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Abstract
Data discovery is an essential step in the data integration pipeline involving finding datasets whose combined information
provides relevant insights. Discovering joinable attributes requires assessing the closeness of the semantic concepts that two
attributes represent, which is highly sensitive and dependent on the chosen similarity metric. The state of the art commonly
approaches this task from a syntactic perspective, this is, performing comparisons based on the data values or on direct
transformations (e.g., via hash functions). These approaches suffice when the two sets of instances share the same syntactic
representation, but fail to detect cases in which the same semantic concept is represented by different sets of values, which
we refer as semantic non-syntactic joins. This is a relevant problem in data lake scenarios, when the underlying datasets
present high heterogeneity and lack of standardization. To that end, in this paper, we propose an empirical approach to
detect semantic non-syntactic joins, which leverages, simultaneously, syntactic and semantic measurements of the data. We
demonstrate that our approach is effective in detecting such kind of joins.
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1. Introduction
Data discovery is the exploratory task of navigating
through numerous data sources to find relevant datasets
for a given downstream task. With the advent of large-
scale and highly heterogeneous repositories (e.g., data
lakes [1], and open data repositories [2]), manual data
discovery is an unfeasible task that demands automated
and scalable methods [3]. In this paper, we address the
problem of discovering joinable tables in a data lake. This
is a problem that differs from the classical challenge of
discovering inclusion dependencies in relational databases,
which requires scalable and approximate methods [4],
and has been the subject of extensive research [5].
The customary approaches for discovering joinable

datasets are based on approximating or predicting met-
rics that quantify the degree of overlapping among sets
of values (e.g., containment, Jaccard or cosine). Yet, a
more challenging setting arises in the presence of syn-
tactic or semantic ambiguity. Indeed, the recently coined
data lake disambiguation problem [6], focuses on map-
ping homographs (i.e., data values that have the same
representation but different meanings). Conversely, in
this paper, we focus on the discovery of joinable tables
with synonyms (i.e., when data values have different rep-
resentations but have the same meaning). We refer to
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Figure 1: Join typology classification. Color indicates the
semantic similarity, green being semantically similar concepts
(i.e., interesting), and red uninteresting cases. The color inten-
sity highlights the degree of syntactic similarity

these cases as semantic non-syntactic joins (sns). Clearly,
traditional syntactically-oriented methods fail to detect
sns relationships, causing pairs of attributes with shared
semantics whose syntactic representation differs to not be
labelled as similar, which is a source of false negatives.
One of the main limitations of the related work to

discover sns joins is the usage of a binary label to deter-
mine joinability (i.e., joinable or non-joinable). This is
commonly measured using a single syntactically-related
metric, and, hence, sns joins tend to be misclassified as
non-joinable columns, given that, in both cases, the syn-
tactic similarity is low. To overcome this limitation, in
this paper we advocate for a finer-grained distinction of
joinability categories, taking into account both syntac-
tic and semantic similarities. As shown in Figure 1,
based on these two dimensions, besides sns joins, we can
further introduce the following categories: a) Seman-
tic joins: high degree of both syntactic and semantic
similarity. That is, the same conceptual idea represented
via the same values; b) Syntactic joins: high degree of
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syntactic similarity without a semantic relation. That is,
the same set of values representing different semantic
entities, which implies that, regardless of syntactic simi-
larity, the join is not useful; and c) Non-joinable pairs:
neither semantic nor syntactic relation.
The challenge of discovering sns joins has been stud-

ied from other perspectives, which can be classified in
three major categories: entity resolution (ER) methods,
embedding-based discovery, and comparison of statis-
tics. In ER, the community has proposed methods for
soft matching criteria based on fuzzy set matching or
string similarity joins [7]. Embedding-based discovery
utilizes high-dimensional vector representations of the
data to capture their underlying semantics [8]. Methods
based on the comparison of statistics rely on statistical
properties of the data to capture semantic relationships.
Yet, all such approaches combine all semantically-similar
joins under a same label (i.e. joinable). Hence, their
applicability for the sns detection problem is unknown,
as their capacity to identify same-semantics, different-
syntax joins is untested. Moreover, they rely on com-
putationally expensive pairwise comparison, presenting
prohibitive costs in large-scale environments.
To address the sns discovery problem, we propose a

novel method for the discovery of sns joins. As depicted
in Figure 1, we depart from the hypothesis that syntac-
tic and semantic similarities can be measured separately
to avoid misclassifying relevant sns pairs. To that end,
we consider both set-based metrics (to determine syntac-
tic similarity) and probability distributions (to determine
semantic similarity). We study the validity of our hypoth-
esis and experimentally show that our proposed method
identifies sns joins with high accuracy. This new ap-
proach relies on descriptive metrics at the schema level,
which ensures its scalability on large-scale scenarios.

2. Related work
A vast literature on discovering joinable datasets relies on
value comparison to assess the similarity of two columns.
Such syntactically-oriented approaches commonly use
similarity metrics such as containment [9], Jaccard [10],
or cosine [11]. As previously discussed, these methods
are unable to detect those cases in which semantically
similar columns present different instances of values (i.e.,
sns joins). We, hence, study related work on methods
that present notions of similarity that do not leverage
the intersection of values, at least not as a unique factor
to determine the joinability of two columns. We classify
them in three categories, which we review as follows.

Entity Resolution methods. Filtering is a technique
in entity resolution that, after blocking, aims to iden-
tify all pairs of similar records to enable similarity joins.
We refer the reader to [12] for an extensive survey on

systems for large-scale entity resolution, which can be
distinguished in learning-based methods [13], and non-
learning ones [14, 15].

Embedding-based discovery. Embeddings are high-
dimensional representations of values, an implicit
method to capture the underlying semantics of the data.
SEMPROP [16] uses embeddings on word names to find
attributes in a data lake that respond to a given semantic
type. A more complex implementation of this idea in-
volves the computation of embeddings for every value of
the attribute. PEXESO [17] directly defines the similarity
of two columns as the proximity of the embeddings of the
instances of both columns. WarpGate [18] incorporates
several optimizations to the comparison of embeddings,
such as the use of LSH indexes. DeepJoin [19] uses pre-
trained models to generate the embeddings.

Comparison of statistics. Statistical procedures and
measures are used to assess the similarity of two columns.
Statistical properties of the data highlight the relation-
ships that are hidden underneath the values that can not
be detected by a pure syntactical comparison. Some ex-
amples are the comparison of distributions to create clus-
ters of columns followed by the execution of syntactic-
based filtering [20], leveraging big table corpora to look-
up and detect correlations between attributes (SEMA-
JOIN [21]) or executing post-statistical-analysis data
transformations to produce the joins (Auto-Join [22]).

Research gap. The approaches above present non-
syntactic measures of semantic similarity that could ad-
dress the sns detection problem. However, they are lim-
ited specially in large-scale environments. Embedding-
based systems require pairwise comparisons among sets
of embeddings, the usage of statistics is mostly designed
to operate within a table and Entity Resolution tech-
niques present efficiency issues when handling large
datasets [23]. Moreover, their lack a finer-grained cate-
gorization of same-semantics, different-syntax joins, so
their applicability for the described task is untested.

3. Non-syntactic measures for
semantic similarity

The starting hypothesis of this exploration is the fol-
lowing: the semantic similarity of two columns can be
defined by comparing their probability distributions [20].
Yet, this hypothesis is meant to define a general trend
in the behavior of column pairs and is hardly the case
that two columns that share the same semantics are go-
ing to present exactly the same probability distribution.
Therefore, a more general hypothesis needs to be stated:
two columns represent a similar semantic concept if their
distributions resemble each other. The opposite statement



Figure 2: Generation of the metrics

might be more intuitive: two columns that do not present
any kind of semantic relationship will likely have differ-
ent distributions of values. In order to assess whether
these claims are valid or not, a fully-fledged experimen-
tation needs to be conducted, as, oppositely to the set-
intersection problems, the comparison of distributions
has not been thoroughly explored as a method to assess
the similarity of two columns, and less so for the detec-
tion of sns joins. Before, however, we will define how
the comparison of distributions will be performed.

3.1. Comparing distributions
In [20] the selected algorithm to compare distributions
is a modified version of the Earth Mover’s Distance algo-
rithm, which is difficult to employ and time-consuming
to execute. A more direct and efficient approach, that
still follows the same comparison-distribution principle,
could be defined by employing the usage of statistical
tests to determine if the distributions are signif-
icantly different. These are tools to mathematically
assess whether two sets of data are significantly different
from each other, leveraging certain statistical measures
to do so, such as the mean, median or the standard de-
viation. This work focuses on non-numerical columns,
given that assessing the semantic resemblance of two
sets of numbers is significantly harder. This implies that
the string-based values will be converted to sets of prob-
abilities and ingested by the tests to determine if these
same sets of probabilities are different, thus indicating
whether the underlying distributions of the values align.
If several of the tests are used and they all determine that
the groups of probabilities are not different, then we can

assume that the distribution is the same.
Nonetheless, the arbitrary nature of statistical tests

implies that relying on them as the only predictor might
generate too restrictive of an approach [24]. In order
to rectify this issue, statistical tests can be combined
with a more abstract measurement: the comparison of
metrics that describe general properties of the dis-
tributions. This includes calculating the differences of
several descriptive statistics obtained from the two dis-
tribution of the data, such as means, standard deviations,
entropies, etc. This second procedure gives a higher-level
intuition of the closeness of the sets of probabilities. In-
cluding an entire set of descriptive statistics about the
distributions can present a less constraining approach
that can generalize better in real-life scenarios.
Given the reasons stated, the comparison of distribu-

tions to assess semantic similarity will be performed by
combining two types of evaluation metrics: statistical
tests as a direct comparison and descriptive statistics as
an indirect comparison. On paper, this is the desired
compromise between correctly assessing the closeness of
the sets of data while allowing some leniency to develop
a more generalized approach. Figure 2 illustrates the
process of generating the metrics.

3.2. Defining the model
In Section 3.1 we have defined a novel approach to mea-
sure semantic similarity, which will be implemented by
the list of metrics defined in Table 1, following the pro-
posed categories. Syntactic similarity will be defined
following a similar, metric-based approach [4]. Our main
objective is to ascertain whether a combined consider-



Table 1
Considered metrics

Category Sub-category Metrics

Descriptive
statistics

”Basic” descriptive statistics Mean, mode, median, standard deviation, min value, max value
Distribution statistics Skewness, entropy, kurtosis

”Advanced” descriptive statistics
Geometric mean, harmonic mean, variation, mean absolute deviation,
inter-quantile range, standard error of the mean

Confidence intervals Mean of CI, min and max value of CI, standard deviation of CI

Statistical
tests

Compare means F test, Alexander-Govern test, T test, Kruskal test

Compare distributions
Mann-Whitney test, Kolmogorov-Smirnov test, Cramer-Von Mises
test, Anderson-Darling test

Compare scale parameters Ansari test, Mood test
Compare variances Bartlett test, Levene test, Fligner test
Others Wasserstein distance

Table 2
Predictive models results

Model F1-score (macro) Accuracy F1-score (sns) Recall (sns) Precision (sns)

Combined metrics model 90.39% 91.03% 88.08% 86.65% 90.04%
Semantic metrics model 77.16% 77.51% 76.03% 82.84% 70.34%
Syntactic metrics model 81.61% 83.98% 73.95% 68.50% 81.44%

ation of both semantic and syntactic similarities is able
to correctly characterize sns joins. To that end, we have
trained a classification model that employs boths sets of
metrics with the goal of accurately isolating sns joins. In
order to explore the behavior of the two sets of semantic
and syntactic assessment metrics, three different mod-
els were developed: (i) only using semantic similarity
assessment metrics, (ii) only using syntactic similarity
assessment metrics and (iii) combining both groups.
Table 2, depicts the evaluation results of the classi-

fier. We have used five different metrics to evaluate the
models. The first two are the F1-score and the accuracy
rate for the entire model, that is, taking into account the
predictions for all labels. This highlights the potential
of this predictive model in correctly classifying all join
typologies. The three final metrics measure the behav-
ior of the sns detection. First, we conclude that both
sets of metrics perform considerably well on their own
(74.54% and 73.95% in the sns F1-score), but combining
the two groups dramatically improves the capabilities
of the system (88.08% in the sns F1-score). The sepa-
rated good behavior can be explained by Figure 1, as
leveraging only semantic or syntactic aspects already
separates sns joins from two other typologies of joins,
whilst making it mostly indistinguishable to another cat-
egory. This complementary behavior is supported by
the inverse relationship between the recall and preci-
sion metrics. The semantic-metrics-only model detects
more sns joins correctly, but has a higher tendency of
classifying other typologies of joins as sns. On the other
hand, the syntactic-metrics-only model presents more

false positives but reduces the rate of false negatives. By
combining the two approaches we retain and improve
on the best characteristics of both methods. The results
of the combined-metrics model seem to indicate that
combining both types of metrics does provide the best
environment for sns join detection, as theorized in the
introduction of this work.

4. Conclusions and future work
We have proposed a new approach to data discovery that
focuses on the detection of sns joins. This new methodol-
ogy leverages, simultaneously, both syntactic and seman-
tic similarity measurements, developing a more nuanced
definition of similarity that could accurately character-
ize the semantic closeness of two sets of values without
requiring the same value-representation. This work is a
first step towards the definition of a model to identify sns
joins, yet, since we have followed an empirical approach
driven by labeled data gathered from external data lakes,
further work is required to ensure its generalizability.
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