because SOREL treats these as seperate tags, but AVClass2 does not by default. It

was also necessary to adjust the naming for some tags, since ClarAVy, AVClass2, and SOREL use

slightly different terminology. We measured the per-class Precision, Recall, and F1-Measure for

each of the 11 behavioral tags. Results are shown in Table 3 (with micro averaging) and Table 4

(with weighted averaging). ClarAVy with 𝑇 = 1 achieves the highest Recall and F1-measure,

but has the lowest precision. AVClass effectively uses 𝑇 = 2, since it discards any tokens which

only recieve a single vote. This allows it to reach a higher Precision than ClarAVy with 𝑇 = 1,

but the Recall and F1-Measure drop because some correct labels are discarded. ClarAVy with

𝑇 = 5 reaches an extremely high Precision but a low Recall and F1-Measure for the same

reason. The very low false positive rate of ClarAVy with 𝑇 = 5 is a desirable property for an

accurately-tagged dataset, and we judge the false negative rate to be of little impact.

3.3. Evaluation Using the MOTIF Dataset

Labeled malware data which can be used to evaluate ClarAVy is extremely limited. With the

exception of SOREL, nearly all malware reference datasets either use benign/malicious labels

or family labels [4]. SOREL only has 11 behavioral tags, does not have labels comparable to

the PLAT, VULN, or PACK lexical categories that ClarAVy uses, and is itself dependent on AV

scan data (due to using SMART as a source of labeling) [5, 13]. Therefore, it was necessary to

find another way to evaluate ClarAVy’s outputs. To do this, we consider that malicious files

belonging to the same family should be consistent regarding malware category, behavior, file

format, and other factors. Although this is not always true (e.g., modular malware in the same

family may have different components with specialized behavior, and in rare cases malware

is written to target different platforms), this assumption generally holds. This allows us to

evaluate how consistent ClarAVy’s outputs are with respect to malware family labels.

Suppose a dataset of malicious files 𝑀 = {𝑚1,𝑚2, ...𝑚𝑛}, where 𝑛 is the number of files

in the dataset. Let 𝐶𝑖 ∈ 𝑀 be the set of files that a malware tagging tool assigns tag 𝑖. For

example, 𝐶𝑖 could be the set of files that ClarAVy assigns the “ransomware" tag to. A malicious

file may be assigned multiple tags. Then, let 𝐹 = {𝐹𝑘}1≤𝑘≤𝑓 partition 𝑀 , where 𝐹𝑘 is the set

of malicious files belonging to family 𝑘. Each file is assigned to exactly one family. Then, for



each predicted label 𝐶𝑖, let 𝐷𝑖 =
𝑓⋃︀

𝑘=1

𝐹𝑘, if
|𝐶𝑖∩𝐹𝑘|
|𝐹𝑘| ≥ 0.5. This constructs a set of malicious

files 𝐷𝑖 from malware families where at least 50% of files have tag 𝑖 predicted. Using this, we

can define metrics which are analogous to per-tag Precision and Recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶,𝐷, 𝑖) =
|𝐶𝑖 ∩𝐷𝑖|

|𝐶𝑖 ∩𝐷𝑖|+ |𝐶𝑖 ∩𝐷𝑖
¯ |

𝑅𝑒𝑐𝑎𝑙𝑙(𝐶,𝐷, 𝑖) =
|𝐶𝑖 ∩𝐷𝑖|

|𝐶𝑖 ∩𝐷𝑖|+ |𝐶�̄� ∩𝐷𝑖|

Under these definitions, Precision measures the “noisiness" of a tag. It penalizes instances

where a tag is assigned to a file, but where most files in its family are not associated with that tag.

Conversely, Recall measures coverage of a tag within malware families. It penalizes instances

where a family is likely to be associated with that tag, but there are files within that family

where the tag is not assigned.

Table 5: MOTIF Evaluation (Micro Avg.)

ClarAVy AVClass2

Precision .828 .694

Recall .912 .796

F1-Measure .868 .741

We acknowledge that there are flaws in this

evaluation strategy. It is possible that fami-

lies which are truly associated with a tag may

be “missed" due to incorrect predictions. Fur-

thermore, it does not necessarily confirm that

predicted tags are correct (although we be-

lieve this is likely in most instances due to the

high precision observed in our previous exp-

Table 6: MOTIF Evaluation (Weighted Avg.)

ClarAVy AVClass2

Precision .880 .723

Recall .912 .796

F1-Measure .896 .758

eriment using the SOREL dataset). However,

in the absence of better-labeled data, we be-

lieve that this is a reasonable approach for

measuring ClarAVy’s tagging consistency.

We then used ClarAVy and AVClass2 to tag

VirusTotal reports for the MOTIF dataset. MO-

TIF contains 3,095 malware samples from 454

families, labeled with ground-truth confidence. ClarAVy and AVClass2 were run on default

settings, and any tags in AVClass2’s family (FAM) or unknown (UNK) taxonomy were discarded

because they are not output by ClarAVy. Additionally, the AVClass2 “windows" tag was dis-

carded, since it appears in nearly all scan reports in MOTIF and ClarAVy treats it as generic. We

computed Precision, Recall, and F1-Measure for each label using the method described above.

Results are show in Tables 5 and 6. ClarAVy clearly outperforms AVClass2 in this experiment.

ClarAVy tags malware within the same family more consistently and there is less tagging noise.

4. MalDICT Datasets

To build the MalDICT datasets, we ran ClarAVy on 40,307,433 VirusTotal reports for the malware

in VirusShare chunks 0-465. We reviewed the tags that ClarAVy had assigned to these files

and observed significant class imbalances. To account for this, we discarded tags which were

too rare and down-sampled tags which were very common. BEH tags with less than 1,000



instances, PLAT tags with less than 500 instances, VULN tags with less than 100 instances,

and PACK tags with less than 50 instances were not included. Tags which were too frequent

were randomly down-sampled, so that they were no more than 100× more common than the

minimum threhsold in the training set and no more than 25×more common than the minimum

threshold in the test set.

Depending on the lexical category, we selected between two different methods for dividing

files into a training and test set. For MalDICT-Behavior and MalDICT-Platform, we selected from

files in VirusShare chunks 0-315 for the training set and from VirusShare chunks 316-465 for

the test set. Chunks 0-148 contain 131,072 files each, and the remaining chunks contain 65,536

files each. This supports an approximately 80% - 20% train-test split. More recent VirusShare

chunks contain newer forms of malware that do not appear earlier in the dataset [18]. MalDICT-

Behavior and MalDICT-Platform test sets contain malware added to the VirusShare corpus

between July 2018 and Apr. 2023, while all of the malware in the training sets were added prior

to July 2018. The first chunks were added to VirusShare in 2012, but we are aware of malware

in VirusShare which was uploaded to VirusTotal in 2006 [18, 19]. Since new types of malware

are continually being observed, This enables a temporal train-test split which simulates model

performance on novel types of malware that do not appear in the training set. With up to

nearly a five-year gap between the chunks in the training and test sets, MalDICT-Behavior and

MalDICT-Platform can unveil whether a malware classifier is robust against out-of-distribution

(OOD) data from a "future" time period.

The training and test sets for MalDICT-Vulnerability and MalDICT-Packer do not use a

temporal split. This is because VULN and PACK tags are much less frequent, and we observed

that multiple VULN and PACK tags only appear in the dataset over a short time interval. If we

had used a temporal split, this would have resulted in a number of tags appearing in only the

training set but not the test set or vice-versa. Instead, we used a stratified 80% - 20% train-test

split to ensure even proportions of tags in the training and test sets.

4.1. MalDICT Dataset Contents

Table 7 lists the number of files and number

Table 7: Contents of MalDICT Datasets

Total Files Train Set Test Set Tags

Behavior 4,317,241 3,744,022 573,219 75

Platform 963,492 738,264 225,228 43

Vulnerability 173,886 136,467 37,419 128

Packer 252,148 201,392 50,756 79

of unique tags in the four MalDICT datasets.

Due to some files occurring in multiple

datasets, MalDICT includes 5,457,778 unique

malicious files in total. We are releasing the

file hashes and ClarAVy token rankings for each of these files. Since they are a subset of the

VirusShare corpus, the corresponding malicious files can be downloaded by any malware analyst

who has been granted a VirusShare login [18]. Furthermore, we are releasing the disarmed

executable and EMBER raw metadata for each PE file in MalDICT. Files were disarmed by

zeroing out the OPTIONAL_HEADER.Subsystem and FILE_HEADER.Machine fields in their PE

headers, which is the same method used by SOREL and MOTIF [5, 20].



4.2. Sources of Bias in MalDICT

We now survey potential sources of bias in the MalDICT datasets. To counteract the questionable

accuracy of individual AV labels, we chose to only include BEH and PLAT tags for which there is

consensus between at least five uncorrelated AV products [21, 22]. We judge this to be necessary

for tag accuracy, but we are aware that it may cause a selection bias [23]. Omissions or errors

in AV labeling is in of itself another source of bias in our dataset [21, 22, 24]. However, there is

no other source which can be reasonably used as a source of malware labels at this scale [25].

Finally, the methods we used for selecting files to include in MalDICT changed the tags and

their distributions from what would be observed in the wild. We have already justified these

design choices earlier in this section.

5. Baseline Models

We are releasing models trained on four MalDICT datasets. These models serve as measurements

of baseline ML performance in this problem space. We selected MalConv2 and LightGBM as

baseline models, since they are similar to those used by other notable datasets [26, 27, 28, 5, 20].

5.1. MalConv2 Baseline Model Table 8: MalConv2 Evaluation (Micro Avg.)

Behavior Platform Vulnerability Packer

Precision .651 .750 .926 .897

Recall .492 .718 .888 .801

F1-Measure .560 .733 .906 .846

ROC-AUC .929 .965 .995 .987

Our first baseline model is MalConv2,

a convolutional neural network that ac-

cepts raw file bytes as input [26]. Mal-

Conv2 was also used as a baseline model

by the MOTIF dataset, and the original

MalConv was used by the EMBER dataset
Table 9: MalConv2 Evaluation (Weighted Avg.)

Behavior Platform Vulnerability Packer

Precision .617 .772 .926 .892

Recall .492 .718 . 888 .801

F1-Measure .512 .718 .903 .842

ROC-AUC .896 .960 .995 .980

[20, 28, 29, 26]. Our baseline MalConv2

model truncates any files greater than

1MB to 1MB in order to lessen GPU mem-

ory usage. The remaining hyperparame-

ters were kept as the MalConv2 defaults.

Then, we trained MalConv2 classifiers on

the four MalDICT training sets using eight NVIDIA RTX 6000 GPUs in parallel. The MalConv2

model for MalDICT-Behavior was trained for 33 epochs (approximately 24 hours), and the other

three MalConv2 models were trained for 100 epochs each. When a file is provided as input

to the baseline MalConv2 model, it outputs the probability of each tag being associated with

that file. For the purposes of computing Precision, Recall, and F1-Measure, we consider an

output greater than or equal to 0.5 as the threshold for predicting a tag. We used standard

definitions of Precision, Recall, and F1-Measure for these results rather than our own defini-

tions in Section 3.3. MalConv2 results on MalDICT are shown in Tables 8 and 9. MalConv2

displays good performance when classifying malware by vulnerability and packer. Performance

is lower when classifying by behavior and by platform, and this is almost certainly due to

the temporal train-test split present in MalDICT-Behavior and MalDICT-Platform, but not in

MalDICT-Vulnerability or MalDICT-Packer.



5.2. LightGBM Baseline Model Table 10: LightGBM OvR Evaluation (Micro Avg.)

Behavior Platform Packer

Precision .177 .682 .783

Recall .555 .953 .948

F1-Measure .268 .795 .857

ROC-AUC .897 .958 .992

The EMBER feature vector format has be-

come a de-facto standard for represent-

ing malware in the Windows Portable

Executable (PE) file format [28]. Like the

EMBER, SOREL, and MOTIF datasets, we

use a LightGBM classifier trained on EM-

BER feature vectors as a baseline model.

MalDICT includes malware that is not

in the PE format, as well as files with

corrupt or invalid PE header fields. EM-

Table 11: LightGBM OvR Evaluation (Weighted Avg.)

Behavior Platform Packer

Precision .363 .889 .844

Recall .555 .953 .948

F1-Measure .385 .911 .884

ROC-AUC .805 .955 .991

BER vectors for these files could not be

computed, so they were excluded from

this experiment. Nearly all of the mal-

ware in MalDICT-Vulnerability are mali-

cious scripts rather than PE files, so we

did not train a LightGBM model on this data. In the remaining three MalDICT datasets, there

were a small number of tags which contained little to no PE files, and they were also excluded.

Since this is a multiclass, multilabel problem, we trained one-versus-Rest (OvR) LightGBM

classifiers on each tag for 100 iterations each. Results are displayed in Tables 10 and 11.

The LightGBM classifier performed well on MalDICT-Platform and MalDICT-Packer, but

was extremely poor at classifying malware in MalDICT-Behavior. MalConv2 performance on

MalDICT-Behavior was substandard as well, but not to such an extent. MalConv2 and LightGBM

both performed worse on MalDICT-Behavior than the SOREL dataset’s feed-forward neural

network (FFNN) baseline classifier, which achieved ROC-AUC scores above 0.97 for all 11 of

its behavioral tags [5]. We believe that the temporal train-test split and the increased number

of tags in MalDICT-Behavior result in a more difficult classification problem than the SOREL

dataset offers. Recall that the most recent malware in MalDICT-Behavior’s test set was added

in April 2023, while the most recent malware in its training set was added in July 2018. This

makes MalDICT-Behavior a true test on a malware classifier’s OOD performance. If a model

performs well on this benchmark, practitioners can be assured that the model can generalize to

malicious attributes that are present in malware far into the "future".

6. Conclusion

To our knowledge, MalDICT includes the first public malware datasets labeled according to

platform, vulnerability, and packer. It also includes the most diverse public dataset of malware

labeled by behavior, containing over 4.3 million malicious files and 75 distinct behavioral tags.

We are releasing the file hashes and tags for the nearly 5.5 million malicious files in MalDICT. We

are also releasing the EMBER raw features and disarmed executable files for all of the malware

in MalDICT with the PE format. All of the malware in MalDICT can be obtained by researchers

who have been granted to the VirusShare corpus.

Additionally, we are publishing ClarAVy, the tool that was used to accurately tag the malware



in MalDICT. With support for 90 different AV products and 882 different AV label formats,

ClarAVy offers more comprehensive parsing than any other AV-based malware tagging tool.

ClarAVy can extract tags from tens of millions of AV scan reports, which can then be used to

train production malware classifiers.

Our baseline classifier results indicate that there is significant room for improvement on all

four tasks that MalDICT supports, especially malware behavior classification. The development

of a classifier with strong performance on MalDICT-Behavior would represent a major success

towards resisting concept drift over years of malware evolution. It is our hope that these

contributions will facilitate and encourage further study of atypical malware classification tasks,

fostering improved understanding and defense.
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