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Abstract
Data platforms are state-of-the-art solutions to implement data-driven applications and analytics, since they facilitate the
ingestion, storage, management, and exploitation of big data. Data platforms are built on top of complex ecosystems of
services answering different data needs and requirements; such ecosystems are offered by different providers (e.g., Amazon
AWS and Apache). However, when it comes to engineering data platforms, no unifying strategy and methodology is there
yet, and the design is mainly left to the expertise of practitioners in the field. In particular, service providers simply expose a
long list of interoperable and alternative engines, making it hard to select the optimal subset without a deep knowledge of the
ecosystem. A more effective approach to the design starts from the knowledge of the data transformation and exploitation
processes that should be supported by the platform. In this paper, we sketch a computer-aided design methodology and then
focus on the selection of the optimal services needed to implement such processes. We believe that our approach lightens
the design of data platforms and enables an unbiased selection and comparison of solutions even through different service
ecosystems.
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1. Introduction
Digital transformation is one of the most disruptive
trends of recent years. Digitization is perceived as the
most effective solution to innovate every industrial sec-
tor thanks to process automation and the (automatic)
exploitation of the value hidden in data. Such evolution
is pushing information systems towards complex ecosys-
tems of data-oriented services answering different data
needs and requirements.

A data platform is a centralized infrastructure that facil-
itates the ingestion, storage, management, and exploita-
tion of large volumes of heterogeneous data. It provides
a collection of independent and well-integrated services
meeting the end-to-end needs of data pipelines, where:
centralized means that a data platform is conceptually a
single and unified component; independent means that
changes in the implementation of a service do not affect
other services; well-integrated means that services have
interfaces that enable easy and frictionless composition;
and end-to-end means that services cover the entire data
life cycle. Data platforms foster collaboration and shared
governance (being centralized, data is unified following
some integration and it is easier to ensure compliance
with data protection and privacy laws through shared
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security and access control), and scalability (being imple-
mented on a distributed infrastructure, it is easy to add
storage and computing resources as needed).

When it comes to building data platforms, no unify-
ing strategy and methodology is there yet: building data
platforms is mainly left to the expertise of practitioners
in the field. On the one hand, cloud service providers1

offer ecosystems of services composed of many engines
interoperable with each other; however, choosing the op-
timal set of services is hard since multiple solutions could
fulfill the desiderata (e.g., whether disjoint databases and
data warehouses or a single Lakehouse [1] should be
used) and could require vertical knowledge on the design
of data pipelines. On the other hand, several abstract
big data architectures have been introduced (e.g., NIST
[2], Lambda [3], and Kappa [4]). However, while they
provide the necessary functionalities to enable big-data
applications, their implementation and adoption require
to understand which services should be used.

Neither providers of service ecosystems nor abstract
architectures answer a crucial question: given an ecosys-
tem of services and the data-driven processes to support,
which is the optimal subset of services enabling such pro-
cesses? Answering this question is hard since (i) each
provider offers many (overlapping) services, (ii) different
providers offer different service categorizations that can
hardly be mapped together, (iii) the evolution of cloud
ecosystems is fast and stakeholders without vertical tech-
nical knowledge can hardly keep up with the pace, and

1While data platforms are not mandatorily coupled with cloud com-
puting, cloud computing is proving to be a winning business model
since deploying and maintaining such a variety of computational re-
sources and assets requires advanced technical skills that companies
hardly have “in-house”.
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Figure 1: Overview of the methodology

(iv) simply selecting “all” engines is not viable due to cost
and management reasons.

We believe that to ease the data platform design, the
description of data-driven processes should drive such
activity. Indeed, data pipelines are the backbone of a data
platform, determine information-rich representations,
and are congenial to designers since they encode many
constraints on the choices to be made.

The paper is organized as follows: Section 2 sketches
the overall methodology; Section 3 describes the case
study used along the paper; Section 4 and Section 5 de-
scribe and formalize the design steps; and Section 6 ana-
lyzes the related literature. Finally, Section 7 draws the
conclusions and future directions.

2. Methodology Overview
Engineering a data platform is nontrivial. A data plat-
form must be designed upon a principle of modularity
to be extensible with new components and functional-
ities. While it is true that reference architectures exist
(Section 6), not all their modules and services might be
necessary. Indeed, running useless functionalities and
services results in a waste of resources and money (e.g.,
in cloud environments where users pay for the running
time of the allocated resources).

To effectively build a data platform, we propose a
methodology (Figure 1) that involves three types of users:
cloud service providers (IT experts with in-depth knowl-
edge of services available in the ecosystem); data plat-
form designers (consultants or people with expertise in
designing data flows but with no vertical knowledge on
cloud/service ecosystems) and clients asking for the de-
sign of the data platform blueprint (e.g., partners involved
in the same European project).

The methodology aims to assist designers in select-
ing the services necessary to implement the clients’ data
pipelines out of the “unstructured” lists of services pro-
vided by cloud providers.

Here, we sketch the five steps composing the method-
ology, and we mainly focus on steps (4) and (5) in the
remainder of the paper due to space constraints.

(1) Define the service ecosystem.
A cloud service provider identifies una tantum: (i) the
alternative candidate services to compose the blueprint
of the data platform, and (ii) a taxonomy of tags that
describe and characterize such services. The identified
services are organized in a service graph describing the
preferences and dependencies between them as well as
the tags characterizing each service. Following the as-
sumption that cloud service providers do not provide two
identical engines, our guideline in designing the taxon-
omy of tags is to have enough expressiveness (tags) to
distinguish all services (i.e., no two services have exactly
the same tags).

(2) Formalize the requirements through a Data
Flow Diagram.
When building the blueprint of a new data platform,
clients compile questionnaires that collect information
about their data-driven processes and the main steps, sub-
jects, and goals of their analysis. Note that the data plat-
form should support (possibly independent) processes
from multiple clients.

Designers then refine the answers to the question-
naires and formalize the processes into a Data Flow Dia-
gram (DFD); during the process, a few interviews with
the clients might be necessary. We choose the DFD for-
malism since it represents flows of data through an in-
formation system at a high level of abstraction, empha-
sizing the movement and transformation of data while
hiding details such as decision points and interactions:
knowing which repositories and processes compose the
data-driven processes is enough to return a blueprint.
To build the DFD, designers decompose the data flows
into agents, processes, and repositories. Starting from an
aggregated overview, our guideline is to recursively split
candidate processes and repositories until each of them is
characterized by homogeneous tags (e.g., if a repository
contains both unstructured images and relational tables,
split it into two homogeneous repositories).

(3) Enrich the DFD with service tags.
In order to match the DFD with the services deployed
in a cloud ecosystem, the two must share the same char-
acterization. Each process and repository in the DFD is
enriched with the tags from the taxonomies previously
identified by the cloud service provider. To properly char-
acterize each process/repository (agents are not subjects
of enrichment, since they are out of the scope of the plat-
form), clients answer an additional set of questions; we
recall that clients are not required to have vertical knowl-
edge about computer and data science or engineering.
Such questions are defined by the cloud service providers
and driven by the tag taxonomies. Note that since our fi-
nal goal is selecting the most appropriate services, we are



not interested in identifying and tracking the data/pro-
cesses but rather their types and their flows.

Example 1. Given a repository from the DFD, we ask the
question: “What are the main types of collected data?”
□ Sensor data □ Images □ Videos
□ Satellite observations □ Tables
Answering “Satellite observations” tags the repository with
the properties (Volume, Big), (Data Model, File), and (Data
Nature, Raster) since earth observations are data-heavy
files (e.g., around 1 GB for 100 𝑘𝑚2) and tags the process
to download such data as (Collection, Pull) since files are
downloaded from an FTP server [5].

(4) Match the DFD and service graphs.
Once the DFD and service graphs are characterized by
tags from the same taxonomies, it is possible to match
them. A DFD process or repository matches (i.e., can
be implemented by) a service only if the service has the
same or more functionalities to fully implement it.

(5) Select the optimal services.
Out of all the services that are candidate implementations,
it is necessary to select the minimal blueprint of the data
platform that covers all the DFD entities (the fewer the
services, the lower the cost and management efforts).
Furthermore, dependencies and compatibilities between
services have to be taken into account.

3. Case Study: Agritech
Within the Agritech spoke of the NRRP European project
[6], we deploy a data platform supporting prescriptive
analytic tasks from 8 clients (mainly research institutes)
in the field of precision agriculture. We will use this as a
working case study throughout the paper. Here follows
a qualitative description of one of the clients’ data flows
that the platform must support.

Example 2 (Analytics solutions to manage crops for op-
timum quality and sustainability). The analysis entails a
flow that is structured as follows. (i) Data comes from soil
moisture sensor grids, weather stations, and SENTINEL-2
satellites; (ii) Sensor and weather data is uploaded every 15
minutes to the platform, while satellite data is periodically
downloaded; (iii) Soil moisture data is interpolated using
mathematical (e.g., bilinear interpolation) and machine
learning (e.g., neural networks) techniques; (iv) The inter-
polated data is stored in a relational database with a spatial
extension (PostGIS); (v) Vegetation indexes are computed
out of the raw satellite observations and integrated with
enriched sensor data; (vi) Reports are periodically generated
out of enriched data; (vii) Given an optimal soil moisture
matrix, the enriched data is used to decide how much to
irrigate the soil.

After gathering questionnaires from the clients, we
(designers) iteratively refined the interview into a DFD.
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Figure 2: DFD from Example 2

Example 3 (DFD). Figure 2 depicts the tasks from Exam-
ple 2 using the DFD formalism.

• Moisture Sensors and Weather Stations stream
data into the platform, such data is Consumed and
stored in the original format into Sensor Data;

• Satellite images are periodically Downloaded and
stored into Raw Images;

• Sensor Data are Enriched, interpolated, and stored
into Integrated Data;

• Raw Images are used for the computation of vege-
tation indexes and integrated with sensor data;

• Integrated Data are used to fuel a Data Warehouse
through ETL;

• The Irrigation Optimization algorithm controls the
Field Valves installed in Emilia Romagna, Italy.

Following the guidelines, the data collection processes can-
not be merged into a single one since (i) Moisture Sensors
streams data into the platform while Satellite images are
periodically downloaded, and (ii) Sensor Data and Raw
Images cannot be grouped into a single repository since
they contain heterogeneous data types. More details on
such tasks are described in [7, 8].

4. Mapping the Service Ecosystem
Tags (Table 1) are organized as a collection of hierarchies
that can be fueled bottom-up from the documentation
of cloud services providers (i.e., the set of tags that are
attached to each service or that are inferrable through the
service description), and top-down from the literature;
for instance, the big data V’s [9], such as volume (small



Table 1
Examples of taxonomies of tags

Data Model (All) Structured Relational
Multidimensional

Semi-structured Document
Wide-column

Unstructured Key-value
Graph
File (text, binary)

Data Nature (All) Spatial Vectorial
Raster

Temporal

Volume (All) Small
Big

Functionality (All) Landing (Raw)
Archive
Processed

Goal (All) OLAP
Operational
Machine learning Classification

Regression

Collection (All) Pull
Push

Computing (All) Batch
Mini-batch
Streaming

to big), variety (structured to unstructured), and velocity
(low to high).

Definition 1 (Hierarchy). A hierarchy ℎ is a taxonomy
of categorical values 𝐷𝑜𝑚(ℎ). ≥ℎ is the partial order
that defines the taxonomy. We denote with 𝐻 the set of
hierarchies.

Example 4 (Tags and hierarchies). Table 1 depicts an
example of hierarchies 𝐻 = {Data Model,Volume, ...}.
In the partial order of the hierarchy ℎ = Data Model it is,
for instance, Relational ≥Data Model Structured ≥Data Model

Data Model (All).

The services available on a specific ecosystem differ
for each provider, and no single and shared organization
of services is available. Table 2 shows an example of
services from the AWS website (as of November 2023).

While a plethora of services is available, there is no
necessity to consider all of them at once. Indeed, it is
important that the considered services cover the “basic”
functionalities necessary to run a data platform such as
the ones proposed by NIST [2], among them, storage and
processing engines.

Also, it is necessary to consider the dependencies be-
tween services (i.e., whether the adoption of a service
requires another) and preferences in their choice (e.g.,
due to differences in performance reasons). This is why
we map the services into a directed property graph.

Definition 2 (Directed property graph). A directed prop-
erty graph is a tuple 𝐺 = (𝑁,𝐴, 𝑃, 𝐿) where 𝑁 =

{..., 𝑛𝑖, ...} is a finite set of nodes, 𝐴 = {..., 𝑎𝑖𝑗 , ...}
is a finite set of arcs connecting nodes 𝑛𝑖 and 𝑛𝑗 , 𝑃 =
{..., (ℎ, 𝑣), ...} is a set of key-value properties withℎ ∈ 𝐻
and 𝑣 ∈ 𝐷𝑜𝑚(ℎ), and 𝐿 is a set of labels. 𝑝𝑟𝑜𝑝𝑠 :
(𝑁 ∪ 𝐴) → 𝑃 returns the properties of a node or arc.
𝑙𝑎𝑏𝑒𝑙 : (𝑁 ∪𝐴) → 𝐿 returns the labels of a node or arc.

Definition 3 (Service graph). A service graph is
a directed property graph 𝐺𝑆 where nodes are la-
beled as Service, while arcs are alternatively labeled as
{Requires, IsCompatible}.

The semantics of the labels is the following:

• Service: is any engine from the service ecosystem;

• Requires: represents whether a service mandato-
rily relies on another;

• IsCompatible: represents whether a service na-
tively interfaces with another (i.e., their interac-
tion is supported by default and does not require
custom/additional libraries or connectors).

Cloud service providers can optionally tag some services
with the property (Preferred, True) to specify whether a
service should be considered more than others.

Example 5 (Service graph). Examples from the service
graph 𝐺𝑆 built out of Table 2.

𝑁 = {𝑛1, 𝑛2, 𝑛3, 𝑛4, ...}, 𝐴 = {𝑎23, 𝑎34, ...}
𝑛1 = S3, 𝑛2 = GeoServer, 𝑛3 = EC2, 𝑛4 = EMR

𝑙𝑎𝑏𝑒𝑙(𝑛1) = Service, 𝑙𝑎𝑏𝑒𝑙(𝑎23) = Requires

𝑙𝑎𝑏𝑒𝑙(𝑎41) = IsCompatible

𝑝𝑟𝑜𝑝𝑠(𝑛1) = {(Data Model, File),

(Volume,All), (Preferred,True)}
𝑝𝑟𝑜𝑝𝑠(𝑛2) = {(Data Model, File), (Data Nature,Raster)}

GeoServer requires EC2 since it is deployed on it, EMR
is compatible with S3 since it can natively read from and
write to the object storage.

5. Process-Driven Match and
Selection

Given the DFD describing the clients’ analysis2, it is first
necessary to match such graph with the service graph
and then select the optimal subset of services. We recall
that the DFD is enriched with tags identified by the cloud
service provider (Table 1).

2In this paper, we mainly focus on the optimization of the platform
design rather than on how, starting from questionnaires, designers
refine the DFD of such flows.



Table 2
An excerpt of services from the Amazon AWS ecosystem (from https://aws.amazon.com/big-data/datalakes-and-analytics)

Solution areas Use cases AWS services

Advanced analytics Interactive analytics Athena
Big data processing EMR
Data warehousing Redshift
Real-time analytics Managed Service for Apache Flink
Operational analytics OpenSearch Service
Dashboards and visualizations QuickSight
Visual data preparation Glue DataBrew

Data management Real-time data movement Managed Streaming for Apache Kafka, Kinesis Data Streams, Kinesis Data Firehose, Glue
Data governance DataZone, Glue, Entity Resolution, Lake Formation, S3, Data Exchange, Clean Rooms
Object storage for data lakes S3, Lake Formation
Backup and archive for data lakes S3 Glacier, Backup
Data catalog Glue, Lake Formation
Third-party data Data Exchange, Clean Rooms

Machine learning Frameworks and interfaces Deep Learning AMIs
Platform services SageMaker

Definition 4 (Data Flow Diagram). A Data Flow Dia-
gram (DFD) is a directed property graph 𝐺𝐷 where nodes
are alternatively labeled as {Agent,Repository, Process},
while arcs are labeled as Flow. Arcs must connect with at
least one node with label Process.

The semantics of the labels is the following:

• Agent: an external entity that communicates with
the system and stands outside of the system;

• Process: transforms inputs to outputs;

• Repository: stores data for later use;

• Flow: shows the transfer of data from one part of
the system to another.

Example 6 (DFD). Examples from the DFD 𝐺𝐷 from
Figure 2.

𝑁 = {𝑛1, 𝑛2, 𝑛3, ...}, 𝐴 = {𝑎12, ...}
𝑛1 = Consume, 𝑛2 = Sensor Data, 𝑛3 = Raw Images

𝑙𝑎𝑏𝑒𝑙(𝑛1) = Process, 𝑙𝑎𝑏𝑒𝑙(𝑛2) = Repository

𝑙𝑎𝑏𝑒𝑙(𝑛3) = Repository, 𝑙𝑎𝑏𝑒𝑙(𝑎12) = Flow

𝑝𝑟𝑜𝑝𝑠(𝑛2) = {(Data Model,Relational),

(Data Nature,Vectorial)}
𝑝𝑟𝑜𝑝𝑠(𝑛3) = {(Data Model, File),

(Data Nature,Raster)}

5.1. Match the DFD and Service Graphs
Given the service graph and the DFD, we can automati-
cally join them by matching their tags.

Definition 5 (Node Match). Given a DFD and a service
graph, a node 𝑛𝐷 of the DFD matches a node 𝑛𝑆 of the
service graph if each property in 𝑝𝑟𝑜𝑝𝑠(𝑛𝐷) matches a
property in 𝑝𝑟𝑜𝑝𝑠(𝑛𝑆). A property (ℎ𝑖, 𝑣𝑖) matches an-
other property (ℎ𝑗 , 𝑣𝑗) if ℎ𝑖 = ℎ𝑗 and 𝑣𝑖 ≥ℎ 𝑣𝑗 .
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Figure 3: Matching the DFD (white) and service (blue) graphs;
in bold the services that have been selected as the optimal
blueprint for the data platform design

A match represents whether a DFD node can be imple-
mented using a specific service (solid arcs in Figure 3); i.e.,
services that have the same or more generic values for the
properties specified in the DFD node. For instance, a DFD
repository tagged as Relational could be implemented by
services supporting Relational or all Structured data. If
no match is found for a DFD node, we force the match to
a default (e.g., to a virtual machine where any function-
ality can be implemented) ensuring that all DFD nodes
have at least one match.

Example 7 (Matched graph). With reference to Figure 3,
given the node Raw Images from the DFD, and the nodes
S3 and GeoServer from the service graph

𝑝𝑟𝑜𝑝𝑠(Raw Images) = {(Data Model, File),

(Data Nature,Raster)}
𝑝𝑟𝑜𝑝𝑠(GeoServer) = {(Data Model, File),

https://aws.amazon.com/big-data/datalakes-and-analytics


(Data Nature,Raster)}
𝑝𝑟𝑜𝑝𝑠(S3) = {(Data Model, File),

(Volume,All)}

Raw Images can be implemented by GeoServer but not
in S3 since the former is natively capable of managing
geographical raster images (while S3 would only provide
storage for the images).

Definition 6 (Matched graph). Given a DFD
𝐺𝐷 = (𝑁𝐷, 𝐴𝐷, 𝑃𝐷, 𝐿𝐷) and a service graph
𝐺𝑆 = (𝑁𝑆 , 𝐴𝑆 , 𝑃𝑆 , 𝐿𝑆), a matched graph
𝐺𝑀 = (𝑁𝐷 ∪ 𝑁𝑆 , 𝐴𝐷 ∪ 𝐴𝑆 ∪ 𝐴,𝑃𝐷 ∪ 𝑃𝑆 , 𝐿𝐷 ∪
𝐿𝑆 ∪ {ImplementedBy}) is a directed property graph
obtained as the union of 𝐺𝑆 and 𝐺𝐷 . 𝐴 is an additional
set of arcs, one for each node match between 𝑛𝐷 ∈ 𝑁𝐷

and 𝑛𝑆 ∈ 𝑁𝑆 . Arcs in 𝐴 are labeled as ImplementedBy.

The result of a match is a graph that is composed of
the union of the nodes, and the union of the arcs plus
additional arcs that represent candidate implementations
for the DFD processes/repositories. The label Implement-
edBy represents whether a DFD process or repository
can be implemented by a specific service.

Sub-graphs that are not candidate implementations nor
required by candidate implementations can be pruned a
priori (gray in Figure 3).

Example 8 (Matched graph). Figure 3 depicts an excerpt
of the matched graphs for the DFD from Figure 2; for the
sake of clarity, not all the arcs have been presented. Nodes
from the DFD have white background, while services are
represented in blue. Solid arrows represent arcs labeled
as ImplementedBy (e.g., Consume can be implemented
by either Lambda or Kinesis). Dotted arrows represent
arcs labeled as IsCompatible (e.g., SageMaker reads from
and writes to Redshift). Dashed arrows represent arcs
labeled as Require (e.g., GeoServer requires EC2 since it
is deployed on it). Churn Prediction and Athena can
be discarded a priori since they are not reachable from any
DFD entity (i.e., they are neither candidate implementations
nor required by other services).

5.2. Select the blueprint
Out of the set of all possible matching services, only
some of them must be selected such that (i) all the DFD
repositories and processes are covered (agents are out of
the scope of the platform) and (ii) the amount of services
is minimized. The latter is an optimization goal that
captures both the needs to minimize the economic cost of
the platform and its management complexity. However,
selection is not an easy task. For instance, some DFD
entities can be implemented atop alternative services (e.g.,
a data lake that is implemented either on S3 or HDFS), and
some services are meaningful only if they cover at least

two DFD entities (e.g., we use a Lakehouse to replace
both a data lake and a data warehouse). Additionally,
the optimization must be compliant with the following
constraints.

1. Coverage: all processes and repositories in the
DFD must be covered.

2. Dependency: if a service is selected, all its required
services must be (recursively) selected too (e.g.,
Geoserver is deployed on EC2).

3. Compatibility: a service can be selected only if it
is compatible with the services selected for the
previous (if existing) and following (if existing)
nodes in the DFD.

4. Preference: services marked as preferred should
have more chances to be selected (for instance,
preferences can be expressed for services entail-
ing lower costs or higher performance).

5. External pattern injection: additional (architec-
tural) constraints could be injected to force some
service selection (e.g., use only services support-
ing Java language in compliance with legacy ser-
vices); this can be implemented by pruning the
unfeasible services from the matched graph.

Given a matched graph 𝐺𝑀 = (𝑁,𝐴, 𝑃, 𝐿), the selec-
tion of the optimal blueprint can be modeled as a linear
programming problem inspired by the standard facility
location problem. The formulation in Figure 4 reads as
follows.

(1) The optimization function minimizes the
weighted sum of the selected services. Weights
𝑤𝑖 specify preferences for services 𝑠𝑖.

(2) 𝑠𝑖 are binary variables modeling services. 𝑠𝑖 = 1
if the service is selected, 0 otherwise.

(3) 𝑠𝑖𝑗 are binary variables modeling the services
implementing DFD processes and repositories.
𝑠𝑖𝑗 = 1 if 𝑛𝑖 ∈ 𝑁 s.t. 𝑙𝑎𝑏𝑒𝑙(𝑛𝑖) ∈
{Repository, Process} is implemented by 𝑛𝑗 ∈
𝑁 s.t. 𝑙𝑎𝑏𝑒𝑙(𝑛𝑗) = Service.

(4) Binding variables 𝑠𝑗 and 𝑠𝑖𝑗 : service 𝑠𝑗 is selected
if it implements (𝑠𝑖𝑗 = 1) a DFD node 𝑛𝑖 ∈ 𝑁
s.t. 𝑙𝑎𝑏𝑒𝑙(𝑛𝑖) ∈ {Repository, Process}.

(5) Coverage constraints: every repository and pro-
cess must be implemented by exactly one service.

(6) Dependency constraints: if a service is selected,
all the services it depends on must be selected.



𝑚𝑖𝑛
∑︁
𝑖

𝑤𝑖𝑠𝑖 (1)

𝑠.𝑡. 𝑠𝑖 ∈ {0, 1} for all 𝑛𝑖 ∈ 𝑁, 𝑙𝑎𝑏𝑒𝑙(𝑛𝑖) = Service (2)

𝑠𝑖𝑗 ∈ {0, 1} for all 𝑎𝑖𝑗 ∈ 𝐴, 𝑙𝑎𝑏𝑒𝑙(𝑎𝑖𝑗) = ImplementedBy (3)

𝑠𝑗 ≥ 𝑠𝑖𝑗 for all 𝑠𝑖𝑗 (4)∑︁
𝑗,𝑙𝑎𝑏𝑒𝑙(𝑎𝑖𝑗)=ImplementedBy,𝑎𝑖𝑗∈𝐴

𝑠𝑖𝑗 = 1 for all 𝑛𝑖 ∈ 𝑁, 𝑙𝑎𝑏𝑒𝑙(𝑛𝑖) ∈ {Process,Repository} (5)

𝑠𝑗 ≥ 𝑠𝑖 for all 𝑎𝑖𝑗 ∈ 𝐴, 𝑙𝑎𝑏𝑒𝑙(𝑎𝑖𝑗) = Requires (6)

𝑠𝑖𝑗 + 𝑠𝑘ℎ ≤ 1 for all (𝑎𝑖𝑘 ∈ 𝐴 s.t. 𝑙𝑎𝑏𝑒𝑙(𝑎𝑖𝑘) = Flow), (𝑎𝑗ℎ /∈ 𝐴 s.t. 𝑙𝑎𝑏𝑒𝑙(𝑎𝑗ℎ) = IsCompatible) (7)

Figure 4: Selecting the minimal set of services considering coverage (5), dependency (6), and compatibility (7) constraints

(7) Compatibility constraints: if two services are in-
compatible, they cannot be selected to implement
two consecutive processes/repositories linked
through a data flow in the DFM.

We implemented our approach (available at https://
github.com/big-unibo/DataPlatformDesign) in Python
and we leverage the CPlex library to effectively solve the
optimization. As to preferences, we set

𝑤𝑖 =

{︃
0.5 if (Preferred,True) ∈ 𝑝𝑟𝑜𝑝𝑠(𝑛𝑖)

1.0 otherwise

Example 9 (Selection). Given the matched graph from
Figure 3, the optimal blueprint of the data platform is rep-
resented by the services highlighted in bold (with a cost
of 6.5), namely Kinesis, PostGIS, EC2, SageMaker,
GeoServer, S3, Redshift. PostGIS has been selected
since it is the only available implementation for Sensor
Data, while EC2 has been selected since it is required by
PostGIS (similarly for GeoServer). SageMaker has
been selected and preferred to Lambda, EMR, and Glue
since four DFD processes can be implemented on it.

6. Related Work
Understanding which “building blocks” should be part
of a data platform is nontrivial.

Several functional architectures (system representa-
tions that focus on its functions and their interactions)
have been proposed. NIST designed the Big Data
Reference Architecture [2] which comprised vendor-,
technology- and infrastructure-independent logical func-
tional components that are necessary for managing and
processing big data (data provider, data consumer, sys-
tem orchestrator, big data application provider, and big
data framework provider). Lambda [3] is an architec-
ture designed to handle massive quantities of data by
taking advantage of both batch and stream-processing
methods. Kappa [4] overcomes some limitations (e.g.,

“redundant” batch and streaming implementations) of
Lambda by using a pure streaming approach with a sin-
gle code base. While these architectures define functional
components necessary for (big) data platforms, they are
abstract and do not address the problem of selecting the
optimal services necessary for designing, implementing,
and deploying working data platforms.

Cloud service providers such as Amazon [10], Google
[11], and Microsoft [12] provide ecosystems of indepen-
dent and interoperable services. While ecosystems enable
easy deployment of data pipelines, choosing the optimal
services is hard: (i) each provider offers different services,
(ii) a shared categorization and organization of services
is missing, and (iii) it is hard for the users to understand
which services are needed based on their data-driven
processes [13]. Some multi-objective optimization tech-
niques have been proposed, where users express require-
ments and preferences (e.g., minimal QoS) about single
services [14, 15, 16], cloud deployment models (public
and private) [17], and service providers [18, 19]. Finally,
domain languages and ontologies have been introduced
(e.g., [20]) to enable some service composition (e.g., [21]).

With respect to these works, the novelties of our ap-
proach are (i) the introduction of a methodology to en-
able data platform design, (ii) a computer-aided approach
to support designers in their choices, and (iii) process-
driven optimization to select the optimal blueprint out
of many data flows, even from multiple stakeholders.

7. Conclusion and Future Works
The design of data platforms is a nontrivial task. In this
paper, we have introduced a methodology to aid design-
ers in selecting the optimal services (out of a service
ecosystem) supporting data-driven processes from multi-
ple stakeholders (e.g., partners in a research project), and
we have addressed such selection as a facility location
optimization problem.

Although our implementation delivered a valuable

https://github.com/big-unibo/DataPlatformDesign
https://github.com/big-unibo/DataPlatformDesign


blueprint, the result lends itself to improvement in multi-
ple aspects. Expressivenes: matching and selection should
consider more complex architectural patterns (Lakehouse
to replace both data lakes and warehouses) as well as
support additional constraints (e.g., consider only some
service vendors or programming languages). Resource
provisioning: additionally to selecting the services, a com-
plete approach should also consider how many instances
of a service are required (to do so, a cost model should be
studied). Metadata integration: while catalog and meta-
data management services do not directly introduce func-
tionalities for data transformation and exploitation, the
design should also recommend services helping in the
management of the platform itself [22]. User evaluation:
the produced blueprints should be compared with the
ones recommended by expert designers.
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