
Adaptive Handling of Out-of-order Streams in Conformance
Checking
Kristo Raun1,*, Riccardo Tommasini1,2 and Ahmed Awad3

1University of Tartu, Tartu, Estonia
2LIRIS Lab, INSA de Lyon, France
3The British University in Dubai, Dubai, United Arab Emirates

Abstract
Organizations function through the execution of various business processes. Non-conformant behavior in these processes
impacts organizations negatively through implications such as reduced efficiency, lower quality, and compliance risks. Thus,
it is important to identify non-conformant process behavior rapidly. While this is a challenging problem on its own, it is
further complicated by the advent of big data, distributed systems, and a fragmented landscape of cloud- and on-premise
tools that all provide data for the analysis of a business process and for determining its conformance. In such a landscape, it is
common that events may arrive out of order. This complicates the conformance-checking analysis, which commonly expects
events within a process to arrive in a specific sequence allowed by the process model.

This paper introduces the first streaming conformance-checking method that incorporates event time awareness, thus
having the ability to correct imperfections stemming from the out-of-order arrival of events. The method is scalable, utilizing
the Beamline framework built on top of Apache Flink. Furthermore, the method includes an adaptive approach for handling
various levels of out-of-order events in event streams. Experiments were conducted to demonstrate the applicability of the
method for real-world use cases with different levels of out-of-order events. The results indicate that the method is well
suited for identifying conformance in business processes that rely on a multitude of underlying systems for aggregating a
holistic view of the process.

Keywords
Streaming conformance checking, Real-time analytics, Process mining, Scalability

1. Introduction
Business processes are at the core of all organizations.
Understanding, measuring, and monitoring business pro-
cesses helps organizations become more efficient, have
higher quality of work, and have higher compliance. Over
the last two decades, process mining has emerged as the
field that studies business processes to improve process
executions through the systematic use of event data [1].

An event log contains the event data of a process, while
a process model describes the allowed behavior within
a process. Example process model and event log are
depicted in Figure 1 and Table 1, respectively. The execu-
tion of a process instance may not necessarily align with
the constraints set by the process model. Conformance
checking [2] in process mining refers to the comparison
of the expected behavior, depicted by a process model,
and the actual behavior, represented as event data. While
traditional conformance checking is done in an offline

DOLAP 2024: 26th International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data, co-located with
EDBT/ICDT 2024, March 25, 2024, Paestum, Italy
*Corresponding author.
$ kristo.raun@ut.ee (K. Raun); riccardo.tommasini@liris.cnrs.fr
(R. Tommasini); ahmed.awad@buid.ac.ae (A. Awad)
� 0000-0001-7535-2084 (K. Raun); 0000-0003-3404-5250
(R. Tommasini); 0000-0003-1879-1026 (A. Awad)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

A

C

B
D

E

Create
Order Check

Supply

Apply
Discount Pack

Order

Wait for
Replenishment

Figure 1: Example of a process model.

setting, an array of research in recent years has focused
on conducting conformance checking in a streaming set-
ting [3, 4, 5].

Streaming conformance checking shares many simi-
larities with data stream processing: high volume and ve-
locity of data, low latency requirements, unboundedness
of data streams, and stream imperfections [6, 7]; how-
ever, while the former items have garnered attention in
research in recent years, the area of stream imperfections
has remained neglected. Handling out-of-order events
has been investigated from the perspective of a process
discovery setting [8], but there have been no known
works on conformance checking with out-of-order event
streams.

Event streams do not commonly exhibit a constant
level of out-of-orderedness [9]. Rigidly dealing with out-

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:kristo.raun@ut.ee
mailto:riccardo.tommasini@liris.cnrs.fr
mailto:ahmed.awad@buid.ac.ae
https://orcid.org/0000-0001-7535-2084
https://orcid.org/0000-0003-3404-5250
https://orcid.org/0000-0003-1879-1026
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Case ID Activity Timestamp

1 A 2023-12-01 09:00
1 B 2023-12-01 09:01
2 A 2023-12-01 09:03
1 D 2023-12-01 09:03
3 A 2023-12-01 09:04
2 C 2023-12-01 09:04
1 B 2023-12-01 09:07

Table 1
Example of an event log.

of-order data may overcompensate at times when events
arrive mostly on time and undercompensate when out-of-
order event arrival is frequent. Thus, ideally, any method
that handles out-of-order event arrival should be adap-
tive in responding to the stream’s characteristics. Such
an adaptive streaming conformance checker would be
useful in industries where it is critical to have an up-to-
date overview of process executions, but the underlying
systems may introduce out-of-order events; for example,
healthcare, clickstream analytics, manufacturing, and
smart mobility.

The contributions of this paper are threefold: (1) a
streaming conformance-checking approach capable of
handling out-of-order events, (2) a novel approach for
adaptive handling of event-time progress in business
process streams, and (3) lifting an existing state-of-the-
art approach to using Apache Flink, allowing for a truly
streaming and scalable conformance checking solution.

The rest of the paper is structured as follows: in Sec-
tion 2, we introduce the background, discussing out-of-
order event arrival in data streams, business process char-
acteristics, and the current state of the art in streaming
conformance checking. In Section 3, we discuss an ex-
isting conformance-checking to be extended to handle
out-of-order event streams. We look at how the method
would handle out-of-order events and how the solution
can adapt based on the frequency of out-of-order event
arrival. Section 4 describes the setting for running the
experiments and the results of the experiments, together
with a discussion of the results. Finally, Section 5 con-
cludes the work.

2. Background

2.1. Out-of-order Event Streams
Modern stream processing frameworks are designed for
analytics that build upon recent data stream aggregates,
especially in cases where real-time results are essential,
such as systems monitoring and decision support [6, 10].
A data stream that features data arriving from multiple
sources or a system built upon distributed systems will
likely display a stream imperfection known as out-of-

Ingestion
time

WnWn-1Wn-2

Event
time 3 4 5 2

3 5 4 2

7 5 2

3 5 6

Figure 2: Example of out-of-order event arrival.

order event arrival [11]. An event is considered out of
order when it arrives from a source after records with
later event timestamps. Many factors can explain why a
stream may have events arriving out of order, the most
typical reasons being network reliability, bandwidth, and
load [12].

Because a data stream is inherently infinite, the mem-
ory requirements on a stream processing system would
be unbounded. Thus, the concept of windows is used
to segment time into smaller units [13]. Windows allow
aggregations and joins of multiple streams within spe-
cific timeframes. In the presence of out-of-order events,
windows need to be maintained and possibly entirely
recalculated. An example of out-of-order event arrival
in the context of windows, and a comparison between
event time and system ingestion time is shown in Fig-
ure 2. In this example, aggregating based on windows
would indicate an increasing trend if looking at ingestion
time (3, 5, 6), while based on the event time, it is actually
a downward trend (7, 5, 2).

Since there is no limit on the potential delay of event
arrival, an additional concept called watermarks is used in
data streams to keep track of event time progress and, es-
sentially, limit the number of windows [14]. This avoids
potential time lag due to outliers or faulty data that could
stretch windows indefinitely. While commonly, water-
marks are based on event time [12], this is complicated
for business process streams due to the characteristics of
business processes and the fact that commonly, a single
process execution does not have direct dependencies to
other concurrent process executions, as we will see next.

2.2. Business Process Characteristics
Data analytics answers questions such as what happened
and when [15]. However, traditional data analytics does
not generally consider data from a business process view-
point. Processes have a defined course of action and
constitute specific activities [1], thus enabling answers
to questions such as why something happened.

Process models describe the behavior allowed in a pro-
cess. Many notations exist with various characteristics,

A

-

B

C E

D

B

E

D

E C

B

E

B

E C

E

C

B

ED

B

E

Figure 3: A trie representing process behavior.

such as Petri Nets, Directly-Follows Graphs, and BPMN
models [1]. Most process models visualize the activities
within the process and allow for behavior such as se-
quences, parallelism, choices, and loops. In the context
of this paper, the method employs the trie data struc-
ture for describing process behavior [16]. A shortcom-
ing of the trie is that it cannot explain parallelism and
loops, thus being an approximation by a sample of the
full process behavior; however, the trie is well suited for
conformance-checking purposes, where the goal is to
compare event data to the allowed behavior efficiently.
An example of the trie sampled from the process model
in Figure 1 is shown in Figure 3.

The actual process executions are stored in event data.
Commonly, a single event contains attributes such as
the case identifier (Case ID), activity, and timestamp. All
activities having the same case identifier make up a trace
– a specific process execution instance. Events can be
stored in static logs, called event logs, or in event streams,
where each event arrives as it occurs in the real world.

2.3. Streaming Conformance Checking
Conformance checking is the examination of process
executions and quantifying the non-conformant behav-
ior compared to the behavior allowed by a process
model [2]. The state-of-the-art output of a conformance
checker is an alignment between the actual behavior
(log moves) and a complete run allowed by the model
(model moves) [17]. Alignments have the benefit of being
more readily interpretable than most other diagnostic
methods and have thus enjoyed wide adoption by the
research community. An example alignment is shown in
Table 2, with the log moves ⟨𝐴,𝐷,𝐸⟩ indicating the ac-
tual process executions and the model moves ⟨𝐴,𝐵,𝐷⟩
indicating a valid path in the model. The skip symbol ≫
indicates non-conformant behavior, typically associated
with a conformance cost.

Traditional conformance checking is done on event
logs extracted from business systems. While such a static
approach is robust, it has some shortcomings; most no-
tably, the data is obsolete by design. Thus, several recent
research efforts have made conformance checking on
event streams viable [3, 18, 5, 4].

log moves A ≫ D E

model moves A B D ≫

Table 2
An example (prefix-)alignment for the trace ⟨𝐴,𝐷,𝐸⟩.

The work in [4] introduced the concept of alignments
to streaming conformance checking by utilizing prefix
alignments. In event streams, it is unknown whether the
process executions have terminated, and a prefix align-
ment has the benefit of not penalizing the observations
by expecting an entire model run. At the same time, a pre-
fix alignment in a streaming setting allows a high level
of interpretability of the discrepancy, which becomes
especially relevant in larger processes.

While the initial prefix-alignment-based approaches
offered guarantees on the exactness of the results, they
suffered from a relatively long latency, rendering the ap-
plicability of the methods challenging for faster event
streams. Thus, new approaches have emerged recently.
In [5], an approximate approach was introduced – IWS –
for calculating prefix alignments on top of event streams.
The algorithm utilizes the trie data structure as the al-
lowed process behavior, improving the calculation time of
alignments in some cases by several orders of magnitude
while introducing only a moderate error compared to the
previous state of the art. The work in [18] built upon the
IWS algorithm, extending the approach with complete-
ness and confidence metrics, allowing for quantification
of warm-starting scenarios and a trace’s potential con-
clusion in a stream. It is the first prefix-alignment-based
method that supports warm-starting scenarios in stream-
ing settings – i.e., cases where the stream started before
the conformance checker began measuring the results.
In the next section, we will look deeper into the IWS
approach to see why we think it is well suited to han-
dle stream imperfections, and we present extensions to
the original algorithm to handle out-of-order events and
to adapt to changing frequency of out-of-order event
arrival.

3. Methodology

3.1. Decay Time: Tracking Event Progress
in IWS

The IWS algorithm [5] allows for fast and approximate
conformance checking while under memory constraints
in a streaming setting. For efficiency, IWS uses the trie

A

-

X B

CE

D

3

3 A

-

X B

CE

D

2

2

3

A

-

X B

CE

D

1

1

2 3

A

-

X B

CE

D

A

X
1

B
2

C3

| A,X| A

| A

| A,X,B

X,B

| B | B,
C

| C

A X B C
A >> B C

A

X

B

A X B
A >> B

A

X

A X
A X

A

A
A

prefix
alignment

trie

arriving
events

decay
time

unprocessed
suffix

EEEE

Figure 4: State buffer evolution with arriving of events. The color coding visually links the arriving event with the state and
its node calculated.

data structure to compare the event data to the expected
process behavior. Due to the nature of business process
executions, it may sometimes be necessary to re-calculate
the optimal route in the trie, and due to erroneous activi-
ties, the method may end up on a wrong path in the trie.
Thus, the IWS approach uses a state buffer for keeping
some past states available for recalculation and a dis-
counted decay time hyperparameter to release old states
from memory. The decay time is calculated based on
the difference between the average length from the root
to a leaf node in the trie, indicating a roughly average
expected trace length, and the current trace length. The
outcome is multiplied with the discounting factor, a value
between 0 and 1 to indicate the maximum percentage
of the average trace length that should be kept in mem-
ory. For a more detailed explanation and formula, we
refer to [5]. Conceptually, the decay time helps the algo-
rithm progress event time on a per-trace basis. Traces
may overlap and have different event execution patterns.
Thus, progressing based on event time, as it is commonly
done with watermarks, would favor traces with rapid ex-
ecutions, while time-consuming process instances would
be quickly forgotten, and the analysis would suffer. Thus,
the decay time setting in IWS is not time-based but event-
based in the scope of a specific trace.

An example of the state buffer and the decay time are
shown in Figure 4. With the arrival of the first event, 𝐴,
two states are initiated, with the state at the root node
holding 𝐴 in its unprocessed suffix. The unprocessed
suffix is used to replay the moves upon the arrival of
the next events. Decay time indicates how many events
within this trace should arrive before the state will be
cleared from memory. The optimal alignment at each
event arrival is also shown. For event arrival 𝐵, there
are actually multiple optimal alignments, but only one
alignment is shown in the figure for illustrative purposes.
Importantly, the state buffer allows the retraction of the
false path traversal to node 𝑋 . This behavior can be

repurposed to implement out-of-order handling into the
algorithm, as will be described in the next section.

3.2. Event Time Store
To handle out-of-order events, the algorithm is extended
by an event time store that keeps the event time of each
arrived event. The event time store is an ordered key-
value pair, with the key denoting the event time and the
value being an array of events that occurred during this
time. For simplicity, we assume that if events have the
same event time, the arrival order is the correct total
order of these events. In other words, the array denotes
the arrival time of the events having this event time.
Formally, assume that 𝒯 is the set of timestamps, ℰ is the
set of events, and ℰ* is the set of all possible words over ℰ ,
then the event store 𝒮 is a function 𝒮 : 𝒯 → ℰ*. As the
decay time releases states from memory, the event time
store releases the earliest events from the event store.

For out-of-order handling, each event time is first com-
pared to the largest key in the event store as events arrive.
If the new event has a timestamp equal to or larger than
the largest key, this event is arriving in order, and pro-
cessing continues as usual. If the largest key is larger
than the timestamp of the arrived event, all the events
with a larger timestamp in the event store are considered
out-of-order events and are piped for a new replay. Fur-
thermore, any states in the state buffer that have played
out any out-of-order events are removed from the buffer,
while the rest of the states remove the unprocessed suffix
that matches the new sequence of events.

To illustrate, let’s consider an example of allowed be-
havior as shown by the trie in Figure 3.

Assume we observed events ⟨𝐴,𝐷,𝐸⟩ with event
timestamps of 1, 3 and 5, respectively. While this trace
could have multiple optimal alignments, for simplicity,
assume we have the same alignment as in Table 2.

If the algorithm now receives event 𝐵 with an event

Event time aware
A B D E
A B D ≫

Non-event time aware
A ≫ D E B
A B D ≫ B

Table 3
Comparison of event time aware and non-aware alignments.

timestamp 2, it first checks the event store to see whether
the events are arriving in order. The event store’s largest
key (5) is larger than the arrived event timestamp (2).
Thus, all events with timestamps larger than 2 are con-
sidered out-of-order, and all of the states in memory that
have played out the events 𝐷 and 𝐸 are removed. The
resulting alignment of the event time aware solution is
shown in Table 3, with a comparison to the original non-
event time aware version that assumes all events arrive
in order, leading to a higher conformance cost.

3.3. Adaptive Event Time Progress
The arrival of out-of-order events cannot be expected
to be static throughout the life of the stream. Thus, ap-
proaches in stream processing have been devised to adapt
the watermarks based on concept drifts – changes in data
arrival frequency and delays [9]. This paper introduces a
novel approach for adaptive event time progress suited
for business process data. Namely, we adopt the Expo-
nentially Weighted Moving Averages (EWMA) metric
from inventory and financial planning [19] and modify
it to work as a sensor for indicating the level of out-of-
orderedness.

To adapt to the stream’s frequency of out-of-order
events, we extend the algorithm with the following
method to modify the discounting factor. With every
new event, we check if the event is out of order. If it is
out of order, we assign it a boolean value of 1 and 0 if it
is not. Then, we increase (or decrease) the discounting
factor using the following formula:

𝑑𝑓 = 𝛼 * 𝑜𝑜𝑜+ (1− 𝛼) * 𝑑𝑓

Where 𝑑𝑓 is the discounting factor, 𝛼 is the smoothing
factor, and 𝑜𝑜𝑜 is the Boolean value of whether it is an
out-of-order event. In our experiments, we found an
alpha of 0.005 to represent an appropriate change in the
discounting factor.

Intuitively, if the proportion of out-of-order events
has increased, then the discounting factor will increase,
thus keeping in memory a larger amount of states and
allowing for improved out-of-order event handling. If
the frequency of out-of-order events decreases, so too
will the discounting factor, releasing the memory strain.
We consider it unlikely that any specific trace would
start exhibiting out-of-order behavior while other traces

would have events in order. Thus, the formula is applied
globally to all traces within the process.

3.4. Implementation
In order to be truly scalable, the original algorithm and
the extensions introduced in this paper are implemented
on top of the Beamline framework [20]. The Beamline
framework utilizes Apache Flink as the runtime engine,
allowing the algorithm’s execution to scale across a clus-
ter of computing nodes. Commonly, each individual trace
in a business process is looked at separately. Thus, parti-
tioning by the case identifier would theoretically allow
scaling of the processing to as many nodes as there are
cases within the process.

The source code for the implementation, together with
instructions for running the experiments and the datasets
used, have been made available on GitHub1.

4. Experiments

4.1. Setting
Several real-life event logs were used to test the handling
of out-of-order events. The logs had to be manipulated
to mimic the out-of-order scenario, as the original logs
were grouped by trace and in temporal order. The logs
used in this paper are well-known real-life process event
logs: BPI 20122, BPI 20173, and BPI 2020 Travel Permits4.

The steps done for running the experiments are shown
in Figure 5. To limit the scope of the experiments, the
logs were first randomly sampled to 100 traces (step 1).
Then, events within a trace were swapped with various
settings ranging from no out-of-order events to fully out-
of-order events (step 2). The settings are described in
Table 4, showing the probability of a swap, i.e., how likely
a single event is to trade places with another event within
the same trace, and max distance, i.e., how far from the
current position can an event be swapped to. For example,
with the swap_01 setting, each event has a one percent
likelihood of getting swapped with a maximum distance
of one, meaning that it will trade places with the event
directly before or after.

The unaltered sampled log was used for generating
the trie – the process model that describes the expected
behavior (step 3). Since the IWS algorithm is capable
of streaming conformance checking, the experiments
were also conducted in a streaming fashion using an
MQTT broker. A Python script published the out-of-
order logs to MQTT topics (step 4), and the algorithm

1https://github.com/DataSystemsGroupUT/
StreamingConformanceChecker

2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
4https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

https://github.com/DataSystemsGroupUT/StreamingConformanceChecker
https://github.com/DataSystemsGroupUT/StreamingConformanceChecker
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

2

3

4

4
4

4

4

2
2

2

65

Algorithm
MQTT
broker

Sampled
log

Out-of-
order logs

1

Original
log

Results
file

Figure 5: Experiment settings

setting
name

probability
of a swap

max distance
of a swap

swap_00 0 0
swap_01 0.01 1
swap_05 0.05 5
swap_10 0.1 7
swap_20 0.2 10
swap_50 0.5 20
swap_99 0.99 99

Table 4
Swap settings.

received the events by subscribing to these topics (step
5). The results of the experiments were outputted to a
file on an event-by-event basis (step 6), measuring the
latency of the algorithm – how long it takes to process
an event – and the cost of the latest alignment of the case
to where this particular event belongs to.

The method was instantiated with the default settings
for the decay time variable: a minimum decay time (𝑑𝑡)
of 3 and a discounting factor (𝑑𝑓) of 0.3. The method was
run with the adaptive add-on from Section 3.3 turned
on (adaptive), turned off (non-adaptive), and the out-of-
order handling turned off (non-aware, i.e., the original
IWS algorithm).

All experiments were executed three times and aver-
aged to mitigate possible runtime outliers impacting the
results. The experiments were conducted on a machine
using Java 11 and Python 3.9. The MQTT broker used
was EMQX 5.1, which was run using Docker.

4.2. Results
4.2.1. Latency.

Figure 6 shows the latency, i.e., the processing time of
the algorithm per event, in milliseconds. For the BPI2012
log, there is almost no difference on processing time for
the various swap variations until 𝑠𝑤𝑎𝑝_50, where the
out-of-order handling shows a clear penalty in terms of
processing time. For the 𝑠𝑤𝑎𝑝_99 variation, the non-
adaptive version is almost an order of magnitude slower
than the non-aware IWS version. The adaptive method

is a further order of magnitude slower than the non-
adaptive method, with values of 1.89 ms/event for non-
aware and 139.32 ms/event for the adaptive methods.

For the other datasets, a similar pattern can be ob-
served. For BPI2017, the difference between non-aware
and out-of-order handling methods is clear starting from
𝑠𝑤𝑎𝑝_50, and for 𝑠𝑤𝑎𝑝_99 the difference between non-
aware and the adaptive method is almost three orders of
magnitude. It can be observed that the execution time of
the non-aware version of the algorithm does not increase
with increased out-of-orderedness – this is because the
algorithm does no recalculation for out-of-order event
arrival and simply assumes that there is a great deal of
non-conformant behavior occurring in the event stream.

For BPI2020 log, the results vary slightly more, with
non-aware and non-adaptive versions being roughly
equivalent for 𝑠𝑤𝑎𝑝_50, and the adaptive method is
faster than the non-adaptive method for 𝑠𝑤𝑎𝑝_99. How-
ever, this may be due to the fact that this is the smallest
of the datasets, as can be seen by the execution time
remaining under 1-2ms per event.

4.2.2. Cost.

A core measure of a conformance checker is the cost. In
this paper, we measure the cost of an alignment, i.e., sim-
ilarly to an edit distance difference between the expected
process behavior and the actual observed behavior. The
benefit of using an alignment is explainability, indicating
clearly which part of the process contains the discrepancy.
It is important to remember that the non-aware version
naively assumes that the order in which the events arrive
is the order in which the events happened, thus nega-
tively impacting the alignment cost because the events
were actually in the correct order but swapped. The cost
results are summarized in Table 5, with color-coding from
green (the best result) to red (the worst result) per log
and swap variation.

An observation can be made that as the amount of
swaps increases, the cost increases. This is true for all
executions, except the adaptive algorithm on BPI2012
that slightly decreases cost for 𝑠𝑤𝑎𝑝_99 compared to

0.00 6.00 12.00

swap_99

swap_50

swap_20

swap_10

swap_05

swap_01

swap_00

139.32

(a) BPI 2012

0.00 20.00 40.00

swap_99

swap_50

swap_20

swap_10

swap_05

swap_01

swap_00 non-aware

non-adaptive

adaptive

1986.63
230.43

(b) BPI 2017

0.00 1.00 2.00 3.00

swap_99

swap_50

swap_20

swap_10

swap_05

swap_01

swap_00

(c) BPI 2020

Figure 6: Latency per event in milliseconds.

𝑠𝑤𝑎𝑝_50. This is due to the randomness of the out-of-
orderedness in the generated event data. In general, the
cost increase is due to the fact that with the swaps, we
have introduced superficial non-conformant behavior. As
was shown in Table 4, the higher swap settings increase
the likelihood and distance of an event displacement, thus
having an increased amount of non-conformant behavior.

Comparing the different versions of the algorithm, it
is clear that the non-aware version severely penalizes
the out-of-order events. The difference between adaptive
and non-adaptive versions is minuscule until 𝑠𝑤𝑎𝑝_20,
when the adaptive versions starts to outperform the non-

adaptive version, and the 𝑠𝑤𝑎𝑝_50 and 𝑠𝑤𝑎𝑝_99 vari-
ations have an almost double the difference in cost, in
favor of the adaptive version.

4.3. Discussion
Based on the results, we can say that we have intro-
duced a streaming conformance-checking approach ca-
pable of handling out-of-order events. Furthermore, it
seems that the adaptive handling of event-time progress
is well suited for adapting to an increased load of out-of-
order event arrivals. In general, the introduced methodol-
ogy seems to work well for handling out-of-order events,
even for streams where the portion of out-of-orderedness
is relatively high. As expected, higher amounts of out-of-
order events impact latency negatively. At the same time,
the cost is greatly improved compared to the original IWS
algorithm, which is unaware of event time. For smaller
business processes, such as BPI2020, the adaptive method
has low latency even with extreme out-of-orderedness.
However, with more complex business processes, such as
BPI2017, the non-adaptive method may be more sensical
from the latency perspective.

Some threats of validation include the fact that only a
few datasets were used in this comparison. Furthermore,
the out-of-orderedness had to be mimicked because no
known process mining logs or streams that exhibit out-
of-order events are publicly available. The swap settings
could be further investigated, as the probabilities and max
distances could increase orthogonally, not in correlation.

One thing to address in future research would be the
fact that if multiple events have the same timestamp, then
the method should not blindly assume that the arrival
order within the timestamp is correct. This is seen, for
example, on the BPI2012 dataset, with many simultane-
ous timestamps. Having a method that would be able to
find the optimal solution from partial order would be a
further improvement to the introduced approach.

Ultimately, as the results are positive, and the latencies
are generally low for most experiments, we believe this
method would be applicable for real-life use cases for
running conformance checking on distributed systems.

5. Conclusion
This paper introduced an approach for handling out-
of-order event arrival in streaming conformance check-
ing. To the best of our knowledge, this is the first
conformance-checking approach that is aware of event
time and, thus, is able to handle such stream imperfec-
tions. The contribution included a novel approach for
adapting the event time progress based on the frequency
of out-of-order event arrival. The approach was imple-
mented using the Beamline framework built on top of

BPI2012 BPI2017 BPI2020

adap. non-adap. non-aw. adap. non-adap. non-aw. adap. non-adap. non-aw.

swap_00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
swap_01 1.1 1.1 1.6 0.0 0.0 3.0 0.0 0.0 0.8
swap_05 1.3 1.3 6.0 1.9 1.9 18.7 1.4 1.4 5.0
swap_10 7.1 7.1 13.7 3.9 4.6 35.6 6.7 6.5 11.5
swap_20 12.1 13.2 24.9 5.3 12.6 66.0 8.8 10.5 18.4
swap_50 22.2 33.0 44.9 10.3 32.9 101.0 9.3 16.9 27.0
swap_99 21.9 38.6 48.7 24.5 44.0 108.4 9.9 20.7 28.2

Table 5
Cost comparison. Average alignment cost per trace.

Apache Flink, making the method easily scalable and able
to handle large data volumes in stream processing.

Future research aims to look at handling partial order
in event streams, as the current method assumes the
arrival order for events having the same event time is the
total order. Furthermore, a more extensive study could
be done of the swap settings in event streams and their
impact on out-of-order event handling.

Acknowledgments
This work was supported by the European Social Fund
via "ICT programme" measure, the European Regional
Development Fund, and the programme Mobilitas Pluss
(2014-2020.4.01.16-0024).

References
[1] W. M. van der Aalst, Process mining: a 360 degree

overview, in: Process Mining Handbook, Springer,
2022, pp. 3–34.

[2] J. Carmona, B. F. van Dongen, A. Solti, M. Weidlich,
Conformance Checking - Relating Processes and
Models, Springer, 2018.

[3] A. Burattin, J. Carmona, A framework for online
conformance checking, in: International Confer-
ence on Business Process Management, Springer,
2017, pp. 165–177.

[4] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen,
W. M. van der Aalst, Online conformance check-
ing: relating event streams to process models using
prefix-alignments, International Journal of Data
Science and Analytics 8 (2019) 269–284.

[5] K. Raun, R. Tommasini, A. Awad, I will survive: An
event-driven conformance checking approach over
process streams, in: DEBS, ACM, 2023, pp. 49–60.

[6] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulk-
ernine, S. Khan, A survey of distributed data
stream processing frameworks, IEEE Access 7
(2019) 154300–154316.

[7] A. Burattin, Streaming process mining, Process
Mining Handbook (2022) 349–372.

[8] A. Awad, M. Weidlich, S. Sakr, Process mining over
unordered event streams, in: 2020 2nd International
Conference on Process Mining (ICPM), IEEE, 2020,
pp. 81–88.

[9] A. Awad, J. Traub, S. Sakr, Adaptive watermarks: A
concept drift-based approach for predicting event-
time progress in data streams., in: EDBT, 2019, pp.
622–625.

[10] S. Zhang, J. Soto, V. Markl, A survey on transac-
tional stream processing, The VLDB Journal (2023)
1–29.

[11] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. John-
son, D. Maier, Out-of-order processing: a new ar-
chitecture for high-performance stream systems,
Proceedings of the VLDB Endowment 1 (2008) 274–
288.

[12] M. Fragkoulis, P. Carbone, V. Kalavri, A. Katsifodi-
mos, A survey on the evolution of stream pro-
cessing systems, arXiv preprint arXiv:2008.00842
(2020).

[13] K. Patroumpas, T. Sellis, Window specification
over data streams, in: International Conference on
Extending Database Technology, Springer, 2006, pp.
445–464.

[14] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, K. Tzoumas, Apache flink: Stream and
batch processing in a single engine, The Bulletin
of the Technical Committee on Data Engineering
38 (2015).

[15] Z. Sun, L. Sun, K. Strang, Big data analytics ser-
vices for enhancing business intelligence, Journal of
Computer Information Systems 58 (2018) 162–169.

[16] A. Awad, K. Raun, M. Weidlich, Efficient approxi-
mate conformance checking using trie data struc-
tures, in: 2021 3rd International Conference on
Process Mining (ICPM), IEEE, 2021, pp. 1–8.

[17] W. van der Aalst, A. Adriansyah, B. van Dongen, Re-
playing history on process models for conformance
checking and performance analysis, WIREs Data
Mining and Knowledge Discovery 2 (2012) 182–192.

[18] K. Raun, M. Nielsen, A. Burattin, A. Awad, C-3PA:
Streaming conformance, confidence and complete-
ness in prefix-alignments, in: International Confer-
ence on Advanced Information Systems Engineer-
ing, Springer, 2023, pp. 437–453.

[19] P. R. Winters, Forecasting sales by exponentially
weighted moving averages, Management science 6
(1960) 324–342.

[20] A. Burattin, Streaming process mining with beam-
line, ICPM Demos (2022).

	1 Introduction
	2 Background
	2.1 Out-of-order Event Streams
	2.2 Business Process Characteristics
	2.3 Streaming Conformance Checking

	3 Methodology
	3.1 Decay Time: Tracking Event Progress in IWS
	3.2 Event Time Store
	3.3 Adaptive Event Time Progress
	3.4 Implementation

	4 Experiments
	4.1 Setting
	4.2 Results
	4.2.1 Latency.
	4.2.2 Cost.

	4.3 Discussion

	5 Conclusion

