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Abstract
Shapelet based classification is a promising time series classification approach, which usually results in accurate predictions
that are competitive with sophisticated and more complex classifiers, while it provides interpretability for the predictions. An
important step in classification using shapelets is to select candidate subsequences based on some evaluation criteria. We
adapt the Silhouette score, used originally in the context of clustering, in order to rank and select shapelet candidates for
classification. We demonstrate empirically that our approach is faster compared to other methods in the literature, while
being competitive in terms of the accuracy of classification. In particular, when the number of shapelets used for classification
is small, our approach is superior to all other evaluation methods.
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1. Introduction
Time series classification (TSC) is a very active research
area, where the aim is to assign a class label from a finite
set to a high dimensional data point. The main differ-
ence with classic tabular data classification is that the at-
tributes of the time series are ordered and the ordering of
the points is crucial, because it defines the local behaviors
of the time series. Different models have been developed
based on different techniques such as Dictionaries [1, 2],
Intervals [3], Distances [4] and many others [5].

In 2009, a technique called Shapelets have been intro-
duced by Ye and Keogh [6]. This technique is based on
finding local patterns where similar patterns appear in
other time series from the same class. This has many ben-
efits since it deals with local patterns of the time series
rather than the global features of the time series. Another
benefit is interpretability. Once a discriminating subse-
quence is found, it can be traced back to the original time
series. This intuitive and simple approach turned out to
be very effective in many time series mining tasks, and
in particular for classification. However, it came with
a computational challenge: a naive approach to find a
shapelet needs to consider 𝒪(𝑛2𝑚) candidates, resulting
in an 𝒪(𝑛3𝑚2) time complexity, where 𝑛 and 𝑚 are the
length and number of time series, respectively.

To improve the running time, most algorithms use
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some function to evaluate shapelets and to prune com-
putations based on this evaluation. For instance, in [6]
the authors evaluate the quality of shapelets using the
information gain, which is based on the Shannon en-
tropy. If the upper bound of the gain is less than the best
shapelet found so far, the computation stops and the next
candidate is considered. The authors also use early aban-
doning while computing the distances. Even though the
time complexity remains the same, the pruning improves
the running time significantly.

The main drawback of information gain is the running
time, since it needs to evaluate many splitting points
and compute the gain for each. Hills et al. [7] introduce
different measures for evaluating shapelets, which are
faster to compute compared to the information gain.

To address the above-mentioned issues, we introduce
a new evaluation method for shapelets based on the Sil-
houette score [8], which is both fast and results in higher
accuracy. We adapt the Silhouette score, which is orig-
inally used to evaluate the quality of clusters and the
fitting of each object in a cluster, to the evaluation of
shapelets, where we consider the clusters as the distances
between the shapelets with time series from the same and
from different classes. We select only those shapelets that
contribute positively according to the Silhouette score.
Our proposed evaluation method is faster and more ac-
curate than the existing approaches, especially when the
number of shapelets used for the classification is small.

The rest of this document is organized as follows. In
Section 2 we review related works. Section 3 introduces
some notations and background necessary for the rest
of the paper. Section 4 introduces our approach and
compares it to existing methods. In Section 5 we ex-
perimentally compare our approach with others using
datasets from the UCR archive [9]. Finally, in Section 6
we summarize the findings and discuss future work.
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2. Related Work
Geurts [10] demonstrated that many time series classi-
fication problems can be solved by using local patterns,
and introduced a technique to find and combine local
patterns in order to classify time series. Subsequently,
Ye and Keogh [6] introduced shapelets, which is a time
series primitive that solves many time series data mining
tasks, including time series classification. Furthermore,
this technique made it possible for domain experts to
interpret the outcome of the classification. A shapelet is
a subsequence of a time series that maximally predicts
a target variable. For the computation of shapelets, Ye
and Keogh used exhaustive search evaluating all possible
subsequences. While being accurate, this approach is
computationally exhausting. Therefore, the authors in-
troduced early abandoning while the distances between
subsequences are computed. They also adopted the infor-
mation gain based on entropy as a criterion to stop the
computation of subsequence distances, once it is clear
that a subsequence cannot achieve a higher ranking com-
pared to other subsequences already evaluated.

In the following, many techniques were proposed to
reduce the computation time. For instance, Mueen et
al. [11] cached in memory some statistics and reused
them to speed up the computation. Rakthanmanon
and Keogh [12] used symbolic aggregate approximation
(SAX) to first reduce the dimensionality of the time se-
ries. Then, the data is hashed, and the collision history
is used for the identification of shapelets. Ji et al. [13]
reduced the computation by first selecting a small subset
of representative time series. Then, instead of consid-
ering all possible subsequences, only subsequences that
contain local farthest deviation points are considered,
based on the time series representation error. These two
optimizations improved the computation by three orders
of magnitude. Another widely used approach by Renard
et al. [14] is to randomly select shapelets from the set of
possible subsequences.

Despite the many works on time series classification
using shapelets, surprisingly few works have focused on
the evaluation metrics for the quality of the shapelets. In
the paper introducing shapelets, Ye and Keogh [6] used
the information gain to assess the quality of a candidate,
and the gain was used as a splitting criterion for a deci-
sion tree classifier. Later on, Hills et al. [7] introduced
F-statistic, which originally was proposed for the anal-
ysis of variance, Kruskal-Wallis and Moods medians, in
order to evaluate and rank the shapelet candidates. In
the same work, they also introduced a technique to trans-
form datasets from the time domain to a feature domain
spanned by the distances between the shapelets and the
time series. The authors showed that (a) the transfor-
mation did not affect the classification accuracy and (b)
that when using different classifiers instead of a decision

tree, the accuracy of the classification increased. Our
contribution is along the same lines as Hills et al., where
we use the Silhouette score [8] to assess the quality of
shapelets.

3. Background
In this section we provide notations and some back-
ground necessary for the rest of the paper.

3.1. Notation
A time series 𝑇 is an ordered list of 𝑛 real-valued vari-
ables 𝑇 = 𝑡1, … , 𝑡𝑛. A subsequence of 𝑇 of length 𝑙, de-
noted by 𝑇𝑖,𝑙, is a sequence of 𝑙 consecutive values starting
from 𝑖, i.e., 𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑖+𝑙−1. To compute the distance be-
tween two subsequences 𝑆 and 𝑄 of length 𝑙, we use the
z-normalized Euclidean distance 𝑑, defined as

𝑑(𝑆, 𝑄) =
√

𝑙
∑
𝑖=1

(
𝑆𝑖 − ̄𝑆
𝜎𝑆

−
𝑄𝑖 − ̄𝑄
𝜎𝑄

)
2
,

where ̄𝑆 and 𝜎𝑆 are the mean and the standard deviation
of 𝑆, respectively.

The above definition of distance requires that the two
sequences have the same size. However, in our case we
need to compare a subsequence of length 𝑙 with a time
series of length 𝑛 with 𝑛 > 𝑙. Following the Shapelet
literature, we tackle this problem by computing the dis-
tance to all 𝑛 − 𝑙 + 1 subsequences of length 𝑙 of the time
series. Then, the minimal distance is considered to be the
distance between the shapelet and the time series. More
formally, given a sequence 𝑆 of length 𝑙 and a time series
𝑇 of length 𝑛, the distance between 𝑇 and 𝑆 according to
the normalized Euclidean distance 𝑑 is

𝐷(𝑆, 𝑇 ) = min
𝑖∈[1,…,𝑛−𝑙+1]

𝑑(𝑆, 𝑇𝑖,𝑙).

For the rest of the paper, we assume that we have
a dataset 𝒟 with 𝑚 time series, and each time series is
assigned to a class 𝑐 from a set 𝐶 of classes. We denote the
set of time series in a class 𝑐 ∈ 𝒞 as 𝒟 𝑐, and a shapelet
𝑆 representing a class 𝑐 ∈ 𝒞 as 𝑆𝑐, i.e., a subsequence
extracted from a time series in 𝒟 𝑐.

3.2. Shapelets
In this paper, we use the terms subsequence and shapelet
interchangeably, since a shapelet is a subsequence that
represents a class of time series and discriminates other
classes. We would like to stress that the original defini-
tion of a shapelet introduced by Ye and Keogh [7] is not
just a subsequence, but a subsequence with its optimal
split point according to the information gain, which we



describe in subsection 3.3. However, most papers about
shapelets that were published after [15, 14, 7] do not use
the same original definition. Instead, a shapelet is sim-
ply a subsequence regardless of its information gain. In
fact, our contribution is an alternative approach to the
information gain in the context of selecting shapelets for
classification.

Another important aspect we would like to highlight
is that in our work, similar to the original, a shapelet
is a subsequence that is extracted from the set of time
series. However, this is not necessarily the case. For in-
stance, Grabocka et al. [16] introduced an algorithm that
formalizes an optimization objective function to learn
the shapelets instead of extracting them from the data.
The result are shapelets that indeed represent a class and
discriminate others, while they do not actually exist in
the dataset.

3.3. Classification with Shapelets
Classifying time series using shapelets is a 3-step process:

1. extraction of shapelet candidates,
2. evaluation of candidates, and
3. transformation of data using shapelets.

Extraction of Shapelet Candidates. There exists
many approaches in the literature to extract shapelets
candidates. The first approach was brute force, i.e., slide
a window of a fixed size over the time series with dif-
ferent window lengths and consider each subsequence
as a candidate [6, 17]. This method results in a set of
candidates in the order of 𝒪(𝑚𝑛2). A faster approach
introduced later reduced the number of candidates by
randomly selecting subsequences from different positions
with different lengths [14, 15]. A more recent method
introduced in [13] reduces the space of candidates by first
selecting some representative time series, which reduces
the number of time series to be considered, and second,
by ignoring non-interesting subsequences. Instead, it
generates shapelet candidates by finding the important
data points (IDP) in a time series, which is the point
with the largest fitting error when the time series is rep-
resented with a linear representation, and keep finding
IDPs recursively. The IDPs found are then used to extract
shapelets.

Evaluation of Candidates. The extraction step usu-
ally results in a large set of candidates. Then, one has
to evaluate these candidates in order to choose a smaller
subset to be used as a primitive for classification. The first
shapelet evaluation method is the information gain [6].
To evaluate a candidate 𝑆, the algorithm first computes
the distance between 𝑆 and all the time series in the

dataset. The distances are then sorted, and 𝑚 − 1 thresh-
olds are considered, where a threshold (also called split
point) is the average between two consecutive distances.
For a threshold 𝑡, the data is then separated into two sets
𝐷𝑆< and 𝐷𝑆> , where 𝐷𝑆< is the set of time series which
have a distance to 𝑆 that is smaller than 𝑡. The information
gain is computed as

𝐺(𝐷𝑆, 𝑡) = 𝑏 − 𝑎,

where

• 𝑏 is the gain before a split: 𝑏 = 𝐻(𝐷𝑆),
• 𝑎 is the gain after a split:

𝑎 =
|𝐷𝑆< |
|𝐷𝑆|

𝐻 (𝐷𝑆<) +
|𝐷𝑆> |
|𝐷𝑆|

𝐻 (𝐷𝑆>)

,
• |𝑋 | is the cardinality of a set 𝑋, and
• 𝐻 is the Shannon binary entropy, which can

be computed for a Bernoulli random variable 𝑋,
where IP(𝑋 = 1) = 𝑝, as:

𝐻(𝑋) = −𝑝 log(𝑝) − (1 − 𝑝) log(𝑝).

One drawback of the information gain is the com-
putation time, since distances between time series and
shapelets have to be sorted in order to find the optimal
splitting point. For that, Hills et al. [7] introduce other
evaluation methods that are much faster to compute, and
the accuracy is not significantly different. Two of the
methods were non-parametric statistical tests, namely
Kruskal-Wallis and Moods medians, to test if samples
originated from the same distribution or not based on
their medians. The third method introduced was the
F-statistic for variance analysis. Compared to the two
non-parametric tests and the information gain, the F-
statistic was the fastest in terms of running time and the
time to find the best shapelet. It had also the best classi-
fication accuracy. At the end, the authors recommended
that the F-statistic should be the default when evaluating
the quality of shapelets. For the rest of this paper, we
will compare our evaluation approach, Silhouettes, with
both the F-statistic and the information gain.

Transform Data Using Shapelets. The shapelets se-
lected from the large pool of candidates are of different
lengths, and standard classifiers, such as K-Nearest Neigh-
bor, logistic regression and neural networks cannot be
directly applied to these subsequences of different size.
In the original paper [6], the shapelets were included in
a decision tree by using the shapelet’s information com-
puted as a splitting criterion at each node, which resulted
in the coupling of shapelet evaluation and scoring.

In the shapelet transform paper [7], the authors intro-
duced a data transformation, and show empirically that



dissociating shapelet discovery from classification does
not reduce the accuracy. When the data is transformed,
it becomes possible to use any out of the box standard
classifiers. Furthermore, the authors have shown that
when the classification is done with a different model
than a decision tree, the classification accuracy becomes
higher.

Formally, after the 𝑘 shapelets are selected, the shapelet
transform of the data is

𝒯 =
⎛
⎜
⎜
⎝

𝐷(𝑇1, 𝑆1) 𝐷(𝑇1, 𝑆2) ⋯ 𝐷(𝑇1, 𝑆𝑘)
𝐷(𝑇2, 𝑆1) 𝐷(𝑇2, 𝑆2) ⋯ 𝐷(𝑇2, 𝑆𝑘)

⋯ ⋯ ⋯ ⋯
𝐷(𝑇𝑚, 𝑆1) 𝐷(𝑇𝑚, 𝑆2) ⋯ 𝐷(𝑇𝑚, 𝑆𝑘)

⎞
⎟
⎟
⎠

where 𝑇𝑖 represents the 𝑖’th time series in the dataset
𝒟 and 𝑆𝑗 is the 𝑗’th selected shapelet. The matrix 𝒯
and the labels of the time series are then fed to a stan-
dard classifier for training. In order to classify an unla-
beled time series 𝑇, the time series is first transformed:
[𝐷(𝑇 , 𝑆1), 𝐷(𝑇 , 𝑆2), ⋯ , 𝐷(𝑇 , 𝑆𝑘)] and then the classifica-
tion is done using the trained classifier.

4. Evaluating Shapelets Using
Silhouettes

This section describes the idea behind our approach and
compares how Silhouettes differs from information gain
and F-statistic.

4.1. Silhouettes Description
The goal of shapelet evaluation is to select a good subset
from the set of shapelet candidates, which can then be
used for classification and achieves a high accuracy. Each
approach assigns a real number to the candidates, termed
evaluation score or rank of the shapelet, where usually a
higher score means higher accuracy. Then, the shapelets
with the highest rank are selected. Our method exploits
the idea of Silhouettes introduced by Rousseeuw [8] and
originally used to evaluate the outcome of clustering al-
gorithms by comparing the within and between cluster
dissimilarities. The score assigned to each object is be-
tween -1 and 1. A high value close to 1 means that the
object is well assigned to the cluster it lies in; -1 means
that the object is assigned to a wrong cluster; and a value
around 0 means that the object is between two clusters.

In our case, we want to select from the large set of
all possible subsequences, a smaller set in which each
subsequence chosen represents a class and discriminates
the other classes. In other words, we want to find a
set of patterns 𝑆𝑐 representing some class 𝑐, such that
the patterns will have a small distance to time series
in 𝒟 𝑐 compared to time series in 𝒟 𝑗, 𝑐 ≠ 𝑗. We use the
Silhouette score to assign a rank to each subsequence, and

we select the top ranked ones. Formally, the Silhouette
score for a candidate shapelet 𝑆𝑐 is

𝑠(𝑆𝑐) = 𝑏 − 𝑎
max(𝑎, 𝑏)

,

where

• 𝑎 =
∑

𝑇∈𝒟𝑐
𝐷(𝑆𝑐,𝑇 )

|𝒟 𝑐| is the average distance between
the shapelet and time series from the same class,
and

• 𝑏 =
∑

𝑇∉𝒟𝑐
𝐷(𝑆𝑐,𝑇 )

|𝒟∖𝒟 𝑐| the average distance between the
shapelet and time series from different classes.

Notice that the score of the Silhouette is based only on
whether a time series is in the same class of the shapelet
or not. In the original work of Rousseeuw [8], the Silhou-
ette works with many clusters, and 𝑏 is the distance to the
closest cluster that the object is not assigned to. Our deci-
sion is following the recommendation from Bostrom and
Bagnall [17] where they introduce the binary shapelet.
The authors show that, when a shapelet is selected to rep-
resent one class against all other classes instead of how
well it splits all the classes, the classification results in
higher accuracy for multiple-class datasets; additionally,
it allows speeding up the computations as it facilitates
frequently early abandoning.

4.2. Difference with F-statistic and
Information Gain

In this subsection we would like to highlight the major
differences between our approach and others.

Information Gain. The first difference is that Silhou-
ettes do not need to sort the distances and find the best
splitting. The overhead of sorting the distances to all
time series for every shapelet makes the information
gain approach slower [7]. The second and most impor-
tant difference is that the gain assigned does not consider
if the split differentiates between a specific class and the
rest, or just finds a good balance. This is not a problem
by itself since the classifier will learn how to classify the
data based on how well each shapelet splits the classes.
However, problems start occurring when the dataset has
multiple classes, and especially if a class is more distinct
from the others. The outcome is a set of many redundant
shapelets for a class, which can discriminate a class very
well but not the others. This behavior has been noted
in [17], and to address it, the authors decided to extract
and evaluate shapelets from each class independently.
This way, even if one class is easy to classify, which will
result in many shapelets that have a high score, they
guarantee that shapelets representing other classes will
be selected.



Figure 1: Distribution of distances of shapelets selected by each evaluation method.

F-statistic. F-statistic used originally for the analysis
of variance is very similar to our approach. It is computed
as the ration of between group variability andwithin group
variability. For a shapelet 𝑆𝑐, the F-statistic is defined as

𝐹(𝑆𝑐) =
∑𝐶

𝑖=1(𝜇𝑖 − 𝜇)2 × |𝒟 𝑖|
𝐶−1

∑𝐶
𝑖=1∑

|𝒟 𝑖|
𝑗=1 (𝑑𝑖𝑗 − 𝜇𝑖)2 ×

1
𝑚−𝐶

,

where

• 𝜇𝑖 is the average distance of time series from 𝒟 𝑖,
• 𝜇 is the average distance with all time series, and
• 𝑑𝑖𝑗 is the distance to the 𝑗’th time series from 𝒟 𝑖.

Themajor difference between F-statistic and Silhouette
is the use of variance, whereas in Silhouettes we use the
mean. Despite the similarity between the two methods,
the resulting shapelets are very different. Figure 1 shows
the distribution of distances from shapelets selected by
each of the three approaches for the CBF dataset from
the UCR archive [9]. The CBF dataset has 3 classes. We
used 30 time series in training set: 10 for class 1, 12 for
class 2, and 8 for class 3. The test set had 900 time se-
ries, namely 300, 298, and 302 for the classes 1, 2, and
3, respectively. We extract 30 shapelets from each class
using the three evaluation methods, and we color the
distribution of distances with time series from the same
class with blue, and the distribution of distances to other
classes with orange. The X-axis represents the distance,
and the Y-axis represent the density of distances. Notice
that all the three approaches managed to select shapelets
that are close to 0 from the same class compared to other
classes. It is clear from the figure that Silhouettes se-
lect more shapelets (higher density) that have a small
distance to time series from the same class, and at the
same time, the two distributions (blue and orange) are
separate from each other. Our assumption is that if we
select shapelets that separate well the two distributions,

then standard classifiers should be able to easily learn
how to separate between different classes, and thus result
in a high classification accuracy.

5. Experiments
This experimental evaluation aims to answer the follow-
ing questions:

• How is the classification accuracy affected by the
shapelets selected using the three approaches?

• How does the evaluation score of each approach
correlate with the overall classification perfor-
mance of the dataset?

• How does the evaluation scores for each class cor-
relate with the true positives and false negatives
of instances of that class?

• How does the running time of the Silhouette score
compare to existing approaches?

For all our experiments, we use 94 datasets from the
UCR archive [9]. From the 94 datasets, 37 are binary
classification datasets, 16 have 3 classes, 9 have 4 classes,
and 32 have 5 classes or more. There are 6 datasets where
the most prevalent class has over 10 times the number
of instances compared to the least represented, while 10
datasets exhibit an imbalance exceeding a factor of 5.

5.1. Experiments Design
The extraction of shapelet candidates is an important
phase in time series classification. However, in this work,
our focus is on the evaluation of shapelets and its effect
on the classification. For a fair comparison between the
three methods, we first randomly sample a large set of
shapelets for each dataset from different starting posi-
tions and with different lengths. More precisely, for each
dataset we randomly extract 𝐿 shapelets for each class.



Figure 2: Accuracy on 94 datasets from the UCR archive using 100 and 5 shapelets per class, selected using different shapelet
evaluation methods.

Figure 3: Comparing the effect of number of top candidates
using the different evaluation methods on CBF dataset.

The value of 𝐿 is set to themaximum of 300 and 20% of the
length of the time series, i.e., 𝐿 = max(300, 0.2 × 𝑛). Next,
we pre-compute and store the distances between the
shapelets and the time series, since they will be needed
in order to evaluate the shapelets, and also to transform
the data for classification. The large set of randomly se-
lected shapelets and their corresponding distances to all
the time series will be used as a starting point for all our
experiments, and they are the same for all comparisons
between the approaches.

5.2. Comparison of Classification
Accuracy

In this experiment we compare the effect of the evalu-
ation using Silhouette, information gain and F-statistic
on the classification. Instead of fixing an arbitrary num-

ber of shapelets to select and transform the data with,
we start from a small number, namely 𝑘 = 5 for each
class. The CBF dataset example has 3 classes, so we se-
lect 15 shapelets in total, and we gradually increase 𝑘.
For every value, we select the top 𝑘 shapelets per class
using the three methods, transform the data (using the
pre-computed distances) and run the classification.

For the classification, we fix 6 standard classifiers. The
first classifier is the decision tree as it was the standard ap-
proach in the literature when classifying with shapelets.
We also include the 1-Nearest Neighbor (1-NN) and sup-
port vector classifier (SVC) since they were used in the
evaluation in Hills work [7]. We also add the Logistic
Regression classifier as an extra linear classifier, and K-
Nearest Neighbor as an extra non-linear classifier, which
is also a generalization of 1-NN. Finally, we also include
an ensemble method, namely ADABoost, which itera-
tively builds multiple decision trees, and each new tree
is trained with a penalty on instances that were wrongly
classified by the previous trees.

The parameters of the models are found during the
training by cross validation using five splits. The hyper-
parameters are found by grid search. Finally, we train
a new model using the best combination of parameters
found, and report the results of the test set.

Figure 2 shows the performance of 94 datasets from
the UCR archive. On the top of the figure, the classifi-
cation is done with the best 100 shapelets per class. On
the X-axis we list the datasets, and the Y-axis represents
the accuracy. Each color refers to the result of a method.



With such a high number of shapelets, almost all meth-
ods have the same performance. However, when only
a few shapelets are used (e.g., 5 shapelets as shown at
the bottom of the figure), the Silhouette becomes the
most accurate method, most of the time even with a big
margin.

A pattern that we observed is that, when the number
of shapelets is small, the Silhouette score results in a high
accuracy, and it does not change much if the number of
shapelets is increasing; thus the Silhouette score turns
out to be a stable method. On the other hand, the accu-
racy achieved by the information gain and the F-statistic
increases when the number of shapelets is increasing.
Figure 3 shows this behavior for the CBF dataset. By
only using 5 shapelets per class, the Silhouette approach
already achieves 97.88% accuracy, whereas F-statistic and
information gain are around 42%. In this example, the
CBF data has a small training set and a much larger test
set, containing 30 and 900 time series, respectively. The
number of shapelets required for the F-statistic and the
information gain to start approaching the same accuracy
as the Silhouette is more than 200 shapelets per class.
This means that the data transformed using the Silhou-
ette score can be 40 times smaller, yet achieving a higher
accuracy.

5.3. Evaluation Methods and Dataset
Classification Performance

We investigate how the Silhouette score relates to the
accuracy of classifying a dataset using shapelets. If the
Silhouette scores assigned to the top candidate shapelets
are all high (close to 1), we expect the dataset to be classi-
fied with high accuracy since the shapelets separate the
different classes well. For example, from Figure 2 we can
see that the dataset GunPointMaleVersusFemale has a
higher accuracy (96%) compared to the Wine dataset, and
it turns out that the average Silhouette scores are 0.56
and 0.25, respectively. To confirm this hypothesis, we
use the results reported in Figure 2 and do the following:

1. Compute the average score of the selected
shapelets using an evaluation method for each
dataset.

2. Compute the correlation between the average
score and the accuracy.

Table 1 reports the Pearson coefficient for each of the
three approaches as well as p-values (in the parenthe-
ses). When using only a few shapelets, the Silhouette
score shows the most significant correlation. When the
number of shapelets is increased, the correlation between
the Silhouette scores and the accuracy remains stable,
but both the information gain and the F-statistic correla-
tions increase. The correlation of the information gain
becomes even more significant than the correlation of

the Silhouette score. This confirms the behavior seen in
Figure 3.

Table 1
Pearson coefficient between the accuracy of the dataset and
the evaluation methods scores.

Method Pearson correlation
5 shapelets 100 shapelets

F-statistic 0.09 (3 × 10−1) 0.21 (3 × 10−2)
Silhouette 0.29 (2 × 10−3) 0.30 (2 × 10−3)
Information gain 0.12 (2 × 10−1) 0.40 (5 × 10−5)

5.4. Evaluation Methods and
Classification Performance for each
Class

In the previous section, we compared the average score
of each approach with the accuracy achieved on datasets.
In this experiment, we want to compare the behavior
of the three evaluation methods with respect to class
performance, i.e., when a class in the dataset is easy
or hard to distinguish compared to other classes. For
that, we compute the correlation between the evaluation
scores and the accuracy of each class 𝑐, which we define
as

𝒜(𝑐) = TP𝑐

max(|{𝑦 𝑐, 𝑦 𝑐 ∈ ̂𝑦}|, |𝒟 𝑐|)
,

where

• TP𝑐 is the number of correct predictions of class
𝑐, and,

• {𝑦 𝑐, 𝑦 𝑐 ∈ ̂𝑦} is the set predictions where the classi-
fier predicted class 𝑐.

We normalize by the maximum of the number of pre-
dictions and the actual number of instances labeled 𝑐 in
the test set. This is equivalent to the minimum of recall
and precision, meaning that for each class the score re-
ports whether the model trained on the transformed data
is both precise (few false positives) but also making many
successful predictions (few false negatives).

Table 2 shows the results achieved by the three ap-
proaches for both 5 and 100 shapelets per class. The re-
sults reported are using 65 datasets from the UCR archive,
because we only kept datasets that have 3 classes or more.
The reason to keep only datasets with at least 3 classes
is that in a binary classification setup, if one class can be
identified well using some shapelets, the other class is
automatically discriminated as well.

When using many shapelets, all three approaches are
highly correlated, with the information gain having the
most significant correlation. In contrast, if only a few



Table 2
Pearson coefficient between the accuracy of classes and the
scores of each evaluation method.

Method Pearson correlation
5 shapelets 100 shapelets

F-statistic 0.31 (9 × 10−15) 0.29 (2 × 10−10)
Silhouette 0.18 (1 × 10−5) 0.18 (5 × 10−5)
Information gain −0.02 (5 × 10−1) 0.35 (1 × 10−14)

shapelets are used, the information gain is uncorrelated.
This is due to the fact that the information gain is deter-
mining the optimal split point that results in the highest
gain regardless of the class of the shapelet itself. For
the F-statistic, the correlation is very high when a few
shapelets is used. This can be justified by the denom-
inator of the statistic, where the variance of distances
is minimized, which favors shapelets that are similar to
each other. Finally, notice again that for the Silhouette
score the correlation does not change when the number
of shapelets changes.

5.5. Running Time Comparison
In this experiment we compare the running time of the
three methods. Table 3 shows the mean, standard devia-
tion and the percentiles of the running time for datasets
from the UCR archive. As mentioned above, the num-
ber of extracted shapelets, 𝐿, depends on the datasets.
The Silhouette is the fastest method, followed by the
F-statistic and finally the information gain. This corre-
sponds also to the respective algorithmic complexities:
𝒪(𝐿𝑚), 𝒪(𝐿𝑚) and 𝒪(𝐿𝑚 log(𝑚)), respectively. Even
though the F-statistic and the Silhouette have the same
algorithmic complexity, the F-statistic has to cache and
reuse some computations in order to compute the vari-
ances in linear time (for each shapelet). For the informa-
tion gain, besides the overhead of sorting, the algorithm
has also to evaluate the gain at each splitting point, which
results in a higher running time.

Table 3
Summary of the running time in milliseconds for 85 datasets
from the UCR archive.

F-statistic information gain Silhouette

mean 4.81 1592.38 1.80
std 18.75 3858.66 4.02
min 0.63 37.20 0.09
25% 0.89 103.93 0.20
50% 1.51 401.39 0.53
75% 2.96 1424.26 1.78
max 176.57 34419.93 34.43

6. Conclusion and Future Work
We introduced a new shapelet evaluation method to score
the utility of the candidate shapelets for time series clas-
sification. The idea is to select shapelets based on the
Silhouette score used originally for evaluating clusters.
This tends to select shapelets that are very similar to the
time series from the same class, but also very different
from the time series of different classes. We have shown
through experiments using 94 time series from the UCR
archive [9] that the classification using Silhouettes is not
only competitive with existing approaches in the liter-
ature in terms of the accuracy of predictions, but also
much better when the number of shapelets is very small.
This property results in a much smaller training data size
after the transformation.

The scores of our approach correlate with the accuracy
classifications. In a first experiment we computed the
Pearson correlation between the average score of all the
selected shapelets and the achieved accuracy. This means
that a high Silhouette score for a dataset will likely result
in a high accuracy. We have also seen in Table 1 that the
correlation does not change with the number of shapelets.
Thus, it is sufficient to use a small number shapelets for
the classification since the accuracy will likely not change
much, unlike for the F-statistic and the information gain,
which both require many shapelets to achieve a high
accuracy.

Finally, we have compared the running time between
the three approaches. Silhouette and F-statistic both have
acceptable running time as both have an average time in
the order of milliseconds. However, the bottleneck is the
actual computation of distances.

In this work, our main focus was on the evaluation of
the shapelets, and its effect on the accuracy of time series
classification. Given that the Silhouette score results in
high accuracy with a very small number of shapelets, we
plan to speed up the whole classification process using
shapelets by integrating the Silhouette in the candidate
selection step and also exploiting them for early compu-
tation abandoning.
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