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Abstract
This study tackles the empty-answer problem in database queries, where no results meet all user-specified conditions, though
some may satisfy individual ones. We explore query relaxation, which removes certain conditions for results, and a record
search method that uses user preferences to evaluate records. In particular, we emphasize the importance of diversity in the
results to better match user preferences, which has been ignored in existing approaches. To address this, we introduce the
use of Maximal Marginal Relevance (MMR) – a ranking function balancing query relevance and record diversity – for query
relaxation, proposing a method that searches for diverse record sets while maintaining many conditions. Experiments with
real-world datasets demonstrated that the proposed method significantly increases search speed (up to 300 times faster) while
maintaining high MMR scores, indicating an effective balance between efficiency and result diversity.
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1. Introduction
In various applications, setting desired conditions and
searching for data is a fundamental operation. Ideally,
searches shouldyielda smallnumberof records thatmatch
the specified conditions. However, the number of records
retrieved can vary significantly depending on the user’s
conditions, resulting in either toomany records (themany-
answer problem) or no records at all (the empty-answer
problem) [1]. Whereas the many-answer problem can
be addressed by preseting the top-𝑘 results (e.g., with a
LIMIT clause), the empty-answer problem is more chal-
lenging. The causes of the empty-answer problem can be
categorized into two scenarios: (1) records satisfy each
condition individually but not collectively due to multi-
ple conditions, and (2) the conditions are invalid, such as
searching for records that do not meet pre-set constraints
in the data. In this paper, we target the empty-answer
problem and address the first scenario, where potentially
all records in the database fall within the search scope.

To solve the empty-answer problem, existing methods
are broadly classified into two approaches. The first is the
queryrelaxationmethod[2, 3, 4],whereconjunctivecondi-
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tions set by theuser are reduced to solve theempty-answer
problem. The second is the ranking method [5], which
translates user preferences into a function to evaluate
records. It effectively reflects user preferences, especially
when users can design the ranking function.

In the user’s record set, the relevance to the query and
the diversity within the recommended set are both impor-
tant. Preserving diversity among recommended records
is key to capturing user preferences [6]. While various
approaches have been proposed, none have focused on
the diversity of the record set post-solving the empty-
answer problem in the database field. Meanwhile, Max-
imal Marginal Relevance (MMR) [7], a ranking function
balancing query relevance and record diversity, has been
proposed and widely used for information retrieval.

In this study,weaimto solve theempty-answerproblem
by considering diversity and utilizingMMRas the ranking
function. We formalizeMMR for relational database appli-
cations and propose a method for quickly finding a record
set that maximizes MMR, Also, We devise a series of re-
laxed query search and record search techniques tailored
to this objective. They broaden results by removing some
conditions and evaluate records based on user-defined
functions, respectively. In addition, we utilize cardinal-
ity estimation techniques to further optimize the search
process. Experiments with real-world datasets show that
our method significantly increases search speed (up to
more than 300 times faster) while maintaining high MMR
scores and outperforming baseline approaches.

2. Preliminaries
Wedenote the query provided by the user as 𝑞, and assume
that this query is composed of𝑚 conjunctive conditions,
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with each condition represented as 𝑐𝑖 for 0 ≤ 𝑖 ≤ 𝑚 − 1.
Then, the query can be expressed as: 𝑞 = ⋀𝑚−1

𝑖=0 𝑐𝑖.
Next, we define the set of conditions of the query 𝑞 as

𝐶𝑞, and the power set of 𝐶𝑞 as 𝑃𝑜𝑤(𝐶𝑞). A relaxed query
𝑞′, derived from 𝑞, is formulated using a proper subset
𝐶 ⊆ 𝑃𝑜𝑤(𝐶𝑞) ⧵ {𝐶𝑞} as follows:

𝑞′ = ⋀
𝑐𝑖∈𝐶

𝑐𝑖. (1)

Since the number of elements in𝑃𝑜𝑤(𝐶𝑞) is 2𝑚−1, there
are 2𝑚 − 2 candidates for 𝑞′, excluding 𝑞 itself. We denote
the total number of records in the database as 𝑛, the total
number of columns in a record as 𝑙, and the number of
records the user wishes to obtain as a query result as 𝑘.

MMR.MMR is a combined score comprising (1) the rele-
vance of the recommended record set to the user-specified
query, and (2) the diversity within the recommended
record set. When the recommended record set is defined
as𝐷′, MMR is defined as follows [7]:

𝑀𝑀𝑅(𝑞, 𝐷′) = 𝑟𝑒𝑙(𝑞, 𝐷′) + 𝜆 𝑑𝑖𝑣(𝐷′) (2)

where 𝜆 is a parameter that adjusts the balance between
relevance and diversity.

We define relevance and diversity as follows:

𝑟𝑒𝑙(𝑞, 𝐷′) = 1
𝑘
∑
𝑟∈𝐷′

∑𝑚−1
𝑗=0 𝛿(𝑐𝑗, 𝑟 )

𝑚
(3)

𝑑𝑖𝑣(𝐷′) = {
1 if 𝑙𝑒𝑛(𝐷′) = 1
min𝑟 ,𝑟 ′∈𝐷′,𝑟≠𝑟 ′ (

𝑑𝑖𝑠𝑡(𝑟 ,𝑟 ′)
𝑙 ) if 𝑙𝑒𝑛(𝐷′) ≠ 1

(4)

where 𝛿(𝑐𝑖, 𝑟 ) returns 1 if the record 𝑟 satisfies the querycondition 𝑐𝑖, and 0 otherwise. 𝑙𝑒𝑛(𝐷′) denotes # records in
𝐷′ Intuitively, Equation 3 represents the average ratio of
the number of matching conditions to the total number
of conditions for each record in 𝐷′. Additionally, the
𝑑𝑖𝑠𝑡 function in Equation 4 defines the distance between
records, and any distance function can be applied. In this
study, the Manhattan distance is used for numerical data,
and the Hamming distance for categorical or binary data.

Problem Definition. The problem is defined as follows:
given a query 𝑞 that yields an empty-answer for single ta-
ble dataset𝐷, the objective is to identify a subset of records
𝐷′ ⊆ 𝐷, consisting of 𝑘 records, where k is the number
that user designated, that maximizes𝑀𝑀𝑅(𝑞, 𝐷′).

MMR is ametric designed for evaluating a set of records.
To identify the recommended record set that maximizes
MMR, it is necessary to calculate and compare the dis-
tances between all pairs of the 𝑘 records. This process
incurs 𝑂(𝑚𝑛𝑘)-time, which becomes impractical, particu-
larly for large values of 𝑘. As a result, methods have been
proposed to search for the recommended record set in a
greedy manner [8] for the sake of efficiency.

Figure 1: An overview of query-level MMR.

3. ProposedMethod

3.1. Base Algorithm
To identify a recommended record set that maximizes the
MMR score, it is necessary to calculate the distance be-
tween every pair of records (as per Equation 4), a task
that is computationally intensive. Consequently, existing
methods [8, 9] employheuristic approaches tofindapprox-
imate answers, including the state-of-the-art method [9]
which incurs a time complexity of 𝑂(𝑛𝑙𝑘) to find these
approximate answers.
Our approach also utilizes a heuristic method to effi-

ciently find approximate solutions. Considering that a
query can be viewed as an abstraction or specification of
its resulting records, we introduce the concept of query-
level MMR as a preprocessing step for record-level MMR.
Figure 1 provides an overview of this process. Initially, we
generate multiple relaxed queries from the original query,
aiming to maximize query-level MMR (as shown in the
top right corner of the figure). Subsequently, we acquire
the results of these relaxed queries (depicted at the bottom
right corner) and select a recommended record set from
these results that maximizes the record-level MMR.
We define query-level MMR by substituting a recom-

mended record set (𝐷′) with a relaxed query set (𝑄′) in
Equation 2 as follows:

𝑀𝑀𝑅(𝑞, 𝑄′) = 𝑟𝑒𝑙(𝑞, 𝑄′) + 𝜆 𝑑𝑖𝑣(𝑄′). (5)

Additionally, we introduce metrics for query relevance
and diversity. Query relevance calculates the similarity
between the original query and a relaxed query set, while
query diversity measures the diversity within the relaxed
query set. These metrics are defined as follows:

𝑟𝑒𝑙(𝑞, 𝑄′) = 1
𝑘

∑
𝑞′∈𝑄′

𝑙𝑒𝑛(𝑞′)
𝑙𝑒𝑛(𝑞)

(6)

𝑑𝑖𝑣(𝑄′) = min
𝑞″,𝑞′∈𝑄′,𝑞′≠𝑞″

𝑙𝑒𝑛(𝑞′ ∩ 𝑞″)
𝑙𝑒𝑛(𝑞′ ∪ 𝑞″)

. (7)

𝑙𝑒𝑛(𝑞) denotes the number of conditions in a query 𝑞.
Our method comprises two stages: (1) searching for

relaxed queries that maximize query-level MMR and ob-
taining their results; (2) selecting a recommended record
set that maximizes record-level MMR from these results.
By relaxing the original query provided by the user,

records that satisfy the relaxed query are considered as
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candidates for the recommended record set. These candi-
date records should ideally satisfy more conditions from
the user’s query while contributing to the diversity of the
recommended record set. To achieve this, relaxed queries
are selected to maximize query-level MMR.

As discussed in Section 2, there are 2𝑚−2 potential can-
didates for relaxed queries. Directly searching through all
these candidates is impractical. In our proposed method,
we record pairs of conditions used in previous relaxed
queries and determine conditions greedily one by one for
new relaxed queries. This approach ensures diversity in
the records derived from relaxed queries by varying the
conditions within each group, and it can be achieved with
a time complexity of 𝑂(𝑚2).

For specific processing, initially, from the conditions in
the original query, we select one condition that has been
used the least in previous relaxed query groups for the
new relaxed query. For subsequent conditions, when the
set of already determined conditions is 𝐶𝑞′ , the condition
𝑐𝑛𝑒𝑤 that minimizes∑𝑐∈𝐶𝑞′ 𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑐𝑛𝑒𝑤) is chosen. Here,
𝑐𝑜𝑢𝑛𝑡 is a function that records the frequency of condition
pairs appearing in relaxedqueries frompast iterations. For
instance, if a user’s query contains conditions 𝑐1, 𝑐2, 𝑐3, and
the first recommended record search included 𝑐1, 𝑐2 in its
relaxed query, then 𝑐𝑜𝑢𝑛𝑡(𝑐1, 𝑐2) = 1 and 𝑐𝑜𝑢𝑛𝑡(𝑐1, 𝑐3) = 0.

In caseofmultiple conditionsminimizing the 𝑐𝑜𝑢𝑛𝑡 func-
tion, priority is given to the condition least used in prior
relaxed query groups. Finally, records satisfying all query
conditions just before the relaxed query yields no results
are considered as candidates. After determining the re-
laxed query, all condition pairs in this query are recorded.
When searching for a relaxed query, records are pro-

gressively narrowed downwith each determined condi-
tion. Starting from the second condition, evaluation is
conducted only on the record set that meets all previously
established conditions. This strategy significantly reduces
the number of records evaluated for each condition.
After identifying candidates for the recommended

record set, we search for the record that maximizes the
MMRfromthat set. In doing so,wemaintain theminimum
distancebetween therecords selected in the recommended
record set to reduce computational costs. However, unlike
existingmethods, ourproposedmethoddoesnotconducta
full searchof records, rendering the avoidanceof duplicate
calculations for additional record candidates infeasible.

3.2. Complexity Analysis
The exact time complexity of the proposed method is
influenced by the proportion of records satisfying each
condition in the query and the dependency relationship
between the sets of records satisfyingmultiple conditions,
which makes it challenging to calculate precisely. We
therefore consider the time complexity under the gen-
eral assumption that there is no dependency relationship

between the values of each column.
If the cardinality of 𝑐𝑖 is 𝜎𝑖(0 ≤ 𝜎𝑖 ≤ 1), the time com-

plexity of the proposed method is expressed as:

𝑂(𝑘(𝑚2 + 𝑘𝑙 + 𝑛
𝑚−1
∑
𝑖=0

𝑖
∏
𝑗=0

𝜎𝑗)).

The first term accounts for the complexity of select-
ing conditions for the relaxed query and recording the
conditions used in 𝑞′, and the second term pertains to the
complexity of calculatingMMR for the record set obtained
from𝑞′ anddetermining the recommendedrecord set. The
number of additional records is not factored in here. The
third term relates to the complexity of searching 𝑞′. The
sum inside represents the number of records evaluated
for each condition.

Considering these parameters, typically 𝑘 and𝑚 are up
to 100 or smaller, while 𝑛 is often larger. Therefore, when
𝑘, 𝑚, 𝑙 ≪ 𝑛, the time complexity approximates to:

𝑂(𝑘𝑛
𝑚−1
∑
𝑖=0

(
𝑖

∏
𝑗=0

𝜎𝑗)). (8)

For estimating complexity, consider a scenario where
the selection rate is identical for all conditions. If 𝜎𝑗 in
Equation 8 is 𝜎, we have

𝑂(𝑘𝑛
𝑚−1
∑
𝑖=0

(
𝑖

∏
𝑗=0

𝜎𝑗)) ≤ 𝑂(𝑘𝑛
∞
∑
𝑖=0

(𝜎 𝑗) = 𝑂(𝑘𝑛 1
1 − 𝜎

) (9)

3.3. Further Optimizations
We revisit the proposed method. When determining the
conditions of a query, the method does not explicitly ad-
dress scenarios involving multiple relevant conditions.
The primary objectives for obtaining a relaxed query, as
mentioned earlier, are to maintain high diversity among
queries and to retain as many conditions from the user’s
query as possible. In scenarios where conditions have
the same priority in the co-occurrence matrix, selecting
any of these conditions would similarly uphold the di-
versity among queries. Consequently, when prioritizing
these conditions, the focus should be on obtaining a re-
laxedquery thatpreservesmoreconditions fromtheuser’s
query. For optimization, we propose to select from con-
ditions with equal priority in the co-occurrence matrix
those likely to yield more records after evaluation.

Methods for exploring the cardinality of conditions in-
clude: (1) direct evaluationof the condition to calculate the
exact cardinality, and (2) utilizing cardinality estimation
for an approximate value. Each of these methods presents
its own advantages and disadvantages. Direct evaluation
provides precise cardinality but may lead to longer execu-
tion times, especially when evaluating a few conditions
over a large number of records. In contrast, cardinality es-
timationoffersmore consistent execution times regardless
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Table 1
Result of exection time

k 5 10 15 20

proposed base 0.132 0.206 0.286 0.371
proposed optimized 3.264 12.016 23.768 39.651

greedy 22.922 47.472 72.196 94.803
random 0.002 0.002 0.002 0.002

of the number of conditions, but the accuracy diminishes
as the number of conditions increases, leading to potential
discrepancies between estimated and actual values (e.g.,
PostgreSQL’s built-in cardinality estimation might yield
low accuracy). Advanced machine learning-based ap-
proaches for cardinality estimation, such as DeepDB[10],
Naru[11], and Scardina[12],may offer improved precision.

We recommend a hybrid approach that combines these
methods to mitigate their respective drawbacks, aiming
for both accuracy and efficiency. We suggest employing
cardinality estimation when a few conditions are selected
and a largenumber of records require evaluation, and tran-
sitioning to direct condition evaluation when the number
of records to evaluate falls below a certain threshold.

4. Experiments

4.1. Experimental Settings

Dataset.We follow the existing research on query relax-
ation [4] to use the Cars dataset [13], which was released
by Mottin et al. After removing duplicate records, this
dataset comprises 128,443 records with 31 columns, all
containing boolean values. We employed 167 of queries.
These are the queries used in existing research [4] and
these are consists of 4 − 10 conditions.

Competitors. In addition to the method proposed in Sec-
tion 3 (proposed basemethod) and the enhanced approach
described in Section 3.3 (proposed optimized method), we
included two comparison methods in our experiments: a
greedy method targeting the entire dataset (greedy) and
a random selection method (random). The threshold for
switching from cardinality estimation to direct execution
in the proposed optimized method is set at 10.

Environment. All experiments were performed on a Ma-
cOS Ventura 13.2.1 machine equipped with an Apple M2
CPU and 24 GB of main memory. For the implementation
of all algorithms in the experiments, Python 3.8 was used.
We employed PostgreSQL for data storage, ensuring a
unified experimental environment between the proposed
base method and the exhaustive search method. The re-
ported execution times exclude the dataset loading times.
To implement the cardinality estimation in the proposed
optimized method, DeepDB [10] was utilized. The model
used in this experiment was prepared beforehand.

Figure 2: Result of MMR score

4.2. Experimental Results
Tables 1 present the results of measuring the execution
times of each method for each query by varying the value
of 𝑘. According to these findings, the proposed base
method achieved speeds more than 100 times faster than
the greedy search method, while the proposed optimized
method was 3 – 7 times faster. These results demonstrate
that our proposed base method achieves a remarkable
speed-up, and that applying cardinality estimation incurs
substantial computational costs, consuming a significant
portion of the execution time. The execution time of our
proposed base method scales almost linearly.

Figures 2 display theMMR score results. Theweighting
factor 𝜆was set to 1 for both diversity and relevance. Both
the diversity and relevance terms were normalized to the
range [0, 1], resulting in MMR scores ranging from [0, 2].
The experimental results indicate that the proposed base
method approached the performance of the greedy search
method and achieved higherMMR scores compared to the
baseline randommethod.

5. Conclusion
In this study, we formulated an evaluationmetric that con-
siders bothdiversity and relevance in thefieldof databases.
We proposed a method that searches for a record set that
can be presented quickly compared to existing methods,
solving the empty-answer problem. We further improved
the method by employing cardinality estimation. In addi-
tion, we conducted an empirical evaluation on a dataset
and queries used in previous research, confirming that our
method achieves significant speed improvements while
maintaining accuracy.
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