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Abstract 
Today's big data and AI frameworks face problems like questionable accuracy, shallow data 
processing depth, black-box in-explainability, and oftentimes low processing speed. This paper 
summarizes the work of Ultipa, introducing Graph XAI (Graph-augmented AI) and highlighting 
ADEV (Accuracy, Depth, Explainability, and Velocity). In contrast to many systems that sample data 
due to inability to traverse datasets thoroughly and quickly, particularly hindered by hotspot 
supernodes, Ultipa's graph system is designed from data structure and system architecture 
perspective to allow for ultra-low latency deep penetration, and accuracy is achieved with exhaustive 
traversal, which also allows for exponentially faster velocity. As graph data are ideally queried and 
processed using graph query languages and algorithms instead of the two-dimensional SQL and 
stored procedures, the intuitiveness and explainability are crucial in ensuring ADEV being fulfilled, 
this paper highlights how Ultipa's graph-native query language facilitates real-time recursive queries 
like path-finding, K-hopping, auto-networking, or identification of topological structures and 
communities works hand-in-hand with Ultipa's WebGL-powered graph manager to ensure end-to-
end celerity and explainability.  
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1. Introduction: XAI and ADEV 
XAI originally stands for eXplainable Artificial 
Intelligence, it signifies the needs for explainability 
against the results generated by AI, as well as the white-
box explainability of the processes leading to the results. 
As we are broadening the adoption of AI across all 
industries, the meaning of XAI transcends 
explainability, more meanings are added to it, including 
but not limited to: 

• Accuracy: the computed results should be 
adequately accurate. 

• Depth: the ability to traverse connected data 
set deeply. 
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• Velocity: speed at which data is generated, 
modeled, ingested, and processed [1]. 

The accuracy problem of AI and big-data systems is 
commonly attributed to human ignorance or procedural 
unfairness of systems designs [2] and [4]. Though there 
are mitigation plans which try to improve the accuracy 
(and explainability) of such AI/big-data systems, the 
problem lies with the underpinning system architecture 
and design philosophy which are inaccurate and 
unexplainable by nature [3] and [4] and [5]. Specifically, 
the joint-force of big-data and AI aggravated the 
problems – data sampling and profiling [6] are widely 
used, however, a major drawback with sampling is that 
it may work in one domain, but not in the others. For 
instance, most ANNs (Artificial Neural Networks) are 
originally designed to handle images (i.e., photos or 

 0009-0004-3025-4500 (R. Sun) 

 
© 2023 Copyright for this paper by its authors. Use permitted under 
Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/my-orcid?orcid=0009-0004-3025-4500


remote-sensing images) with sampling and profiling 
techniques, but such networks may run into serious 
inaccuracy problems when dealing with financial 
datasets. The reason is that to examine a certain 
account’s historical behavior, or to conduct attribution 
analysis [7] against a banking center, exhaustive 
traversal of the account’s (or the center’s) transactions 
is a must-have, and sampling will be far off from reality. 
Similar accuracy problems happen in medical industry 
[8], supply chains, telcos, and power grids.  

The depth factor is about how deeply and 
thoroughly a system can traverse (or penetrate) the 
given dataset. A major weakness with relational 
databases and big-data frameworks (being the 
foundation of today’s AI systems) is their poor ability to 
handle recursive queries, such as joining of tables, due 
to effect of cartesian product (cardinality), the 
performance degradation is exponential as the number 
of tables (roughly equivalent to the depth of the query) 
[9] and [10] and the sizes of tables increase, which 
dramatically limits the ability of such system to deeply 
(recursively) penetrate the data. A horizontally 
distributed system tends to have much worse 
performance on network analytics than a single-
instance system that’s capable of multi-thread 
processing [11], therefore, the trick for a distributed 
system to accelerate network analytics is to project data 
from distributed storage instances to one (or fewer) 
computing instance(s) where data will be centrally 
processed [12] and [13] and [14] and [29] – but the data 
projection process can be time-consuming, making it 
unfit for real-time decision making. Such limitations 
have real-world repercussions, for instance, doing 
attribution analysis [7] with Oracle is an extremely 
lengthy process when dealing with hundreds of millions 
of trades (transactions) scattered in dozens of tables. The 
collapse of Silicon Valley Bank in 2023 is a typical case 
of failure to conduct timely liquidity risk management, 
and attribution analysis, to understand the bank’s 
portfolio and liquidity positions and forecast 
quantitatively and qualitatively on daily or intra-day 
basis [15].  

Velocity concerns the speed at which data is 
generated, captured, schematized, and processed. The 
maximum speed of a system is only tested  by putting 
into the context of the maximum depth it reaches within 
a bounded timeframe. Given the rise of cryptocurrency, 
blockchain and Web 3.0, numerous performance 
analysis [16] and [17] and [18] have been conducted 
against systems implementing such infrastructures. 
Most existing big-data and NoSQL frameworks (and the 
RDBMS) are designed with storage-centric mindset 
where horizontally scalability design is prioritized 
higher than depth-oriented velocity. Such mindset 
ensures unsatisfactory velocity when there is need for 

deep data processing – on the other hand, the popularity 
of AI introduces added layers of black-box in-
explainability when processing data through machine 
learning or deep learning frameworks [19] and [20] and 
[21].  

This paper focuses on four aspects of XAI which 
collectively referred to as ADEV (Accuracy, Depth, 
Explainability and Velocity), and how ADEV can be 
achieved with a novel graph system design [21].  

2. XAI and ADEV How-to 

 

Figure 1: From Relational Tables to Graph(s) 

Graph [23] organizes, otherwise siloed, data in a unified, 
connected, and holistic. Figure 1 illustrates how data can 
be connected in a graphical way in comparison with the 
tabular data modeling [24]. Once data is organized in 
graphical way, there are essentially two types of data 
operations, which are: 

• Meta-data operations: CRUD (Create-Read-
Update-Delete), aggregations and filtering, etc.  

• High-dimensional operations: which are 
network oriented, such as finding paths, 
networks, subgraphs, etc. Note that 
heterogeneous types of data can be mixed and 
assembled in one batch of results. 

There are 3 types of high-dimensional data 
operations: 

• K-Hopping: traversal of a vertex for K hops per 
filtering conditions. 

• Path-finding: from shortest-path to circular-
path (cycle detection), to more sophisticated 
networking or auto-spreading queries. 

• Graph algorithmic operations: such as degree, 
similarity, community detection, random 
walking, and graph embeddings.  

Taking K-hop as an example, BFS is guaranteed to be 
accurate and effective, because DFS does not track the 
depth of shortest-path (hops) from current vertex to the 
starting vertex and standing at the Kth hop on a DFS 
path does not guarantee the correctness. The point here 



is that it’s rudimentary to open up the implementation 
core of any analytical query and make it white-box 
explainable, to ensure the results as well as the 
procedures are explainable. 

The advances of LLM and GPT have given us the 
impression (or illusion) that AI soon will be taking over 
average human beings both on IQ and EQ fronts. 
Scholars around the world have investigated and 
criticized the hallucination and black-box problems  
with LLM/GPT [25] and [26] and [32]. From XAI’s 
perspective, LLM/GPT’s hallucination and un-
explainability are rooted in their incapability to conduct 
deep traversals, or causality searches. Figure 2 illustrates 
that GPT lacks the ability to conduct causality search, 
which if conducted in a graph database is to find the 
shortest path between the parties against the dataset 
that must be part of what GPT [27] has been trained 
upon. Figure 3 shows that a shortest-path query of up to 
5 hops is conducted on a data set populated with 
Wikipedia data. 

 
Figure 2: Graph-augmenting LLM  

 
Figure 3: Path-finding (BFS/Shortest Path) 

2.1 Graph-augmented: Accuracy 
The accuracy problem in big data and AI analytics is 
multifaceted. We can summarize the accuracy problem 
into three classes:  

• Inadequate computing power: sampling and 
incomplete traversal of data. Many big-data 
and AI systems are comfortable handling meta-
data operations but not networked analytics.  

• Faulty design or implementation: This happens 
with unvalidated implementations, such as 
using DFS for K-hop or shortest-path finding 

or no de-duplication of K-hop, or partial 
traversal, all of which may cause the results to 
be redundant, incomplete, or outright wrong. 

• Ill Product-Market Fit: system designed for 
batch-processing, pre-calculation and pre-
caching cannot server real-time scenarios. 

We use a concrete example to illustrate the accuracy 
problem when running K-hop queries against a large 
Twitter-2010 SNS dataset of 42MM vertices and 1470MM 
edges, the dataset is densely populated with average 
degree of ~70 (SNS friends of a user), and with the 
existence of many hotspot supernodes with over 1MM 
neighbors (high-impact social influencer). 

Table 1 
Real-time Changing Results w/ Changed Topology 

Starting 
Vertex 
ID 

Ending 
Vertex 
ID 

Query 
Depth 

K-Hop 
Before Edge 
Adding 

K-Hop 
After Edge 
Adding 

20727483 28843543 1 973 974 

3 27206363 27210397 

6 10028 10027 

50329304 21378173 1 4746 4747 

3 29939223 29939314 

6 9052 9052 

26199460 32278263 1 19954 19955 

3 31324330 31324333 

6 3022 3022 

1177521 6676222 1 4272 4273 

3 17139727 17139725 

6 3101 3101 

27960125 48271231 1 7 8 

3 20280156 20283107 

6 25838 25836 

30440025 38232241 1 3386 3387 

3 23120607 3121930 

6 5437 5431 

 
In Table 1, the Twitter dataset’s topology is changed 

in real-time by connecting a vertex with one of its 3rd-
hop connected vertices with a new edge (orange-
colored, as illustrated in Figure 4) , and we check the 
starting vertex’s 1st, 3rd and 6th hop neighbors 
immediately before and after the topology change – in 
some cases the k-hop results may change dramatically, 
as shown in the last column in Table 1. In Figure 5, 
adding an edge between the C001 vertex and  C009 will 
change C001’s 1-hop neighbors from 3 to 4, and 2-hop 
neighbors unchanged, and 3-hop’s from 7 to 6. If a 
system uses pre-processing and caching mechanism, it 
will continue to read pre-stored (stale) results and not  
be able to churn out updated query results accurately 



and instantly. At Ultipa, we designed an HTAP system 
[22] and [30], to ensure changing topologies is 
accurately and instantly reflected across all system data 
structures so that graph operations results can be 
accurate. This is further discussed in the following 
section.  

 

Figure 4: Topology Change Affects Query Results 

Data structure plays a pivotal role here, conducting 
accurate analytics over graphs require both agility and 
resiliency, such as the ability to handle multi-graph as 
well as simple-graph, filter by direction of relationships, 
or attributes tied to vertices and edges, which may affect 
query results. For instance, if querying K-hop by 
inbound edges in Figure 4 (with added dashed blue 
ones), C001 has only one 1-hop neighbor, and one 2-hop 
neighbor (not the same as K-hop results). 

 

Figure 5: Graph-augmented Predictive Analytics 

Accuracy problem is also tied to complicated system 
architecture, for instance, accuracy is easier to achieve 
with single-threading, but once multi-threading and 
data-partitioning-n-parallel-processing are introduced, 
data structures and systems architectures are more 
complex, and the results validation become much 
harder. Taking Louvain community detection algorithm 
as an example, the original algorithm was designed to 
function in a serial fashion, and parallel computing will 
complicate the matter by yielding faster but possibly 
inaccurate results (numbers of communities).  

Accuracy problem can lead to serious ramifications 
in real-world applications. Taking retail-bank credit 
card spending (turnover) prediction as an example, 
Bigdata/DL frameworks are slow and inaccurate, and 
each 1% mismatch can be equivalent to $1 billion loss of 
cash reserve (and in-liquidity). Ultipa models card 
transactions as a graph network and extracts features 
via graph queries and algorithms such as weighted node 
degrees, page-rank, and random-walk to improve 
prediction accuracy. Figure 5 shows two batches of 
Ultipa graph-based predictions to significantly  improve 
accuracy (40-50% better) and latency (10-15x) over 
ML/DL methodologies. The main cause for such 
improvement is the graph-based feature extraction of 
the transaction network accurately reflects card holders’ 
(and merchants’) behavior patterns therefore giving 
augmented prediction power. In comparison, big-
data/ML predictions are still table centric and low-
dimensional which can hardly track the supposedly 
high-dimensional entity behaviors; besides they are 
slow and tend to go black-box with sophisticated 
operations. 

2.2 Graph-augmented: Depth 
Graph’s natural strength is to be able to analyze data 
that are connected, and what really sets one graph 
system apart from the others is its ability to penetrate 
the data much more deeply within the same time bound 
and upon the same underpinning hardware.  

In Figure 3, we’ve illustrated the necessity for deep-
traversal. To implement a graph XAI system with real-
time deep traversal capability, there are 3 factors to 
consider: 

• Low-latency: data structures that allow for 
lowest possible access time-complexity, ideally 
O(1). 

• Mutability: read-only data structure and access 
patterns are easier to design but we must cope 
with read-n-write scenarios where data are 
mutable and supporting CRUD operations. 

• Parallelization: serial access per query is easy 
to do, but the existence of supernodes would 
require parallel and accelerated access on a 
single query – because one query can lead to 
graph-wide traversal. 

We could use Map or HashMap in C++ to implement 
the core meta-data data structure, but both are 
considered highly redundant in terms of memory 
consumption. We came up with a novel data-structure 
design of vector_of_vectors as illustrated in Figure 6, 
essentially, packing all edges connecting with a vertex 
in a mutable vector, but aggregating inbound and 
outbound edges in different sections for easier graph 
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traversal. Such data structure can satisfy the needs for 
mutability and parallel access, and most importantly 
O(1) time complexity for per-hop data traversal – the 
computational complexity to visit all neighbors of a 
vertex is a constant O(1) which will empower 
exponentially faster deeper traversals. 

 
Figure 6: Node-Edge Adjacency Data Structure 

 

Figure 7: K-hop on Twitter-2010 Dataset  

There are other forms of novel acceleration 
techniques, which we’ll introduce in section 2.4 
(Velocity). The effect of deep traversal capability is 
shown in Figure 7, where 1-hop traversal with Ultipa is 
done in microseconds while the other systems require at 
least dozens of milliseconds, and at 6-hop, only 2 
systems (Ultipa and Tigergraph) can perform while 
Ultipa is nearly 50 times faster than the other. When the 
depth reaches 23-hop (this is close to the diameter [31] 
of the benchmarked dataset), Ultipa is the only system 
that returns (capped at 45-min), and in real-time (<1.9 
seconds, with 99.9999% of the graph traversed, which is 
equivalent to 1500MM nodes and edges traversed within 
2 seconds, indicating the system’s capability to cover 
over 750MM+ nodes and edges per second). 

There are many optimizations made in pursuing for 
real-time recursive deep penetration of dataset. Multi-
layer storage-n-computing acceleration is one such 
optimization, which can be reflected in how critical 
system resources are consumed. Figure 8 shows that 
Ultipa uses more static memory but less dynamic 
memory comparing with other systems, meanwhile goes 
far more parallel in processing graph queries. A salient 
benefit of lower dynamic memory is equivalent to better 
system stability while the other systems risk running 
into OOM with deep-query processing. 

 

Figure 8: Resource Consumption Comparison  

2.3 Graph-augmented: Explainability 
Explainability is a corner stone of AI, big data analytics, 
business intelligence, and decision making. There are 2 
important aspects of it: 

• Explainable result and intermediate process: 
which mean the linkage between the source 
data and the result can be traced and explained 
in a step-by-step fashion. This also involves the 
explainability of query languages (SQL or 
GQL). 

• Explainable architecture and system design: 
which require that the underpinning system 
architecture to be white-box explainable.  

Graph data is meta-data that are organized and 
connected in high-dimensional ways, and the finest 
granularity of meta-data boils down to vertices and 
edges. By organizing and manipulating these meta-data 
in different dimensions, insights or certain facets of the 
graph can be generated on the fly. Explainability often 
demands for reverse thinking process that is to trace 
backward from the result to the intermediate process, 
and eventually to the source data (being analyzed) – if 
any part of the back-tracing process is hardly 
explainable, we’ll suspect that the underpinning system 
has explainability problem even though the system may 
work well on many aspects.  

Visualization is another important aspect that helps 
with explainability. Figure 3 shows the graphical results 
of a multiple-hop path finding with different types of 
entities and relationships clearly annotated for easy 
digestion. The query language itself is also important, 
but it would be pointless if we don’t put this in the 
context of comparing with varied graph query 
languages.  
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Figure 9: Explainable Query Language: Triplet  

Figure 9 describes a simple triplet (vertex-edge-
vertex) relationship, and it's plain to tell the differences 
of intuitiveness by different GQL dialects. Imagine the 
cognitive-loading differences when doing sophisticated 
queries using different GQL dialects: 

Neo4j Cypher: /* Out-of-line filtering */ 
Match path = (p:Person) – [{relation:"is"}]-(j:Job)  
Where p.name = "Areith" && j.name=="Chef"  
return path 
 
Ultipa GQL (Schematic): /* Inline filtering */ 
n({@person.name 

== ”Areith"}).e({@jobis}).n({@job.name==”Chef "}) as paths return 
paths 

Ultipa GQL (Schema-free): 
n({name == ”Areith"}).e().n({name==”Chef "}) as paths return 

paths 
 
Gremlin: /* Extensive chaining */ 
g.V().hasLabel('person').has('name',"areith").outE().hasLabel("job

Is").V().hasLabel("job").has("name","chef").path() 
 
Tigergraph GSQL: /* SQL-style, 12 lines code for triplet 

expression */ 
CREATE QUERY areithjob(vertex<word> w) for graph test { 
  SetAccum<node> @@nodeSet; 
  SetAccum<edge> @@edgeSet; 
  Start = {persion.*}; 
  Result = select j from Start::p - (jobIs:e) - job:j 
             WHERE  p.name == "areith" AND j.name == "chef" 
          accum @@nodeSet += p, 
          accum @@nodeSet += j, 
          accum @@edgeSet + = e;  
  print @@nodeSet; 
  print @@edgeSet; 
} 
Even though readers may be subjective on 

intuitiveness (explainability) of the above GQL dialects, 
there are several things that hinder easy comprehension 
such as non-inline filtering, extensive chaining, or 
mixing up of SQL and C++ procedural programming 
styles.  

 

Figure 10: Explainable Data Modeling – Liquidity Risk 
Management & Attribution Analysis [22] 

Explainability can also be reflected in data modeling. 
Though RDBMS and tables have been main-stream for 
decades, it can be a disaster to use dozens of tables to 
serve sophisticated business scenarios like liquidity risk 
management. Figure 10 shows a novel graph data 

modeling, where regulated key financial indicator LCR 
(Liquidity Coverage Ratio) formula is transformed to the 
graph, intuitively. This enables not only great 
explainability, but also exponentially accelerated 
computing of the LCR indicator (due to avoidance of the 
cartesian-product of joining dozens of tables) with high-
density parallel processing, and attribution analysis 
which is essentially a back-tracing processing with 
dynamic filtering on the tree-like graph.   

2.4 Graph-augmented: Velocity 
The velocity aspect of graph XAI is crucial in enabling 
accelerated deep traversal during big data analytics. 
There are 3 novel techniques leveraged by Ultipa graph 
database in accelerating: 

• High-density graph computing: adapting 
parallel computing to graph domain with 
optimizations to penetrate hotspot supernodes 
in conjunction with native-graph data 
structures. 

• Data structure optimization: this has been 
discussed in the XAI’s depth aspect, essentially 
vertex-edge adjacency data structures. 

• Traversal boosting: this encompasses multiple 
facets, primarily optimized redesign of graph 
query and algorithm traversal logics, with the 
help of acceleration data structures. 

 
Figure 11: Bidirectional-boosted Path Finding  

In Figure 11, a novel graph traversal method is 
illustrated, instead of traversing from one vertex only, 
the method allows traversal to be conducted parallelly 
from both ends. This would exponentially lower the 
traversal complexity, and the query will return as soon 
as common neighbors are found in the middle, and the 
overall theoretical query time-complexity can be 
exponentially lower. Additionally, in-memory data-
structure is used to boost traversal speed (storing 
temporal neighborhood states). The empirical 
benchmark data shows that an overall acceleration of 40 
times over K-hop neighborhood finding, and 160 time 
over path-finding are achieved (see Figure 12). As more 
cores are fired up for denser parallel processing, the 

Root of LCR
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Numerator



acceleration effect is significant (32-core vs. 1-core: 7x 
for 3-hop, 25x for 6-hop, and 100x for Shortest-path. 
Note that adding more cores not always yield better 
performance, in shortest-path finding, 16-core turns out 
to be slightly faster than 32-core, as communications 
between more cores tend to add communication costs). 

The performance gain of utilizing high-density 
parallel graph computing and boosted-traversal 
mechanism can significantly reduce system latency and 
increase system throughput per QPS and TPS. In real-
world applications, Ultipa graph system incorporating 
these acceleration mechanisms can allow T+1 (1-day) 
batch processing tasks to be completed in real-time or 
near-real-time T+0 (same day) fashion, therefore 
opening up opportunities for broad spectrum business 
scenario realization (and acceleration). 

 

 

Figure 12: Bidirectional-boosted K-Hop & Path Finding 
On Billion-scale Data Set (Twitter-2010) 

3. Conclusions and Future Work 
Big data analysis and AI are undoubtedly integral to our 
technological landscape. However, several fundamental 
challenges demand our attention. In this paper, we have 
demonstrated that explainable AI (XAI) through graph 
augmentation can provide practical solutions to address 
key issues (A-D-E-V) in the field. 

While significant progress has been made, several 
avenues remain underexplored. We recommend further 
investigation in the following areas: 

• Dynamic Graph Data Modeling: Optimizing on 
dynamic graph data modeling based on 
evolving data and temporal user/query 
requirements. 

• High-Scalable Graph Computing Architecture: 
Efficiently handling extra large-scale (zillion-
scale) graphs. 

• TP (Transactional Processing) and AP 
(Analytics Processing) Fusion: Bridging the 

gap between transactional and analytical 
workloads. 

These research directions hold promise for future 
breakthroughs, and we anticipate their incorporation 
into production systems and scholarly publications. 
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