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Abstract
Query optimization in JSON database systems lacks the robustness of more mature databases. To address this, we propose an
algebra to manipulate collections of JSON documents. The algebra is defined at 3 levels: the individual document level; the
collection (core) level; and the collection (extended) level. The third level includes operators that can be defined in terms
of the second level, but are useful for optimization. The operators in all levels are tailored to JSON data. We also define
equivalences that allow the generation of multiple (logical) query trees for a single query, therefore providing the basis for
cost-based query optimization for JSON query languages.
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1. Introduction
The popularity of JSON as a data exchange format has
led to the development of several data systems focused
on JSON data (Asterix, MongoDB, CouchDB, and oth-
ers). In spite of this, there is still relatively little work
on query optimization for such systems. Several factors
have contributed to this sparseness of results. First, there
is no standard query language for JSON [1]; each system
offers its own query language. This makes it hard to pro-
pose and analyze general solutions. Another factor is that
JSON, as a data model, presents several issues that are
difficult to deal with. The heterogeneity of the data, and
its mixed structure presents challenges to developing a
query language with formal semantics: JSON is different
from other hierarchical models like nested relations [2]
and XML [1], which means that past research on nested
relational algebra (NRA) or query languages for XML
cannot be used without a substantial revision [2].

The goal of this research is to design a query language
that: a) is closed on JSON (takes only JSON data as input,
produces only JSON data as output); b) is declarative and
has formal semantics; and c) provides a good base for
(logical) query optimization. Our approach is based on
defining an algebraic language, i.e. one that provides op-
erators that take as input (and produce as output) JSON
data. We divide the definition of the algebra in 3 levels:
level 1 manipulates individual documents; level 2 ma-
nipulates collections (defined as multisets of documents),
and level 3 provides additional operators for collections
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that are not primitive (they can be defined using level 2
operators) but are helpful for optimization. Finally, we
provide a set of equivalences for the algebra that can be
used to generate alternative query plans for a given query.
We stress that, even though the operators resemble those
of Nested Relational Algebra, they are defined anew and
tailored to JSON data. Thus, although some of the equiv-
alences shown extend known relational equivalences to
the JSON framework (others are new), they had to be
proven from scratch.

The rest of this paper is structured as follows: Section 2
introduces the new challenges that the JSON data model
presents and overviews related research. In Section 3,
we introduce the 3 algebra levels. Due to lack of space,
levels 1 and 2 are greatly summarized; we expand on
level 3 as it is the most relevant for query optimization.
Next, in Section 4, we present the main properties of the
operators introduced in the previous Section. Finally, we
close the paper with an overview of future research.

2. Background and Related
Research

Even though there are a few differences in notation and
some ancillary aspects, the vast majority of the literature
treats JSON data as an edge-labeled tree structure, with
some constraints imposed by the JSON standard1. The
labels of the outgoing edges of a document node are called
keys, and each subtree represents a value. For leaves, the
value is an atomic value assigned to it; for internal nodes,
the value is either a document or an array. Moreover, all
internal nodes are of document type or of array type.
For a document node, all outgoing edges must be labeled
by distinct strings; For an array node, the outgoing edges
are labeled by “1", “2", “3", . . . and they are considered

1https://www.json.org/json-en.html
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ordered. Finally, the root node is always of document
type. Thus, a JSON document means a document/tree
that respects all the constraints listed here.

Most JSON databases deal with collections of docu-
ments. The definition of ’collection’ is not part of the
JSON standard, and no universal definition seems to ex-
ist. However, most existing systems treat collections as
multisets, that is, groups of documents with no order
and where repetitions are allowed. We will follow this
practice.

Existing approaches to handling JSON data, like us-
ing Nested Relational Algebra (NRA) or XML query lan-
guages like XQuery, are not fully appropriate for JSON,
as JSON is different from nested relations or XML. In the
nested relational model, the set constructor and the tuple
constructor strictly alternate [3], while in JSON, arrays
(the closest construct to nested relations) may contain
documents, atomic values or other arrays. Moreover,
nested relations have a fixed schema, and all tuples in a
relation must follow the schema. XML and JSON, on the
other hand, are semi-structured; but they are different
from each other in several aspects. First, in XML all data is
ordered (although most query languages for XML do not
take advantage of this order), while JSON mixes ordered
and unordered data. Second, JSON is structurally deter-
ministic (in a tree representing a JSON document, each
path from a leaf to the root is unique), while XML, is non-
deterministic [1]. Related to this, JSON deals with groups
of related items by using arrays, while XML, which does
not have arrays, deals with groups of related items by
repeating tags.

In spite of the differences, some systems use NRA to
deal with JSON data, for instance, the Proteus system [4].
However, the lack of a fixed schema leads to problems.
In the nested relational model, we can assign a schema to
a nested relational table 𝑅, 𝑠𝑐ℎ𝑒𝑚𝑎(𝑅). The definition
of the operators in NRA depends on this schema. For in-
stance, the projection 𝜋𝐴1,...,𝐴𝑛(𝑅) is well-defined only
if {𝐴1, . . . , 𝐴𝑛} ⊆ 𝑠𝑐ℎ𝑒𝑚𝑎(𝑅). But given a collection
𝒞, it can be the case that {𝐴1, . . . , 𝐴𝑛} are not attributes
of document 𝑑 for some 𝑑 ∈ 𝐶 -even as they are in
other documents. One must decide what it means to
project on {𝐴1, . . . , 𝐴𝑛} when some of these attributes
are not present -in the extreme case (when no such at-
tribute is present), should we return the empty docu-
ment? In the case of projecting inside arrays, NRA of-
fers no guidance. Other NRA operators are also affected
by this problem. The nest operator is traditionally de-
noted by 𝜈𝐵(𝐴1,...,𝐴𝑛)(𝑅), where 𝐵 /∈ 𝑠𝑐ℎ𝑒𝑚𝑎(𝑅) and
𝐴1, . . . , 𝐴𝑛 ∈ 𝑠𝑐ℎ𝑒𝑚𝑎(𝑅). Intuitively, 𝑅 is ’grouped
by’ all attributes in 𝑠𝑐ℎ𝑒𝑚𝑎(𝑅)−{𝐴1, . . . , 𝐴𝑛}, and on
each group, the values of attributes 𝐴1, . . . , 𝐴𝑛 form a
nested relation called 𝐵. Clearly, this definition does not
work when different documents may have different at-
tributes ’outside’ of𝐴1, . . . , 𝐴𝑛 -or not all of𝐴1, . . . , 𝐴𝑛

may be present. Similar problems exist with the unnest
operator. This in turn causes uncertainty as to which
properties of NRA hold/do not hold when dealing with
JSON. For instance, the unnest of the nest of a relation 𝑅
is supposed to yield 𝑅 back, but this may not be the case
with JSON data: assume a collection with documents
{a: 1, b: "foo"}, {a: 1}
If we nest by attribute ’a’, in most systems we would

get
{a: 1, b:["foo"]}
Since the second document does not contribute to the

result, it is lost; no version of unnest will allow us to
recover the original collection.

Most past research on query languages for XML has
focused on supporting XPath and XQuery. This has in-
fluenced the development of approaches like JSONPath
[5, 6]. Document query languages need paths but tend to
not navigate across axes like XPath. Research effort [1],
which adapts elements of XPath to work on JSON data, is
a step in the right direction, but we believe it is only part
of the answer. One must also have operators that work on
collections of documents. In this sense, our work can be
considered complementary to XPath-based approaches
[5, 6, 1]: the navigation capabilities presented there could
be incorporated into the operators of our language, espe-
cially the selection operator (see next section).2

The rapid development of systems for JSON data has
led to a proliferation of different query languages -in most
cases, without formal semantics. For instance, MongoDB
and CouchDB use their own query languages, defined
informally ([2]). Query optimization on these systems is
mostly rule-based, with limited use of cost-based consid-
erations ([7, 8]). A recent proposal, SQL++ ([9]), has been
adopted by CouchBase and Asterix. SQL++ offers a great
deal of flexibility, as several issues that arise with JSON
data are treated as parameters that can be set by the user.
However, SQL++ assumes a data model that is a superset
of JSON, and it also lacks formal semantics. No query
optimization for SQL++ has been developed so far. Jaql
([10]) is a scripting system designed to run on Hadoop.
Queries are expressed as sequences of statements, and
query optimization is rule-based and guided by heuris-
tics. RumbleDB ([11]) is a system to process JSON queries
using the JSONiq query language. JSONiq [12] provides
a declarative query language based on XQUERY FLWOR
expressions. J-Logic[13] gives a query language based
on non-recursive Datalog. However, this work does not
discuss query optimization. The difficulty of querying
heterogeneous documents, which may cause the user
to write a query with incorrect paths, has motivated re-
search to correct such paths using information about the
data ([14, 15]).
2It is notable that [1] focuses the analysis of MongoDB’s find oper-
ator, while our approach is closer to the more general aggregation
pipeline.



3. A Document Algebra
We adopt the standard definition of JSON data, and see
a JSON document as an edge-labeled tree. We use 𝑑, 𝑑′,
. . . as variables over documents. In the language, paths
in the document/tree are denoted by sequences of labels
(denoting the labels of the edges). Of course, an arbitrary
sequence of labels may not exist in a given tree; in such
cases, we say the path is not realized in the document.
Complete paths (from the root node of the document
to a leaf) are called attributes. We use 𝑝, 𝑝1, . . . , 𝑝𝑛 as
variables over paths, and 𝑃 , 𝑃 ′ as variables over sets
of paths. The function 𝐸𝑣𝑎𝑙(𝑝, 𝑑) provides the value of
path 𝑝 in a document 𝑑. When 𝑝 is not realized in 𝑑,
𝐸𝑣𝑎𝑙(𝑝, 𝑑) returns the special value undefined. When
𝑝 is realized, 𝐸𝑣𝑎𝑙(𝑝, 𝑑) returns the subtree rooted at
the node where the path ends, for internal nodes (note
that this may be a document or an array); when 𝑝 is an
attribute (complete path), 𝐸𝑣𝑎𝑙(𝑝, 𝑑) returns the atomic
value attached to the leaf (this may include null). The
schema of a document 𝑑, in symbols 𝑠𝑐ℎ𝑒𝑚𝑎(𝑑), is the
set of all attributes in the document. A collection, denoted
by ⟨, ⟩, is treated as a multiset of JSON documents. We use
𝒞, 𝒞1, etc. as variables over collections. Since documents
in a collection may have different schemas, we also define:

𝑐𝑜𝑣𝑒𝑟(𝒞) =
⋃︁
𝑑∈𝒞

𝑠𝑐ℎ𝑒𝑚𝑎(𝑑)

When comparing two documents (especially in sec-
tion 4) we use weak equality, which ignores order within
arrays, i.e. two arrays are considered equal if they contain
the same values, even in a different order.

We now describe the three levels of the algebra. Due to
lack of space, for levels 1 and 2 we only describe operators
at an intuitive level and mention only features that are
particular to JSON data. We provide a full definition of
level 3 operators, which are the focus of this paper.3

3.1. First Level: A JSON Datatype
The first level focuses on operators that work on indi-
vidual documents. This level allows us to define JSON
documents as an abstract data type, independent from
the representation of data, be it BISON, Mison [16], Pi-
son [17] or any other schema. The operators are:
• projection: given a set of paths 𝑃 , document 𝑑, the pro-

jection of 𝑃 from 𝑑, denoted 𝜋𝑃 (𝑑), takes the subtree
of 𝑑 formed by all paths with a prefix in 𝑃 . Note the
following, non-standard behavior:
– if some paths are realized and others are not, the

projection picks the paths that are realized in the
document and ignores the rest. In particular, if no

3A full detailed description of all algebra levels is available as a
Technical Report from the authors.

path is realized in the document (𝑃 ∩𝑠𝑐ℎ𝑒𝑚𝑎(𝑑) =
∅), the empty document (denoted {}) is returned.

– This works for complete and incomplete paths. For
instance, in 𝑑 = {𝑎 : 1, 𝑏 : {𝑐 : 2, 𝑒 : 3}}, 𝜋𝑏(𝑑) =
{𝑏 : {𝑐 : 2, 𝑒 : 3}}; 𝜋𝑏.𝑐(𝑑) = {𝑏 : {𝑐 : 2}}.
Also, 𝜋𝑎.𝑔(𝑑) = 𝜋𝑓 (𝑑) = ∅. In particular, we allow
picking (parts of) values from within an array.

• merge(𝑑1, 𝑑2), where 𝑑1 and 𝑑2 are JSON documents,
is an operation that ’puts together’ both documents
under a common root. For instance,
merge({a: 1, b:{c:2, d:3}}, {e: 4, b: [5, 6]}) = {a: 1, b:{c:2, d:3},
e: 4, b: [5, 6]}
In particular, 𝑚𝑒𝑟𝑔𝑒(𝑑, {}) = 𝑚𝑒𝑟𝑔𝑒({}, 𝑑) = 𝑑.
Note that have a technical issue in this operator: if the
same path exists in both 𝑑1 and 𝑑24, the result is not a
legal JSON document. The situation is similar to that
of (nested) relational algebra and Cartesian product,
so we adopt the same solution: we assume a rename
operator allows us to change labels in a path as needed.

• 𝜇𝑝(𝑑) (called the unnest of 𝑑 by 𝑝), where 𝑑 is a JSON
document and 𝑝 is a path. This operator returns a
collection, i.e. a multiset of documents, defined as
follows: if 𝐸𝑣𝑎𝑙(𝑝, 𝑑) is an array, for each value 𝑖
in the array, we create a document 𝑑𝑖 composed of:
all of 𝑑 except the array 𝑝, and the single value 𝑖. If
𝐸𝑣𝑎𝑙(𝑝, 𝑑) is not an array, 𝜇𝑃 (𝑑) = ⟨𝑑⟩.

• 𝜎𝛼(𝑑), where 𝑑 is a JSON document and 𝛼 is a condi-
tion. Conditions are defined as usual: if 𝑝, 𝑝1, 𝑝2 are
paths, 𝑐 a constant, and 𝜃 a comparison operator, 𝑝 𝜃 𝑐,
𝑝1 𝜃 𝑝2, ∃𝑝 are conditions. In addition, conjunction,
disjunction, and negation of conditions are also condi-
tions. 𝜎𝛼(𝑑) returns one of ’true’, ’false’, ’unknown’ or
’undefined’ by evaluating 𝛼 in 𝑑. The evaluation pro-
cess is defined as usual; ’undefined’ is returned when a
path used in𝛼 is not realized in 𝑑 and ’unknown’ when
a path used in 𝛼 evaluates to null. It is here that other
approaches like JSONPath ([6]) could be incorporated
into the language.

3.2. Second Level: Collection
Manipulation

The second level provides basic operations on collec-
tions. The operators include project, select, nest, unnest,
Cartesian product and union, intersection and difference,
suitably modified from their usual meanings in (nested)
relational algebra.5 As in level 1, we only provide a sum-
mary description.

4In fact, it’s enough that a path in 𝑑1 and a path in 𝑑2 start with the
same label.

5A full description of this level (with some added operators like
aggregate and order, which support typical query capabilities) is in
the Technical Report.



• The selection operator, written 𝜎𝛼(𝒞), takes as input a
collection 𝒞 and as parameter a condition 𝛼, defined as
above, and picks documents within 𝒞 that satisfy the
condition (with slight abuse of notation, we use 𝜎 for
this operator, as context will help make clear which
selection we are using). By rejecting documents where
the condition evaluates to ’undefined’ or ’unknown’,
we are following SQL semantics –obviously, this could
be changed if desired.

𝜎𝛼(𝒞) = ⟨𝑑 ∈ 𝒞 | 𝜎𝛼(𝑑) = 𝑡𝑟𝑢𝑒⟩
• The projection operator 𝜋𝑃 (𝒞) takes as input a collec-

tion 𝒞 and as a parameter a set of path expressions 𝑃 .
Again, we abuse the notation to use the same symbol as
the previously defined projection. While a projection
on an individual document may return an empty docu-
ment, the projection on collections returns non-empty
documents only. Not all document systems follow this
semantics;6 but this choice makes some properties that
follow simpler and cleaner.

𝜋𝑃 (𝒞) = ⟨𝜋𝑃 (𝑑) | 𝑑 ∈ 𝒞 ∧ 𝜋𝑃 (𝑑) ̸= {}⟩

• The Cartesian product operator takes as input two col-
lections 𝒞1 and 𝒞2:

𝒞1 × 𝒞2 = ⟨𝑚𝑒𝑟𝑔𝑒(𝑑1, 𝑑2) | 𝑑1 ∈ 𝒞1, 𝑑2 ∈ 𝒞2⟩

Note that we assume renaming as needed. As in the
case of the traditional operator, if either collection is
empty, the product returns the empty collection.

• the unnest operator takes as input a collection 𝒞 and as
parameter a path expression 𝑝. As in the case of selec-
tion and projection, we reuse the symbol for document
unnest.

𝜇𝑝(𝒞) =
⋃︁
𝑑∈𝒞

𝜇𝑝(𝑑)

Note that we use multiset union.

• the nest operator, 𝜈𝑝:𝑝1,...,𝑝𝑛(𝒞), takes as input a col-
lection 𝒞 and as parameter the path expressions 𝑝 :
𝑝1, . . . , 𝑝𝑛. Unlike nesting in NRA, here 𝑝1, . . . , 𝑝𝑛
denote the nesting (common) attributes, and 𝑝, where
we want to place the array created by gathering the
nested (pushed down) attributes -which, in any doc-
ument 𝑑, are all attributes not among 𝑝1, . . . , 𝑝𝑛. To
form groups, all documents 𝑑 that have the same values
for all paths in 𝑝1, . . . , 𝑝𝑛 are gathered. Here, ’same
values’ includes the case where some paths are not re-
alized in a document, so that their values are undefined.
For the purposes of nesting, nulls are all equal, and so
are ’undefined’.7 For instance, if we nest by paths 𝑝1

6For instance, MongoDB allows returning empty documents.
7In the absence of a standard, we follow SQL semantics. An alter-
native is to let the user decide how to deal with such cases, as is
done in [9]; however, such approaches make it very hard to prove
properties.

and 𝑝2, then all documents where both paths are null
form a group; all documents where both paths are not
realized generate another group; all documents where
𝑝1 is not realized, 𝑝1 is realized and has the same value,
form another group, and so on.
To accommodate group by/aggregate queries, we fur-
ther specify what is collected under 𝑝: for an aggregate
function, we need to specify which function and to
which attribute it applies. We assume, when no ag-
gregate is specified, that the rest of the document (all
but 𝑝1, . . . , 𝑝𝑛) is gathered as a value of the array 𝑝.
When a document has no ’rest’, an empty document
is deposited in the array. Finally, we use a special ag-
gregate function ’push’ that concatenates arrays, i.e.
push([2, {a: 1}], ["foo", 4]) = [2, {a: 1}, "foo", 4].

• the union, intersection and difference operators each
take as input two collections 𝒞1 and 𝒞2. These opera-
tors work exactly as in the traditional case for multi-
sets; for instance, the union 𝒞1 ∪𝒞2 is the collection of
documents in either 𝒞1 or 𝒞2, repeated as many times
as the sum of their appearances; similarly for inter-
section 𝒞1 ∩ 𝒞2 and difference 𝒞1 − 𝒞2. Note that, in
the definition of intersection and set difference, ’weak’
equality (where the order within arrays is ignored) is
used to compare documents.8

3.3. Third Level: Macro-operators
The third algebra level contains operators which could be
expressed using the ’basic’ ones, but that we want in our
algebra for optimization reasons. A typical example of
this is the (relational) join. We believe that in document
algebra, several operations are similar to join in this re-
spect. Another important reason to have a separate level
for ’basic’ operations is that having a short list of simple
operators makes finding and proving equivalences much
easier.

The main additional operators are:
• join: as in the relational case, a join is a selection that

follows a Cartesian product. Defining join in this man-
ner settles what is meant exactly by a join with com-
plex elements, regardless of whether the comparison
involves top-level attributes or nested ones.9

𝒞1 ⋊⋉𝛼 𝒞2 = 𝜎𝛼(𝒞1 × 𝒞2)

• semijoin, outerjoin, and antijoin: once joins are defined,
we can also define these closely related operators. An
important difference with the relational case is that
documents in a collection without a match in the other
are simply left as they are in the results -due to the
lack of schema, no padding is necessary. Whenever

8As in the case of Relational Algebra, not all three set operators are
needed; we include all three at this level for simplicity.

9An issue that may introduce ambiguity in versions of NRA ([18]).



𝑐𝑜𝑣𝑒𝑟(𝐶1) ∩ 𝑐𝑜𝑣𝑒𝑟(𝐶2) = ∅, the definition of such
operators is similar to that of (flat, nested) relational
algebra; otherwise, a problem arises that requires care-
ful renaming. In order to avoid this, here we provide a
non-standard definition that avoids the problem:

(left semijoin) 𝒞1⋉𝛼𝒞2 = {𝑑 ∈ 𝒞1 | {𝑑} ⋊⋉𝛼 𝒞2 ̸= ∅}

(left antijoin) 𝒞1 ◁𝛼 𝒞2 = {𝑑 ∈ 𝒞1 | {𝑑} ⋊⋉𝛼 𝒞2 = ∅}
(left outerjoin) 𝒞1 ⊐◁▷𝛼 𝒞2 = (𝒞1 ⋊⋉𝛼 𝒞2)∪(𝒞1◁𝛼𝒞2)

• nest-join (NJ) and nest-outerjoin (NOJ): when there ex-
ists a 1-M relationship between two entities𝐸1 and𝐸2,
document databases offer the possibility of storing the
data using embedding (in which case each document
in 𝐸1 contains an array of 𝐸2 sub-documents) or in
two different collections, one for 𝐸1 and another for
𝐸2, with some attributes serving as ’foreign keys’ to
maintain the links among documents. In the latter case,
a join will put together documents in 𝐸1 with related
documents in 𝐸2, and a nesting by (the attributes of)
𝐸1 will result in a structure similar to the embedding.
The nest-join is an operation that combines both the
join and nesting in a single step; similarly, we define
nest outerjoin The goal here is to provide a target for
optimization, since implementing this operator with a
single algorithm in a single pass over the data can lead
to improved plans.10 Note the similarity with ideas pro-
posed in literature under names like groupjoin ([19]).

𝑁𝐽𝑝,𝑐(𝐶1, 𝐶2) = 𝜈𝑝:𝑐𝑜𝑣𝑒𝑟(𝒞1)(𝒞1 ⋊⋉𝛼 𝒞2)

The nest-outerjoin operator is defined in the obvious
similar manner:

𝑁𝑂𝐽𝑝,𝑐(𝐶1, 𝐶2) = 𝜈𝑝:𝑐𝑜𝑣𝑒𝑟(𝒞1)(𝒞1 ⊐◁▷𝛼 𝒞2)

• narrow selection: when evaluating a condition involv-
ing a single value against an array in document 𝑑, we
offer operators all and some, similar to those of SQL,
to specify how the condition is to be interpreted. The
final result of such a comparison, however, is a single
decision on whether 𝑑 qualifies for the answer. But
what is sometimes wanted is the document 𝑑, but with
only those elements in the array that make the con-
dition true (in other words, the array is filtered). A
narrow selection 𝜎′

𝛼(𝒞), where 𝛼 is a condition as just
described, does exactly this. For instance, in document
{a:1, b:[2, 3, 4, 5]}, narrow selection 𝜎′

𝑏>3

returns11 document {a:1, b:[4, 5]}. It is not hard
to see that 𝜎′ can be defined in terms of basic operators
(first, unnest the input; then apply a (regular) selection;
finally, nest the result):

𝜎′
𝛼(𝒞) = 𝜇𝑝(𝜎𝛼(𝜈𝑝(𝒞)))

10In MongoDB’s aggregate pipeline, only this operator (called
lookup) is supported; join and outerjoin are not.

11Paths with arrays in a condition have an existential reading.

Note that if no element in the array makes the con-
dition true, the whole document is erased from the
result.

• extended nest: sometimes we may want to nest docu-
ments creating several arrays. For instance, in a col-
lection with documents {a:1, b:2, c:3}, {a:1,
b:4, c:5} we may want to nest by ‘a’ and sepa-
rate the ‘b’ and ‘c’ elements, to create result {a:1,
b:[2, 4], c:[3, 5]}. The extended nest opera-
tor allows the specification of more than one nested
component, to achieve exactly this result. It would
seem that this can be achieved with regular nesting, by
first projecting the input collection into {a, b} and
nesting the result by ’a’; projecting again the input
into {a, c} and again nesting the result by ’a’; and
finally joining the two previous results:

𝐸𝜈𝑝,𝑞,𝑟(𝒞) = 𝜈𝑝1:𝑝(𝜋𝑝,𝑞(𝒞)) ⋊⋉𝑝1=𝑝2 𝜈𝑝2:𝑝(𝜋𝑝,𝑟(𝒞))

However, for this to work in general, we need to as-
sume order -which, up to now, we have disregarded,
even inside arrays. To see why, assume collection
with documents ⟨{𝑎 : 1, 𝑏 : 2, 𝑐 : 3}, {𝑎 : 1, 𝑏 :
4}, {𝑎 : 1, 𝑐 : 5}⟩. If we extend nest all documents by
𝑎, collecting 𝑏 and 𝛼 , we want to get the document
{𝑎 : 1, 𝑏 : [2, 4, {}], 𝑐 : [3, {}, 5]}, not {𝑎 : 1, 𝑏 :
[2, 4], 𝑐 : [3, 5]} (among other reasons, it’s the only
way that extended nest and extended unnest will be
inverses of each other). Note that nest will generate
empty documents to mark where values of b or c are
not present, but the resulting arrays need to be ’paired
up’ consistently. Thus, in the definition of this opera-
tor, we assume that nesting has generated an ordered
array, and has done so using the same order in both
nestings.
Note that, for this operator, we require the user to
specify ’grouping’ attributes but also specific ’grouped’
attributes to be collected in the array. It can be shown
that this definition works for an arbitrary number of
arrays.

• extended unnest: similarly, the unnest operator is ex-
tended to maintain symmetry. Note that a regular
unnest, applied twice to the previous result (document
{a:1, b:[2, 4], c:[3, 5]}) in any order (even if
applied separately to projections of the result and then
combined) would yield not the original collection, but
one with 4 documents (with all combinations of values
in ’b’ and ’c’). Thus, the purpose of the extended
unnest is to have an operation that undoes exactly
what the extended nest does: the extended unnest of
{a:1, b:[2, 4], c:[3, 5]} yields collection ⟨
{a:1, b:2, c:3}, {a:1, b:4, c:5} ⟩.

𝐸𝜇𝑝,𝑞,𝑟(𝒞) = (𝜇𝑞(𝜋𝑝,𝑞(𝒞))) ⋊⋉𝑝 (𝜇𝑟(𝜋𝑝,𝑟(𝒞)))

Note that both 𝑞 and 𝑟 must be paths to arrays.



The reason to define these operators is that it is clear
that a direct implementation can yield much better per-
formance than a rewriting. Consider, for instance, the
narrow selection as a one-pass operation on a collection
versus its rewriting. Also, the optimized implementation
of the extended nest could easily enforce the same order
for array formation, as it could do one-pass sorting/hash-
ing over the collection.

Other extended operators can be defined, for instance,
to capture similar capabilities in SQL –like window ag-
gregators or an extension matching the CASE statement.
On top of this, extended operators proposed for the re-
lational case may make sense here –for instance, the 𝜃
MDA (Multi-Dimensional Aggregation) of [20].

4. Properties
First, we observe that the second level of the algebra (and,
by extension, the third) have closure: all operators take
in collections of JSON documents and produce as output
collections of JSON documents. This does not apply to
the first-level operators; however, these operators are not
meant to be composed but used as ’auxiliary methods’ to
manipulate individual documents.

To support query optimization, next we list properties
of individual operators, both in the core (second-level)
and the extended (third-level) of the algebra.12

4.1. Properties of Basic Operators
4.1.1. Projection

First, we observe that our projection does not remove
duplicates. In our algebra, duplicate removal is accom-
plished by using nesting without any aggregate or gather-
ing of results in an array a case denoted by 𝜈∅:𝑝1,...,𝑝𝑛(𝒞).
This simply returns one document for any repeated com-
bination of values of 𝑝1, . . . , 𝑝𝑛 in 𝒞. However, the nest
as defined will produce an empty document if there ex-
ists one or more documents in the input where none of
𝑝1, . . . , 𝑝𝑛 exists. To solve this, we define

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑝1,...,𝑝𝑛(𝒞) = {𝑑 ∈ 𝜈∅:𝑝1,...,𝑝𝑛(𝒞) | 𝑑 ̸= {}}

It follows from this that projecting after a nest can be
done simply by nesting on the projected attributes.

Lemma 4.1. If 𝑃 , 𝑃 ′ are sets of attributes with 𝑃 ⊆ 𝑃 ′,
then 𝜋𝑃 (𝜈∅:𝑃 ′(𝒞)) = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃 (𝒞).

For instance, if we have 𝜋𝑎(𝜈𝑝:𝑎,𝑏(𝐶)) on collection
⟨{𝑎 : 1, 𝑏 : 2, 𝑐 : 3}, {𝑎 : 1, 𝑏 : 2, 𝑐 : 4}⟩, the result
is {𝑎 : 1}, which we could obtain by simply doing a
grouping by 𝑎.

12Unfortunately, due to the lack of space, all proofs are omitted, and
will be available on the Technical Report.

Another basic observation is that if a projection uses
paths that are not realized in any document in a collection,
such paths can be ignored.13 On the other hand, at least
one path must be present for the projection to consider a
document.

Lemma 4.2. For any set of paths 𝑃 = {𝑝1, . . . , 𝑝𝑛},
collection 𝒞,
• 𝜋𝑃 (𝒞) = 𝜋𝑃∩𝑐𝑜𝑣𝑒𝑟(𝒞)(𝒞)
• 𝜋𝑃 (𝒞) = 𝜋𝑃 (𝜎∃𝑝1∨...∨∃𝑝𝑛(𝒞))

The basic properties of projection are given in the next
lemma.

Lemma 4.3. For any set of paths 𝑃 , 𝑃1, 𝑃2, collection 𝒞,
• 𝜋𝑃 (𝜋𝑃 (𝒞)) = 𝜋𝑃 (𝒞).
• If 𝑃1 ⊆ 𝑃2, 𝜋𝑃1(𝜋𝑃2(𝒞)) = 𝜋𝑃1(𝒞).

The behavior of projection with other operators is
described by the next lemma.

Lemma 4.4. For any set of paths 𝑃 , condition 𝛼,
• 𝜋𝑃 (𝒞1 ⋊⋉𝛼 𝒞2) = 𝜋𝑃1(𝒞1) ⋊⋉𝛼 𝜋𝑃2𝒞2, where 𝑃1 =
𝑃 ∩ 𝑐𝑜𝑣𝑒𝑟(𝒞1) and 𝑃2 = 𝑃 ∩ 𝑐𝑜𝑣𝑒𝑟(𝒞2).

• 𝜋𝑃 (𝒞1 ∪ 𝒞2) = 𝜋𝑃 (𝒞1) ∪ 𝜋𝑃 (𝒞2).

Note that 𝜋𝑃 (𝒞1 ∩ 𝒞2) ̸= 𝜋𝑃 (𝒞1) ∩ 𝜋𝑃 (𝒞2), as there
may be 𝑑1 ∈ 𝒞1, 𝑑2 ∈ 𝒞2, 𝑑1 ̸= 𝑑2 such that 𝜋𝑃 (𝑑1) =
𝜋𝑃 (𝑑2). For the same reason, 𝜋𝑃 (𝒞1 − 𝒞2) ̸= 𝜋𝑃 (𝒞1) −
𝜋𝑃 (𝒞2). However, a weaker property holds:
𝜋𝑃 (𝒞1 ∩ 𝒞2) ⊆ 𝜋𝑃 (𝒞1) ∩ 𝜋𝑃 (𝒞2).

The behavior of projection in combination with nest
and unnest is more complex, due to the issue of dupli-
cates. To illustrate, the unnest of document {𝑎 : 1, 𝑏 :
[2, 3]} would create two documents, {𝑎 : 1, 𝑏 : 2} and
{𝑎 : 1, 𝑏 : 3}, so that a projection on 𝑎 would need
to return two copies of {𝑎 : 1} -hence, it cannot be
pushed down. As for nesting, the opposite effect hap-
pens: on the grouping attributes, nesting removes dupli-
cates. For instance, projecting on 𝑎 over the collection
⟨{𝑎 : 1, 𝑏 : 2}, {𝑎 : 1, 𝑏 : 3}⟩ would return two copies of
{𝑎 : 1}; after a nesting by 𝑎, the projection would return
only one copy. Note that both transformations would
work for systems where projection removes duplicates;
hence, we have the following.

Lemma 4.5. For any set of paths 𝑃 , collection 𝒞,
• if 𝑝 /∈ 𝑃 , 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃 (𝜇𝑝(𝒞) = 𝜋𝑃 (𝒞)
• if 𝑝 ∈ 𝑃 , 𝜋𝑃 (𝜈𝑝:𝑝(𝒞)) = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃 (𝒞)

13Note that 𝑃 is set of paths and 𝑐𝑜𝑣𝑒𝑟(𝒞) a set of attributes (com-
plete paths); in the lemmas, their intersection denotes the set of
𝑝 ∈ 𝑃 such that 𝑝 is a prefix of some attribute in 𝑐𝑜𝑣𝑒𝑟(𝒞).



4.1.2. Selection

First, we define an auxiliary concept that will be useful.
Definition 4.6. Let 𝛼 be a condition, then 𝑃𝑡(𝛼) is the
set of paths mentioned in 𝛼:
• 𝑃𝑡(𝑝1𝜃𝑝2) = {𝑝1, 𝑝2}
• 𝑃𝑡(𝑝𝜃𝑐) = 𝑃𝑡(∃𝑝) = {𝑝}
• 𝑃𝑡(𝜙 ∧ 𝜓) = 𝑃𝑡(𝜙 ∨ 𝜓) = 𝑃𝑡(𝜙) ∪ 𝑃𝑡(𝜓)

Lemma 4.7. For any conditions 𝛼1 , 𝛼2,
• 𝜎𝛼1(𝜎𝛼2(𝒞)) = 𝜎𝛼2(𝜎𝛼1(𝒞))
• 𝜎𝛼1∧𝛼2(𝒞) = 𝜎𝛼1(𝜎𝛼2(𝒞))
Lemma 4.8. Let 𝛼, 𝛽 be conditions, with 𝛼 expressible as
𝛼1 ∧ 𝛼2, 𝑃𝑡(𝛼𝑖) ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞𝑖), 𝑖 = 1, 2, then

𝜎𝛼(𝒞1 ⋊⋉𝛽 𝒞2) = (𝜎𝛼1(𝒞1)) ⋊⋉𝛽 (𝜎𝛼2(𝒞2))

An immediate consequence of this lemma is that, if
𝑃𝑡(𝛼) ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞1), 𝜎𝛼(𝒞1 ⋊⋉𝛽 𝒞2) = 𝜎𝛼(𝒞1) ⋊⋉𝛽 𝒞2;
and if 𝑃𝑡(𝛼) ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞2), 𝜎𝛼(𝒞1 ⋊⋉𝛽 𝒞2) = 𝒞1 ⋊⋉𝛽

𝜎𝛼(𝒞2).
Lemma 4.9. For any condition 𝛼, we have:
• 𝜋𝑃 (𝜎𝛼(𝒞)) = 𝜋𝑃 (𝜎𝛼(𝜋𝑃∪𝑃𝑡(𝛼)(𝒞)))
• 𝜎𝛼(𝒞1 ∪ 𝒞2) = 𝜎𝛼(𝒞1) ∪ 𝜎𝛼(𝒞2)

• 𝜎𝛼(𝒞1 ∩ 𝒞2) = 𝜎𝛼(𝒞1) ∩ 𝜎𝛼(𝒞2)

• 𝜎𝛼(𝒞1 − 𝒞2) = 𝜎𝛼(𝒞1)− 𝒞2=𝜎𝛼(𝒞1)− 𝜎𝛼(𝒞2)

Lemma 4.10. Let 𝛼 be a condition with 𝑃𝑡(𝛼) ⊆ 𝑃 .
Then

𝜎𝛼(𝜈𝑝:𝑃 (𝒞)) = 𝜈𝑝:𝑃 (𝜎𝛼(𝒞))

That is, we can push a projection past a nest if all
attributes in the condition are among the grouping at-
tributes. This is similar to HAVING in relational scenarios:
the selection qualifies all tuples in a group, or none.
4.1.3. Union

Union properties are especially important for distributed
computation: a collection distributed over the nodes of a
cluster can be represented as a union of ‘pieces’, so when
an operator can be ’pushed down’ past union, this means
that it can be executed in the nodes of the cluster. In this
context, lemma 4.12 is the basis for a ‘broadband’ join.

Lemma 4.11. For any collections 𝒞1, 𝒞2, 𝒞3,
• 𝒞1 ∪ 𝒞2 = 𝒞2 ∪ 𝒞1.

• (𝒞1 ∪ 𝒞2) ∪ 𝒞3 = 𝒞1 ∪ (𝒞2 ∪ 𝒞3).
Lemma 4.12. Let 𝒞2 =

⋃︀𝑛
𝑖=1 𝒞

𝑖
2; then

𝒞1 ⋊⋉ 𝒞2 = 𝒞1 ⋊⋉
𝑛⋃︁

𝑖=1

𝒞𝑖
2 =

𝑛⋃︁
𝑖=1

(𝒞1 ⋊⋉ 𝒞𝑖
2)

We can push unnest past a union:

Lemma 4.13. For any collections 𝒞1, 𝒞2, path 𝑝,
𝜇𝑝(𝒞1 ∪ 𝒞2) = 𝜇𝑝(𝒞1) ∪ 𝜇𝑝(𝒞2)

As for nest, we can decompose the nesting into two
steps by using the ‘push’ aggregate on the second one
(note that the first nesting creates arrays, so ‘push’ will
combine such arrays).

Lemma 4.14. For any collections 𝒞1, 𝒞2, set of paths 𝑃 ,
𝜈𝑝:𝑃 (𝒞1 ∪ 𝒞2) = 𝜈𝑝𝑢𝑠ℎ(𝑝):𝑃 (𝜈𝑝:𝑃 (𝒞1) ∪ 𝜈𝑝:𝑃 (𝒞2)

As an example, let 𝒞 be the collection
⟨{𝑎 : 1, 𝑏 : 2}, {𝑎 : 1, 𝑏 : 3}, {𝑎 : 1, 𝑏 : 4}⟩
be split into 𝒞1 = ⟨{𝑎 : 1, 𝑏 : 2}, {𝑎 : 1, 𝑏 : 3}⟩ and
𝒞2 = ⟨{𝑎 : 1, 𝑏 : 4}⟩. Then
𝜈𝑝:𝑎(𝒞) = ⟨{𝑎 : 1, 𝑝 : [{𝑏 : 2}, {𝑏 : 3}, {𝑏 : 4}]}⟩;
𝜈𝑝:𝑎(𝒞1) = ⟨{𝑎 : 1, 𝑝 : [{𝑏 : 2}, {𝑏 : 3}]}⟩;
𝜈𝑝:𝑎(𝒞2) = ⟨{𝑎 : 1, 𝑝 : [{𝑏 : 4}]}⟩;
𝜈𝑝𝑢𝑠ℎ(𝑝):𝑎(𝜈𝑝:𝑎(𝒞1), 𝜈𝑝:𝑎(𝒞2)) = ⟨{𝑎 : 1, 𝑝 : [{𝑏 : 2}, {𝑏 :
3}, {𝑏 : 4}]}⟩. Note that this idea can be extended to tra-
ditional (numerical) aggregates, and is similar to the way
many modern distributed systems compute aggregate
queries ([21]).

4.1.4. Nest and Unnest

Nest and unnest are hard to combine; it is not true, in
general, that 𝜈𝑝:𝑝1,...,𝑝𝑛(𝜇𝑝(𝒞)) = 𝒞. To see this, let
𝒞 = ⟨{𝑎 : 1, 𝑏 : [2, 3]}, {𝑎 : 1, 𝑏 : [4, 5]}⟩. Then the
unnest of 𝑏 will produce a collection ⟨{𝑎 : 1, 𝑏 : 2}, {𝑎 :
1, 𝑏 : 3}, {𝑎 : 1, 𝑏 : 4}{𝑎 : 1, 𝑏 : 5}, ⟩, and the nesting
by 𝑎 will produce ⟨{𝑎 : 1, 𝑏 : [2, 3, 4, 5]}⟩. This is a
well-known issue in NRA ([3]). However, it could be the
case that unnesting acts as the inverse of nesting. This
does not happen in JSON query languages with similar
operators (for instance, MongoDB), but the following
states that this property holds in our algebra.

Lemma 4.15. For any paths 𝑝1, . . . , 𝑝𝑛, collection 𝒞,
𝜇𝑝(𝜈𝑝:𝑝1,...,𝑝𝑛(𝒞) = 𝒞

4.2. Properties of Extended Operators
Recall that we use ⋊⋉ for joins, ⊐◁▷ for (left) outerjoin, ⋉
for (left) semijoin and 𝜎′ for narrow selection.

Lemma 4.16. (Joins) Joins are associative and commuta-
tive:

(𝒞1 ⋊⋉ 𝒞2) ⋊⋉ 𝒞3 = 𝒞1 ⋊⋉ (𝒞2 ⋊⋉ 𝒞3)

Lemma 4.17. (Outerjoins, part 1) Whenever𝑃 ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞1),
for any condition 𝛼,
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃 (𝒞1 ⊐◁▷𝛼 𝒞2) = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑃 (𝒞1)

Note that this does not work with projection without
duplicate removal, since the outerjoin may introduce
duplicates whenever a document in 𝒞1 matches more
than one document in 𝒞2.

Following previous work [22], we prove that an outer-
join followed by a rejecting condition can be transformed
into a (inner) join. We say a condition 𝛼 is rejecting on



attribute set 𝑃 if 𝑃𝑡(𝛼) ̸⊆ 𝑃 – since 𝛼 is guaranteed not
to be true when attributes in 𝑃 are not present on the
input.

Lemma 4.18. (Outerjoins, part 2) Let 𝛼 be a condition
with 𝑃𝑡(𝛼) ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞2), 𝛽 an arbitrary condition, then

𝜎𝛼(𝒞1 ⊐◁▷𝛽 𝒞2) = 𝒞1 ⋊⋉𝛽 𝒞2

That is, the outer join becomes a join when a selection
involves attributes from the right side only -as this im-
plies that it ’rejects absents’ on the left side. Technically,
this holds only if 𝑐𝑜𝑣𝑒𝑟(𝒞1)∩𝑐𝑜𝑣𝑒𝑟(𝒞2) = ∅; we assume
renaming when this is not the case.

Lemma 4.19. (Narrow Select, Part I) Narrow select and
unnest commute: for any condition 𝛼,

𝜇𝑃 (𝜎
′
𝛼(𝒞)) = 𝜎𝐹𝑙𝑝(𝛼)(𝜇𝑃 (𝒞))

Narrow select and nest also commute:
𝜎′
𝛼(𝜈𝑝:𝑝1,...,𝑝𝑛(𝒞)) = 𝜈𝑝(𝜎𝐹𝑙𝑝(𝛼)(𝒞))

As an example of the first statement, given collection
𝒞 with single document {𝑎 : 1, 𝑏 : [2, 3, 4]}, 𝜎′

𝑏≥3(𝒞)) =
⟨{𝑎 : 1, 𝑏 : [3, 4]}⟩; and unnesting this yields ⟨{𝑎 : 1, 𝑏 :
3}, {𝑎 : 1, 𝑏 : 4}⟩. If we apply the unnest first to 𝒞, we
get the collection ⟨{𝑎 : 1, 𝑏 : 2}, {𝑎 : 1, 𝑏 : 3}, {𝑎 : 1, 𝑏 :
4}⟩. If we start with this collection and run the same
operators, we have an example of the second property.

For the following property, we first need an additional
definition: given condition 𝛼 , path 𝑝, we say that 𝛼 is
p-centered if all paths in 𝑃𝑡(𝛼) have 𝑝 as a prefix. Then,
the flattening of 𝛼 (in symbols, 𝐹𝑙𝑝(𝛼)) for p-centered
𝛼 , is defined as the condition obtained by substituting
all paths 𝑝.𝑞 ∈ 𝑃𝑡(𝛼) by 𝑞 (i.e. by removing the prefix 𝑝
from all paths in 𝛼). Constants and operators remain the
same.

Lemma 4.20. (Narrow Select, Part II) The narrow se-
lection of a nest-join is the same as the nest-join with
a regular select pushed down: let 𝛼 be a condition with
𝑃𝑡(𝐹𝑙𝑝(𝛼)) ⊆ 𝑐𝑜𝑣𝑒𝑟(𝒞2), then

𝜎′
𝛼(𝒞1𝑁𝐽𝑝,𝛼𝒞2) = 𝒞1𝑁𝐽𝑝,𝛼𝜎𝐹𝑙𝑝(𝛼)(𝒞2)

The same holds true for the nest-outerjoin.

As an example, let 𝑑1 = {𝑎 : 1, 𝑏 : 2} ∈ 𝒞1, 𝑑2 =
{𝑒 : 1, 𝑓 : 4} and 𝑑3 = {𝑒 : 1, 𝑓 : 5} both in 𝒞2; a (left)
nest-join of 𝒞1 and 𝒞2 on condition 𝑎 = 𝑒 will contain
the document {𝑎 : 1, 𝑏 : 2, 𝑒 : 1, 𝑝 : [{𝑓 : 4}, {𝑓 : 5}]}.
A narrow select on 𝑝.𝑓 > 4 will filter the first element
of the array, yielding {𝑎 : 1, 𝑏 : 2, 𝑒 : 1, 𝑝 : [{𝑓 : 5}]}.
However, if we use a regular selection with condition
𝑓 > 4 on 𝒞2, we eliminate 𝑑3, and the (left) nest-join
would combine 𝑑1 and 𝑑2 to produce the same result.

Selection (regular and narrow) can be also pushed past
extended nest and extended unnest, under the right con-
ditions. Extended nest divides the cover of the input
collection into 3 parts: a ‘flat’ part 𝑟, an array 𝑝 and an
array 𝑞. If the condition attributes are all in 𝑟, then the

selection can be pushed down. If the condition attributes
are in 𝑝, then the selection cannot be pushed down as it
may also affect 𝑞 (and the same for condition attributes
in 𝑞). As an example, in a collection with two documents
{a:1, b:2, c:5}, {a:1, b:4, c:6} grouping by
𝑎, collecting 𝑏 and 𝑐, we get
{a:1, b:[2, 4], c:[5, 6]} A selection on 𝑎 af-
fects the whole group, so either both documents in the
input pass it or don’t. A selection on 𝑏, on the other
hand, will take out the accompanying values of 𝑐. For
instance, selecting 𝑏 > 3 in the input collections takes
out the first document, and with it the value 5 of 𝑐. But a
narrow-select on the output collection wouldn’t take out
the 𝑐 value. A similar argument can be made with select
and unnest. The following lemma formalizes this:

Lemma 4.21. Let 𝛼 be a condition with 𝑃𝑡(𝛼) ⊆ 𝑃 .
Then

𝜎𝛼(𝑒𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝒞)) = 𝑒𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝜎𝛼(𝒞))
𝜎𝛼(𝑒𝑢𝑛𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝒞)) = 𝑒𝑢𝑛𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝜎𝛼(𝒞))

The same holds using 𝜎′
𝛼 instead of 𝜎𝛼.

Finally, we check that extended nest and unnest are
‘well-behaved’ extensions of nest and unnest, in the fol-
lowing sense:

Lemma 4.22. Extended unnest and extended nest are
inverses of each other, similarly to unnest and nest:

𝑒𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝑒𝑢𝑛𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝒞)) = 𝒞
𝑒𝑢𝑛𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝑒𝑛𝑒𝑠𝑡𝑃,𝑄,𝑅(𝒞)) = 𝒞

This is enabled by the caveat, noted when defining
the extended nest and extended unnest, that there is an
assumption that order is used to make sure that elements
inside the arrays are matched.

5. Conclusion and Further Work
We have introduced an algebra for JSON documents with
all operators well-defined in the presence of heteroge-
neous documents. We have designed the algebra in 3
levels: a first one with operators to manipulate single
documents; a second one with operators that manipulate
collections of documents; and a third one also at the col-
lection level but with derived operators, which are not
strictly necessary but offer opportunities for optimization.
We have shown algebraic properties that can be used to
optimize queries. Our work is independent of physical
implementation details (JSON formats, algorithms) and
therefore could be adapted by different systems, as far as
they offer a query language that can be translated into
our algebra. We are currently developing a cost-based
query optimization framework for JSON data, centered
around the proposed document algebra. As part of this ef-
fort, we will show that the core aspects of existing query
languages like MongoDB’s aggregate pipeline and SQL++
can be translated into our algebra and that doing so offers
opportunities for cost-based optimization.
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