
Optimizing Data Integration Processes with the Support of
Machine Learning - Is it Really Possible?
Robert Wrembel

Poznan University of Technology and
Interdisciplinary Centre for Artificial Intelligence and Cybersecurity, pl. Sklodowskiej-Curie 5, 60965, Poznań, Poland

Abstract
In this panel session I address two research questions in the area of the optimization of data integration (DI) processes (a.k.a. ETL
processes), which (in my opinion) still need substantial research. The questions include: (1) how to efficiently push down executions of
DI tasks to non-relational data sources and (2) how to handle user-defined functions (especially treated as black-boxes) in optimizing
the performance of DI processes. The discussion to be initiated during the panel is whether sound answers to these questions can be
found by the support of machine learning techniques.

Keywords
data integration process, ETL process, optimizing data integration process, user-defined functions, resource usage time series, machine
learning, time series similarity

1. Data integration architectures
and processes

For years, the widespread of complex, data-driven systems
has been observed, e.g., medical systems, smart agriculture,
and smart cities. These systems produce huge volumes of
highly heterogeneous data (a.k.a. big data) that need to be
integrated to feed various applications providing descriptive
analytics or prediction models. Thus, data integration (DI)
architectures are inevitable in modern information systems
and they are constantly facing new challenges caused by
complex, fast arriving, and ample data as well as emerging
data engineering technologies.

A common goal of DI is to make heterogeneous and typi-
cally distributed data available for an end user in a unified
format. Research and development works resulted in a few
standard DI architectures, namely: (1) federated [1] and
mediated [2], (2) data warehouse (DW) [3], (3) lambda [4],
(4) data lake (DL) [5], (5) data lake house (DLH) [6], (6) poly-
store [7], and (7) data mesh/ data fabric [8]. In all of the
aforementioned architectures, data from heterogeneous and
distributed data sources (DSs) are made available in an inte-
grated system (either by virtual or materialized integration)
by means of an integration layer. This layer is implemented
by a sophisticated software, which runs the so-called DI
processes (a.k.a. ETL - in data warehouse architectures, data
processing pipeline - in data science, data wrangling, or data
processing workflows [9, 10]).

DI processes are core elements of all DI architectures.
DI processes are complex workflows composed of dozens
to thousands of tasks. These tasks are responsible for ex-
tracting data from DSs, transforming data into a common
model and data structures, cleaning data, removing missing,
inconsistent, and redundant data items, integrating data,
and loading them into a central repository (i.e., DW, DL,
or DLH) or making them available in virtual integration
architectures (i.e., federated, mediated, polystore, or data
mesh). DI processes are managed by a dedicated software,
called a DI engine (an ETL engine in a DW architecture).

DOLAP 2024: 26th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2024, March 25, 2024, Paestum, Italy
$ robert.wrembel@put.poznan.pl (R. Wrembel)
� http://www.cs.put.poznan.pl/rwrembel/ (R. Wrembel)
� 0000-0001-6037-5718 (R. Wrembel)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

Most of the DI engines support a set of predefined (out of
the box) tasks [11].

Even though, methods for developing DI processes have
been researched and developed for decades (see [10, 12])
and were included in commercial (and some open license)
DI design environments and DI engines [13], the task of
designing and managing DI processes is still difficult and
time costly. Moreover, the support from these design tools
for optimizing such designs and optimizing the execution
of DI processes is very limited.

In this context, with the fast advances of machine learn-
ing (ML) techniques, the application of such techniques to
designing and optimizing DI processes may sound attractive.
However, research works on DI focus mainly on mappings
between values [14] or schemas [15], data cleaning [16],
data deduplication [17, 18]. Moreover, event though multi-
ple providers of DI technologies and consulting companies
opt for applying ML techniques in data integration, a clear
step-by-step and end-to-end approach has not been pro-
posed yet.

ML techniques have already been successfully applied to
optimizing system performance, e.g., [19, 20, 21, 22, 23, 24,
25]. They typically build performance models, which are
based on performance characteristics (typically CPU, I/O,
and memory usage) collected during a normal runtime of a
system or during an excessive testing phases. Then, perfor-
mance models are learned, based on these characteristics.
The works reported in [26, 27] focus on applying ML tech-
niques to provide auto-tuning capabilities in the so-called
self-driving database management systems.

In this panel talk, I will focus on selected challenges re-
lated to the performance of ETL processes. My subjective
point of view on the presented open issues/challenges re-
sults from a cooperation with IBM Software Lab in Kraków
(Poland) on a data integration project.

2. Performance optimization of DI
processes

In order to reduce the execution time of a DI process, a few
classes of solutions have been proposed. First, a business
approach is to scale-up or scale-out a DI server. Second, DI
engines existing on the market support parallel processing
of DI tasks. This is also a trend in research. Third, some

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:robert.wrembel@put.poznan.pl
http://www.cs.put.poznan.pl/rwrembel/
https://orcid.org/0000-0001-6037-5718
https://creativecommons.org/licenses/by/4.0


DI engines support moving the execution of some DI tasks
close to storage. One technique of this class is called the
push-down optimization. Fourth, re-ordering of DI tasks
has been well researched and resulted in a few approaches.

Scaling refers to adding computing power into a DI ar-
chitecture. Two types of scaling are common, namely: (1)
vertical scaling of a DI server, i.e., by increasing the number
of CPUs, the size of RAM, adding specialized hardware like
FPGAs and (2) horizontal scaling of a DI architecture, i.e.,
adding new computing nodes.

Parallel processing consists in computing tasks by par-
allel OS processes or threads. This technique was well re-
searched as well, e.g., [28, 29, 30]. In the simplest case (avail-
able in commercial DI engines, see [13]), uploading data
into a data warehouse is executed in parallel. A challenge
in applying parallelism is to figure out the most efficient
parallelization schemes for a given DI task or the whole DI
process [31].

Data processing close to storage - in the context of
databases, there are numerous implementations supporting
moving data-intensive processing from an application layer
to storage. Examples of such systems are IBM Pure Data for
Analytics and Oracle Exadata. Both of them use a dedicated
hardware to perform operations on data read from disks,
like decompression, filtering, and projection.

Push-down - the principle of the push-down optimization
is to move some DI tasks into a data source, to be executed
there. Push-down is available in IBM InfoSphere Data Stage
and Informatica, but only for relational DSs.

Task reordering is the most researched technique for DI
process optimization. A group of approaches draws upon
the idea of changing the order of tasks in an original DI pro-
cess, such that a reordered process is more efficient than the
original one. Finding a (sub-)optimal order of tasks is com-
putationally complex, and for this reason, some heuristics
have to be used [32, 33].

3. Still open research challenges
This section outlines my subjective view on two still open re-
search challenges in the optimization of DI processes. They
include: the push-down optimization on non-relational data
sources and DI processes with black-box user-defined func-
tions (BBUDFs).

As stated above, the push-down technique in commercial
systems was made available to work only with relational DSs
and it is typically applicable to tasks at the beginning of a
DI process, i.e., filtering or simple pre-processing. Moreover,
push-down may also be applicable to tasks that migrate
large volumes of data between systems. The first example
of such a task is data anonymization. According to GDPR,
sensitive data cannot ’leave’ a source system before being
anonymized. It means that a DI engine cannot run the
anonymization and this task has to be pushed-down into
the source system. The second example is enforcing data
access policies. Sensitive data that cannot be accessed in the
source system must be filtered out directly in the system.
In this case, a data access policy originally included in a DI
process must be pushed-down into the DS.

With the widespread of big data storage systems, a natural
step is to extend push-down to non-relational DSs. To the
best of our knowledge, the applicability and efficiency of
this technique for non-relational (a.k.a. NoSQL) DSs has not
been studied yet (with the exception of [34, 35, 36]). The

issues that have to be investigated include: (1) analyzing
which DI tasks can be pushed down to contribute to the
improvement of performance of a DI process and (2) how
to efficiently implement a given pushed down task in a DS,
leveraging the functionality and internal structures of the
DS.

DI processes use not only predefined tasks (e.g., [11])
available in design, development, and management tools
[13], but also require the deployment of user defined func-
tions (UDFs), in order to implement specific tasks [37, 38].
UDFs can be implemented in various programming lan-
guages and are treated by a DI engine as black-boxes.
Typically, the most advanced commercial engines allow to
implement a UDF in any programming language and call
it from the engine as an external program (i.e., as a pure
black-box). For this reason, optimizing the execution of DI
processes with BBUDFs is more than challenging. To be
able to apply the aforementioned optimization techniques,
one must know performance characteristics of BBUDFs and
(if possible) their semantics.

4. Research hypothesis
The research hypothesis stated in this panel talk threefold.

First, we expect that the push-down technique applied
to non-relational DSs will allow to increase performance of
DI processes (i.e., reduce their execution time). Based on
the developed execution cost models and implementation
skeletons, it will be possible to push-down typical DI tasks
into non-relational DSs. The question, however, is how push-
down could benefit from machine learning (ML) techniques
in the course of: (1) deciding whether a given task should
be pushed down into a non-relational DS and (2) providing
an efficient implementation of the task in the DS.

Second, we expect that it will be possible to build per-
formance models of basic and complex BBUDFs (like those
listed in [11]) by applying ML techniques. The models of
BBUDFs will be assigned to performance classes provided
by prediction models built from analyzing the performance
models of known UDFs. For BBUDFs, their performance
characteristics will be collected and they will be classified
into one of the already known performance classes, thus
allowing us to reason at least about an expected BBUDF
performance. Our initial work [39] shows that the proposed
approach is feasible on basic BBDUFs.

Third, we expect that it will be possible to build semantic
models of basic BBUDFs by means of machine learning
techniques - possibly by applying deep neural networks.
Here, open question are: whether ML techniques could be
used to build the models; what kind of techniques would be
suitable; what input data would be required?

The discussion on the aforementioned challenges should
be extended towards a broader scope of DI: (1) whether ML
techniques can revolutionize the development and deploy-
ment methods of efficient DI pipelines, (2) how to build
an end-to-end DI pipeline with the support of ML, (3) how
to assure and verify the quality of data produced by such
pipelines, (4) how to leverage the ML techniques for build-
ing complex DI architectures with appropriately designed
software and hardware, and (5) how to mitigate bias in the
ML techniques used to build DI pipelines. Furthermore, an-
other question is whether ML could help solving the still
unsolved challenge of the ETL evolution, e.g., [40, 41].



References
[1] A. Bouguettaya, B. Benatallah, A. Elmargamid, In-

terconnecting Heterogeneous Information Systems,
Kluwer Academic Publishers, ISBN 0792382161, 1998.

[2] P. Brezany, A. M. Tjoa, H. Wanek, A. Wöhrer, Media-
tors in the architecture of grid information systems,
in: Int. Conf. Parallel Processing and Applied Mathe-
matics (PPAM), volume 3019 of LNCS, Springer, 2003,
pp. 788–795.

[3] S. A. Errami, H. Hajji, K. A. E. Kadi, H. Badir, Spa-
tial big data architecture: From data warehouses and
data lakes to the lakehouse, Journal of Parallel and
Distributed Computing 176 (2023) 70–79.

[4] A. A. Munshi, Y. A. I. Mohamed, Data lake lambda
architecture for smart grids big data analytics, IEEE
Access 6 (2018) 40463–40471.

[5] R. Hai, C. Koutras, C. Quix, M. Jarke, Data
lakes: A survey of functions and systems, 2023.
arXiv:2106.09592.

[6] A. A. Harby, F. H. Zulkernine, From data warehouse to
lakehouse: A comparative review, in: IEEE Big Data,
2022, pp. 389–395.

[7] R. Tan, R. Chirkova, V. Gadepally, T. G. Mattson, En-
abling query processing across heterogeneous data
models: A survey, in: IEEE Big Data, 2017, pp. 3211–
3220.

[8] Z. Dehghani, Data Mesh: Delivering Data-Driven
Value at Scale, O’Reilly, ISBN 1492092398, 2022.

[9] T. Furche, G. Gottlob, L. Libkin, G. Orsi, N. W. Pa-
ton, Data wrangling for big data: Challenges and
opportunities, in: Int. Conf. on Extending Database
Technology (EDBT), 2016, pp. 473–478.

[10] A. Simitsis, S. Skiadopoulos, P. Vassiliadis, The his-
tory, present, and future of ETL technology (invited),
in: Int. Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data (DOLAP)
@EDBT/ICDT, volume 3369 of CEUR Workshop Pro-
ceedings, 2023, pp. 3–12.

[11] IBM, Product documentation: Infosphere information
server 11.3, https://www.ibm.com/docs/en/iis/11.3?
topic=jobs-processing-data, 2023.

[12] S. M. F. Ali, R. Wrembel, From conceptual design to
performance optimization of ETL workflows: current
state of research and open problems, The VLDB Jour-
nal 26 (2017) 777–801.

[13] Gartner, Magic quadrant for data integration tools,
2022.

[14] M. Birgersson, G. Hansson, U. Franke, Data integration
using machine learning, in: IEEE Int. Enterprise Dis-
tributed Object Computing Workshop (EDOC), 2016,
pp. 1–10.

[15] L. Dong, T. Rekatsinas, Data integration and machine
learning: a natural synergy, Proc. VLDB Endowment
11 (2018) 2094–2097.

[16] I. F. Ilyas, T. Rekatsinas, Machine learning and data
cleaning: Which serves the other?, ACM Journal of
Data and Information Quality 14 (2022) 13:1–13:11.

[17] N. Barlaug, J. A. Gulla, Neural networks for entity
matching: a survey, ACM Transactions on Knowledge
Discovery from Data 15 (2021) 52:1–52:37.

[18] A. Zeakis, G. Papadakis, D. Skoutas, M. Koubarakis,
Pre-trained embeddings for entity resolution: An ex-
perimental analysis, Proc. VLDB Endowment 16 (2023)
2225–2238.

[19] D. V. Aken, A. Pavlo, G. J. Gordon, B. Zhang, Automatic
database management system tuning through large-
scale machine learning, in: Int. Conf. on Management
of Data (SIGMOD), 2017, pp. 1009–1024.

[20] M. Golfarelli, S. Graziani, S. Rizzi, An active learn-
ing approach to build adaptive cost models for web
services, Data & Knowledge Engineering 119 (2019)
89–104.

[21] Á. B. Hernández, M. S. Pérez, S. Gupta, V. Muntés-
Mulero, Using machine learning to optimize paral-
lelism in big data applications, Future Generation
Computer Systems 86 (2018) 1076–1092.

[22] S. Pumma, W. Feng, P. Phunchongharn, S. Chapeland,
T. Achalakul, A runtime estimation framework for
ALICE, Future Generation Computer Systems 72 (2017)
65–77.

[23] R. Sellami, B. Defude, Complex queries optimization
and evaluation over relational and nosql data stores in
cloud environments, IEEE Transactions on Big Data 4
(2018) 217–230.

[24] J. Taheri, A. Y. Zomaya, A. Kassler, vmbbprofiler: a
black-box profiling approach to quantify sensitivity of
virtual machines to shared cloud resources, Comput-
ing 99 (2017) 1149–1177.

[25] C. Witt, M. Bux, W. Gusew, U. Leser, Predictive per-
formance modeling for distributed batch processing
using black box monitoring and machine learning, In-
formation Systems 82 (2019) 33–52.

[26] A. Pavlo, M. Butrovich, L. Ma, P. Menon, W. S. Lim,
D. V. Aken, W. Zhang, Make your database system
dream of electric sheep: Towards self-driving opera-
tion, Proc. VLDB Endowment 14 (2021) 3211–3221.

[27] T. Kraska, T. Li, S. Madden, M. Markakis, A. Ngom,
Z. Wu, G. X. Yu, Check out the big brain on BRAD:
simplifying cloud data processing with learned auto-
mated data meshes, Proc. VLDB Endowment 16 (2023)
3293–3301.

[28] S. M. F. Ali, J. Mey, M. Thiele, Parallelizing
user–defined functions in the etl workflow using or-
chestration style sheets, Int. Journal of Applied Math-
ematics and Computer Science 29 (2019) 69–79.

[29] A. Karagiannis, P. Vassiliadis, A. Simitsis, Schedul-
ing strategies for efficient etl execution, Information
Systems 38 (2013) 927–945.

[30] X. Liu, N. Iftikhar, An ETL optimization framework
using partitioning and parallelization, in: ACM Sympo-
sium on Applied Commputing (SAC), 2015, pp. 1015–
1022.

[31] S. M. F. Ali, R. Wrembel, Framework to optimize data
processing pipelines using performance metrics, in:
Int. Conf. on Big Data Analytics and Knowledge Dis-
covery (DAWAK), LNCS 12393, 2020, pp. 131–140.

[32] A. Simitsis, P. Vassiliadis, T. K. Sellis, State-space
optimization of ETL workflows, IEEE Transactions on
Knowledge and Data Engineering 17 (2005) 1404–1419.

[33] C. Yan, Y. Lin, Y. He, Predicate pushdown for data
science pipelines, Int. Conf. on Management of Data
(SIGMOD) 1 (2023).

[34] M. Bodziony, R. Morawski, R. Wrembel, Evaluating
push-down on nosql data sources: experiments and
analysis paper, in: Int. Workshop on Big Data in Emer-
gent Distributed Environments(BiDEDE) @ ACM SIG-
MOD/PODS Conference, ACM, 2022, pp. 4:1–4:6.

[35] M. Bodziony, S. Roszyk, R. Wrembel, On evaluat-
ing performance of balanced optimization of ETL pro-

http://arxiv.org/abs/2106.09592
https://www.ibm.com/docs/en/iis/11.3?topic=jobs-processing-data
https://www.ibm.com/docs/en/iis/11.3?topic=jobs-processing-data


cesses for streaming data sources, in: Int. Workshop
on Design, Optimization, Languages and Analytical
Processing of Big Data (DOLAP) @EDBT/ICDT, vol-
ume 2572 of CEUR Workshop Proceedings, 2020, pp.
74–78.

[36] C. Forresi, M. Francia, E. Gallinucci, M. Golfarelli, Cost-
based optimization of multistore query plans, Infor-
mation Systems Frontiers 25 (2023) 1925–1951.

[37] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Bin-
nig, U. Cetintemel, S. Zdonik, An architecture for
compiling udf-centric workflows, VLDB Endowment
8 (2015) 1466–1477.

[38] Q. Chen, R. Wu, M. Hsu, B. Zhang, Extend core UDF
framework for gpu-enabled analytical query evalua-
tion, in: Int. Database Engineering and Applications
Symposium (IDEAS), 2011, pp. 143–151.

[39] A. Lehnhardt, B. Ciesielski, Designing and implement-
ing a method for assessing similarities between time se-
ries on computer resources consumed by data process-
ing tasks, Master thesis, Poznan University of Tech-
nology, 2022.

[40] D. Butkevicius, P. D. Freiberger, F. M. Halberg, MAIME:
A maintenance manager for ETL processes, in: Work-
shops of the EDBT/ICDT Joint Conference, volume
1810 of CEUR Workshop Proceedings, CEUR-WS.org,
2017.

[41] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassil-
iou, Policy-regulated management of ETL evolution,
Journal on Data Semantics 13 (2009) 147–177.


	1 Data integration architectures and processes
	2 Performance optimization of DI processes
	3 Still open research challenges
	4 Research hypothesis

