
Context Based Completeness Assessment For Data
Warehouse Hierarchies
Camila Sanz1,*,†, Adriana Marotta1,†

1Facultad de Ingeniería, Universidad de la República

Abstract
Data quality is an unavoidable issue in Data Warehouse systems due to their nature. Quality of data is compromised
throughout the Data Warehouse (DW) lifecycle. This work addresses the completeness data quality dimension applied to DW
hierarchies, which refers to the existence of a parent for each data value in a hierarchy. An incomplete hierarchy can result in
data errors when applying aggregations and navigating cubes. The detection of incomplete hierarchies makes the user aware
of the problem, avoiding biased decisions. As data quality is context-dependent, proper metrics should be defined for each
domain and use case. We propose a generic data quality rule to assess hierarchy completeness, using OWL domain ontologies
as context. With this approach, we obtain a data quality metric that adapts itself to any application domain.

Keywords
Completeness, Context, Data Warehouse, Data Quality

1. Introduction
Data Warehouses (DW) are populated with heteroge-
neous sources, which are re-structured to be queried
from a multidimensional point of view. Multidimensional
operations allow navigating the DW dimensions hierar-
chies, through the aggregation of data. As the quality of
external sources is unknown, the user may obtain dirty
data as the result of multidimensional operations.

Many aspects can be taken into account when trying
to define and measure the quality of data. These aspects
are called DQ dimensions, while the mechanisms for
measuring DQ dimensions are called DQ metrics [1].

This work is part of an ongoing project that proposes
a mechanism for detecting DQ problems in DW systems,
considering context [2]. The general scenario consists
of a final user who wants to measure DQ over her ex-
isting DW. Our approach is to use one or many domain
ontologies as context to define possible DQ metrics. One
of the main challenges is that the DW and the domain
ontologies do not necessarily have the same structure,
and this mismatch must be solved in order to use the
ontology as context for the DW. Well known knowledge
graphs such as Yago [3], DBPedia [4], etc. can be used
as domain ontologies to get available contextual data. In
our approach DQ metrics are defined through DQ rules.

DOLAP 2024: 26th International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data, co-located with
EDBT/ICDT 2024, March 25, 2024, Paestum, Italy
*Corresponding author.
†

These authors contributed equally.
$ csanz@fing.edu.uy (C. Sanz); amarotta@fing.edu.uy
(A. Marotta)
� 0000-0002-9366-7669 (C. Sanz); 0000-0001-6547-466X
(A. Marotta)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

(a) Dimension
schema (b) Dimension instance

Figure 1: Incomplete hierarchy

This paper addresses the DQ dimension completeness
applied to hierarchies, a DQ problem that is referred
to as incomplete hierarchies in [5]. The detection of
incomplete hierarchies makes the user aware of data
errors that can be generated when navigating cubes and
applying aggregations. Figure 1 shows an example of
hierarchy incompleteness, where the mall of the store
“st06” is absent. If in the real world store “st06” is located
in a mall, then the data absence represents a DQ problem.
If not, this should not be a completeness problem.

In our work, we propose to use data context for de-
ciding whether there is a completeness problem or not.
Observe that for our approach the context is used as
ground truth or DQ referential.

DQ is often described in the literature as “fitness
for use” [1], in other words, DQ is context dependent
[6, 7, 8, 9, 10]. DQ can be perceived differently accord-
ing to the user, the location, or the application domain
to which the data correspond. The latter is the charac-

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:csanz@fing.edu.uy
mailto:amarotta@fing.edu.uy
https://orcid.org/0000-0002-9366-7669
https://orcid.org/0000-0001-6547-466X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

teristic of the context we use in our approach. In the
literature review presented in [11] about context depen-
dant DQ, authors find a lack of formalization for con-
text in DQ, pointing out that many of the proposals do
not even define the context. [12]. Hurtado-Mendelzon’s
multidimensional model [13] is the foundation for many
other existing specifications. It comprehends the main
DW concepts. One particularity of this model is that
enables the representation of heterogeneous dimensions.
As a consequence of heterogeneous dimensions, using
this model generates the need to handle the problem of
incomplete hierarchies [14, 15]. Our approach tries to
detect whether a hierarchy incompleteness is due to a DQ
problem whereas these works focus on completing the
hierarchies without considering the DQ point of view.

The main contributions of this work are: (i) a solution
for detecting the problem of incompleteness in DW hier-
archies, based on the context, and (ii) the specification of
a DQ rule for hierarchy incompleteness detection (com-
pleteness rule), together with the specifications of the
needed system components and relationships.

The rest of the document is structured as follows: in
Section 2 we present some definitions that are neces-
sary to introduce our completeness rule in Section 3, in
Section 4 we present an example and in Section 5 its
implementation. Finally, in Section 6 we conclude.

2. Previous Definitions
We introduce the DW and context formal specifications
and the correspondences between their elements.

DW Formal Specification The specification of the
DW is based on Hurtado-Meldenzon’s multidimensional
model [13]. We made some minor adaptations to their
model for it to meet our necessities: in this paper, we
introduce the use of tuples instead of atomic elements as
members of categories. We only introduce the notation
needed for understanding this work, details about the
formal model are available in [13, 16].

A dimension schema is a tuple 𝒮 = ⟨𝒞,↗⟩ where:

• 𝒞 = {𝑐1, . . . 𝑐𝑛} is a finite set of categories.
• Each 𝑐𝑗 = ⟨𝑎𝑡𝑡𝑗1 , . . . , 𝑎𝑡𝑡𝑗𝑝⟩ is a list of attributes,

representing the characteristics of the category.
• ↗: 𝒞×𝒞 s a binary relation between elements of
𝒞, which represents the hierarchies of dimension
𝒮 , and ↗* its transitive closure.

A dimension instance for 𝒮 , is a tuple 𝒟 = ⟨𝒰 , <,𝑚𝑒𝑚⟩,
where:

• 𝒰 a non empty finite set of tuples called members.
• 𝑡 = ⟨𝑣𝑎𝑙1, . . . 𝑣𝑎𝑙𝑝⟩ is a tuple of the universe,

each 𝑣𝑎𝑙𝑖 is its value for attribute 𝑖 and 𝑝 is the
length of the list of attributes of 𝑚𝑒𝑚(𝑡).

• 𝑚𝑒𝑚 : 𝒰 → 𝒞 is a total function that for each
value of 𝒰 returns its category.

• <: 𝒰 × 𝒰 is a binary relation between elements
of 𝒰 that represents hierarchy instances of 𝒮 , and
is consistent with ↗. <* is its transitive closure.

In this work it is not necessary for relation < to be ho-
mogeneous nor strict (every member of a category has
exactly one parent in each of the categories above). Both
conditions are required in [13] but not in [16].

Context We use OWL domain ontologies to represent
context. Given an OWL ontology𝑂, we consider its classes
𝐶𝐿, its object properties 𝑂𝑃 , and its data properties 𝐷𝑃 .

• 𝐶𝐿 = {𝐶𝐿1, . . . 𝐶𝐿𝑐}
• 𝑂𝑃 = {𝑂𝑃1 . . . 𝑂𝑃𝑜𝑝}, where 𝑑𝑜𝑚(𝑂𝑃𝑗) and
𝑟𝑎𝑛𝑔𝑒(𝑂𝑃𝑗) are its domain and range.

• 𝐷𝑃 = {𝐷𝑃1, . . . 𝐷𝑃𝑑𝑝}, where 𝑑𝑜𝑚(𝐷𝑃𝑗) is
a class and 𝑟𝑎𝑛𝑔𝑒(𝐷𝑃𝑗) is a data type.

An instance 𝑜 of 𝑂 is composed of its classes, data prop-
erties, and object properties instances.

• Class instance. An instance of 𝐶𝐿𝑖 is a set of
individuals 𝑐𝑙𝑖 = {𝑐𝑙𝑖1 , . . . , 𝑐𝑙𝑖𝑡}. Therefore,
𝑐𝑙 = 𝑐𝑙1 ∪ . . . ∪ 𝑐𝑙𝑐 is an instance of 𝐶𝐿.

• Data Property instance. An instance of 𝐷𝑃𝑖 is
a relation between an instance of 𝑑𝑜𝑚(𝐷𝑃𝑖) =
𝐶𝐿𝑖 and a value of type 𝑟𝑎𝑛𝑔𝑒(𝐷𝑃𝑖), 𝑑𝑝𝑖 ⊆
𝑐𝑙𝑖 × 𝑟𝑎𝑛𝑔𝑒(𝐷𝑃𝑖). Therefore, 𝑑𝑝 ⊆ 𝑑𝑝1 ∪ . . .∪
𝑑𝑝𝑑𝑝 is an instance of 𝐷𝑃 .

• Object Property instance. An instance of 𝑂𝑃𝑖 is
a relation between an instance of 𝑑𝑜𝑚(𝑂𝑃𝑖) =
𝐶𝐿𝑗 and at least one instance of 𝑟𝑎𝑛𝑔𝑒(𝑂𝑃𝑖) =
𝐶𝐿𝑘 , 𝑜𝑝𝑖 ⊆ 𝑐𝑙𝑗 × 2𝑐𝑙𝑘 . Therefore, 𝑜𝑝 ⊆ 𝑜𝑝1 ∪
. . . ∪ 𝑜𝑝𝑜𝑝 is an instance of 𝑂𝑃 .

DW - Context Mappings The correspondences be-
tween DW and ontology elements are binary relations,
called mappings (only the mappings needed for the com-
pleteness rule are presented). The first argument is the
DW element and the second one is the ontology element.

Consider a 𝐷𝑊 with 𝑛 dimension schemas, its cor-
responding dimension instances, an ontology 𝑂 and its
instance 𝑜, as presented in 2.

A value of an attribute of a DW tuple is mapped to an
instance of a data property.

𝑀𝑎𝑝𝑉 𝑎𝑙 ⊆ (𝑣𝑎𝑙11 ∪ . . . ∪ 𝑣𝑎𝑙𝑛|𝒰𝑛|)× 𝑑𝑝

Where 𝑣𝑎𝑙𝑖𝑗 = 𝑣𝑎𝑙𝑖𝑗 [1]∪. . .∪𝑣𝑎𝑙𝑖𝑗 [𝑘] and 𝑘 is the num-
ber of attributes of category 𝑚𝑒𝑚𝑖(𝑡𝑖𝑗). Precondition:
there must exist a mapping at schema level between the
corresponding attribute and the data property schema.

A pair of categories of a DW hierarchy is mapped to
an object property.

𝑀𝑎𝑝𝐻𝑖𝑒𝑟 ⊆ ((𝒞1 × 𝒞1) . . . ∪ (𝒞𝑛 × 𝒞𝑛))×𝑂𝑃

Precondition: there must exist a mapping between each
of the categories and 𝑑𝑜𝑚(𝑂𝑃𝑗) and 𝑟𝑎𝑛𝑔𝑒(𝑂𝑃𝑗) re-
spectively. Furthermore, mapped categories must be re-
lated through ↗*.

An element of the DW can be mapped to more than
one element of the ontologies.

3. Assessing Hierarchy
Completeness Using Context

Our formal DQ rule for hierarchy completeness is based
on the definitions presented in section 2.

According to [5] an incomplete hierarchy is one in
which some of its levels have missing values in one or
more instances. These values can be nonexistent or un-
known. The proposed completeness rule aims to detect
values in a category that do not have a corresponding
value in the immediate superior category and to check
whether or not this situation is consistent with the con-
text. To do so, we detect the tuples that do not have
a parent in the immediate superior category and check
their mapped values in the ontologies, used as referential,
to see if there exists a corresponding value there.

Considering two categories 𝑐𝑖𝑘 and 𝑐𝑖𝑘′ of dimension
𝒮𝑖 such that 𝑐𝑖𝑘 ↗ 𝑐𝑖𝑘′ , we define the set of tuples of
category 𝑐𝑖𝑘 that do not have a corresponding tuple in
category 𝑐𝑖𝑘′ as:

Δ𝑐𝑖𝑘
,𝑐𝑖

𝑘′ = {𝑡 ∈𝒰𝑖|𝑚𝑒𝑚𝑖(𝑡) = 𝑐𝑖𝑘∧

¬(∃𝑡′)(𝑚𝑒𝑚𝑖(𝑡
′) = 𝑐𝑖𝑘′ ∧ 𝑡 < 𝑡′)}

(1)

To define a completeness rule based on the context, two
preconditions must hold:

• There must exist a mapping between two cat-
egories of a hierarchy and an object property:
𝑀𝑎𝑝𝐻𝑖𝑒𝑟((𝑐𝑖𝑘 , 𝑐𝑖𝑘′), 𝑂𝑃𝑗).

• There must exist a mapping between an attribute
value of a tuple 𝑡 of category 𝑐𝑖𝑘 and a data prop-
erty instance 𝑑𝑝𝑟 , whose domain must be an in-
stance of class 𝑑𝑜𝑚(𝑂𝑃𝑗): 𝑀𝑎𝑝𝑉 𝑎𝑙(𝑡[𝑚], 𝑑𝑝𝑟).

These preconditions are shown in Figure 2. The Fig-
ure shows a mapping between the pair of categories
(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 (𝑐𝑖𝑘), 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 (𝑐𝑖𝑘′)) and the object
property 𝑂𝑃𝑗 : 𝑀𝑎𝑝𝐻𝑖𝑒𝑟((𝑐𝑖𝑘 , 𝑐𝑖𝑘′), 𝑂𝑃𝑗). In addi-
tion, attribute value 𝑣𝑎𝑙4 of tuple 𝑡 = ⟨𝑣𝑎𝑙4, 𝑣𝑎𝑙5, 𝑣𝑎𝑙6⟩,
which belongs to category 𝑐𝑖𝑘 , is mapped to instance
𝑑𝑝𝑟 of data property 𝐷𝑃 , whose domain is the class
𝐶𝐿1 = 𝐷𝑜𝑚(𝑂𝑃𝑗) : 𝑀𝑎𝑝𝑉 𝑎𝑙(𝑡[1], 𝑑𝑝𝑟). If all of the
previous conditions hold, then the completeness rule

Figure 2: Completeness rule preconditions

Figure 3: Movie Dimension

between category 𝑐𝑖𝑘 and 𝑐𝑖𝑘′ can be defined as shown
in equation 2.

𝑡 ∈ Δ𝑐𝑖𝑘
,𝑐𝑖

𝑘′ ∧ (𝑐𝑙, _) ∈ 𝑜𝑝𝑗 → 𝐶𝑜𝑚𝑝𝑐𝑖𝑘 ,𝑐𝑖
𝑘′ (𝑡, 0)

𝑡 ̸∈ Δ𝑐𝑖𝑘
,𝑐𝑖

𝑘′ ∨ (𝑐𝑙, _) ̸∈ 𝑜𝑝𝑗 → 𝐶𝑜𝑚𝑝𝑐𝑖𝑘 ,𝑐𝑖
𝑘′ (𝑡, 1)

(2)

The presented rule may be aggregated to measure com-
pleteness for a complete hierarchy and not only between
a pair of levels.

4. Example
We consider a Cinema DW that stores the quantity of
tickets sold and contains a dimension called Movie. The
hierarchy goes as Movie → Subgenre → Genre →
All. Figure 3 shows an instance of Movie dimension.
An ontology populated with data from Yago knowledge
graph for movies, shown in Figure 4, gives context to
Movie dimension. The ontology contains information
about Movies, Subgenres, and Genres and their relations.

Figure 4: Movies ontology

We want to apply the completeness rule shown in
equation 2 for categories 𝑚𝑜𝑣𝑖𝑒 and 𝑠𝑢𝑏𝑔𝑒𝑛𝑟𝑒. To do
so, we define the set ∆𝑚𝑜𝑣,𝑠𝑢𝑏𝑔 as shown in equation 1.

Δ𝑚𝑜𝑣,𝑠𝑢𝑏𝑔 = {𝑡 ∈ 𝒰𝑀𝑜𝑣𝑖𝑒𝑠|𝑚𝑒𝑚𝑖(𝑡) = 𝑚𝑜𝑣𝑖𝑒∧
¬(∃𝑡′)(𝑚𝑒𝑚𝑖(𝑡

′) = 𝑠𝑢𝑏𝑔𝑒𝑛𝑟𝑒 ∧ 𝑡 < 𝑡′)}
= {⟨𝑚2, Toy Story⟩}

The necessary mappings are presented in equation 3.
Note that preconditions also hold.

𝑀𝑎𝑝𝑉 𝑎𝑙(𝐶𝑜𝑟𝑎𝑙𝑖𝑛𝑒, (mov1, 𝐶𝑜𝑟𝑎𝑙𝑖𝑛𝑒))

𝑀𝑎𝑝𝑉 𝑎𝑙(𝑇ℎ𝑒 𝐿𝑖𝑜𝑛 𝐾𝑖𝑛𝑔, (mov2, 𝑇ℎ𝑒 𝐿𝑖𝑜𝑛 𝐾𝑖𝑛𝑔))

𝑀𝑎𝑝𝑉 𝑎𝑙(𝑇𝑜𝑦 𝑆𝑡𝑜𝑟𝑦, (mov3, 𝑇 𝑜𝑦 𝑆𝑡𝑜𝑟𝑦))

𝑀𝑎𝑝𝐻𝑖𝑒𝑟((𝑚𝑜𝑣𝑖𝑒, 𝑠𝑢𝑏𝑔𝑒𝑛𝑟𝑒), rdfs:type)

(3)

The application of the completeness rule in equation
2 for the movie titled Toy Story is shown in 4. As
⟨𝑚2, Toy Story⟩ ∈ ∆𝑚𝑜𝑣, 𝑠𝑢𝑏𝑔 and (mov3,subg2) ∈
𝑜𝑝𝑟𝑑𝑓𝑠:𝑡𝑦𝑝𝑒 hold, hierarchy completeness between𝑚𝑜𝑣𝑖𝑒
and 𝑠𝑢𝑏𝑔𝑒𝑛𝑟𝑒 categories for this movie is 0.

⟨𝑚3, Toy Story⟩ ∈ ∆𝑚𝑜𝑣, 𝑠𝑢𝑏𝑔∧
(mov3,subg2) ∈ 𝑜𝑝𝑟𝑑𝑓𝑠:𝑡𝑦𝑝𝑒 →

𝐶𝑜𝑚𝑝𝑚𝑜𝑣, 𝑠𝑢𝑏𝑔(⟨𝑚3, Toy Story⟩, 0)
(4)

For movies titled Coraline and The Lion King the
result of the application of the completeness rule
is 1, because ⟨𝑚1,Coraline⟩ ̸∈ ∆𝑚𝑜𝑣, 𝑠𝑢𝑏𝑔𝑒𝑛 and
⟨𝑚2, The Lion King⟩ ̸∈ ∆𝑚𝑜𝑣, 𝑠𝑢𝑏𝑔𝑒𝑛.

5. Implementation and Validation
We use an extended Datalog language with aggregation
functions in order to allow the expressivity of different
DW elements. Even though we used pyDatalog in our
implementation [17], we present our solution using stan-
dard Datalog syntax in the sake of clarity.

Figure 5: Completeness rule result

Data Warehouse Implementation. We follow Dat-
alog definition of a DW’s Dimensions and Hierarchies
presented in [18].
Dimensions: For dimension 𝑚𝑜𝑣𝑖𝑒 we introduce a pred-
icate 𝐷𝑖𝑚𝑀𝑜𝑣𝑖𝑒(𝑋𝑚𝑜𝑣𝑖𝑒, 𝑋𝑠𝑢𝑏𝑔𝑒𝑛𝑟𝑒, 𝑋𝑔𝑒𝑛𝑟𝑒).
Hierarchies: We introduce a Datalog rule for each element
in relation ↗*

𝑚𝑜𝑣𝑖𝑒 to represent the hierarchy.
CompletenessAssessment Implementation. The on-
tologies are managed using a Python library, owlready2
[19] and the DW is implemented using PyDatalog. Map-
pings between Python and Datalog are implemented us-
ing simple Python data structures. Datalog completeness
rule is implemented in pyDatalog. Rules implementation
and datasets are available in [20].

A first validation of the completeness rule was made
by comparing the results obtained by the implementa-
tion against human observation of a small data set. To
this end, hierarchy completeness problems were detected
manually and compared with the automatic completeness
assessment. We used the instance of Movie Dimension
shown in Figure 3 and the movie ontology of Figure 4.

Manually detected values for completeness rule are
shown in section 4 and the result of the execution of the
completeness rule is shown in Figure 5. For the movie
titled “Toy Story”, the manually detected value for com-
pleteness rule is 0, as shown in equation 4. In the excecu-
tion (Figure 5), the same value is obtained for that movie.
For the other two movies the manually detected value
and the obtained in the excecution are also the same.

6. Conclusions
In this work we proposed a general mechanism for DW
hierarchy completeness assessment, considering context
as domain ontologies. We presented the specification of a
completeness rule, as well as the specifications of the con-
cepts needed for supporting the rule, which are the DW,
the domain ontology and the mappings between them.
We also presented an example and an implementation
that show how the proposed mechanism is applied.

We believe that our proposal has a level of abstraction
in the formalizations that enables evaluating hierarchy
completeness for any DW in any context.

This work is being extended building solutions for
other DQ dimensions. Future work includes applying
our proposal to a real world case.

References
[1] C. Batini, M. Scannapieco, Data and In-

formation Quality, Data-Centric Sys-
tems and Applications, Springer Interna-
tional Publishing, Cham, 2016. URL: http:
//link.springer.com/10.1007/978-3-319-24106-7.
doi:10.1007/978-3-319-24106-7.

[2] C. Sanz, Context based data quality rules for mul-
tidimensional data, in: Z. Bao, T. K. Sellis (Eds.),
Proceedings of the VLDB 2022 PhD Workshop co-
located with the 48th International Conference on
Very Large Databases (VLDB 2022), Sydney, Aus-
tralia, September 5, 2022, volume 3186 of CEUR
Workshop Proceedings, CEUR-WS.org, 2022. URL:
http://ceur-ws.org/Vol-3186/paper_3.pdf.

[3] Yago, Yago knowledge graph, https:
//yago-knowledge.org/, 2023.

[4] DBPedia, Dbpedia knowledge graph, https://
dbpedia.org, 2023.

[5] M. Golfarelli, S. Rizzi, Data Warehouse Design:
Modern Principles and Methodologies, McGraw
Hill LLC, 2009. URL: https://books.google.com.uy/
books?id=cRMkPa3TpPYC.

[6] L. Bertossi, F. Rizzolo, L. Jiang, Data Quality
Is Context Dependent, in: Enabling Real-Time
Business Intelligence, Lecture Notes in Business
Information Processing, Springer, Berlin, Heidel-
berg, 2010, pp. 52–67. URL: https://link.springer.
com/chapter/10.1007/978-3-642-22970-1_5. doi:10.
1007/978-3-642-22970-1_5.

[7] M. Helfert, O. Foley, A Context Aware Information
Quality Framework, in: 2009 Fourth International
Conference on Cooperation and Promotion of Infor-
mation Resources in Science and Technology, 2009,
pp. 187–193. doi:10.1109/COINFO.2009.65.

[8] A. L. McNab, D. A. Ladd, Information Quality:
The Importance of Context and Trade-Offs, in:
2014 47th Hawaii International Conference on Sys-
tem Sciences, 2014, pp. 3525–3532. doi:10.1109/
HICSS.2014.439.

[9] G. Rogova, M. Hadzagic, M. O. St-Hilaire, M. C. Flo-
rea, P. Valin, Context-based information quality for
sequential decision making, in: 2013 IEEE Inter-
national Multi-Disciplinary Conference on Cogni-
tive Methods in Situation Awareness and Decision
Support (CogSIMA), 2013, pp. 16–21. doi:10.1109/
CogSIMA.2013.6523818.

[10] D. M. Strong, Y. W. Lee, R. Y. Wang, Data Quality in
Context, Commun. ACM 40 (1997) 103–110. URL:
http://doi.acm.org/10.1145/253769.253804. doi:10.
1145/253769.253804.

[11] F. Serra, V. Peralta, A. Marotta, P. Marcel, Use of
context in data quality management: a systematic
literature review, 2022. arXiv:2204.10655.

[12] A. Ranganathan, R. H. Campbell, An infrastructure
for context-awareness based on first order logic,
Personal and Ubiquitous Computing 7 (2003) 353–
364. URL: https://link-springer-com.proxy.timbo.
org.uy:88/article/10.1007/s00779-003-0251-x.
doi:10.1007/s00779-003-0251-x.

[13] C. A. Hurtado, A. O. Mendelzon, OLAP Dimension
Constraints, in: Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’02, ACM,
2002, pp. 169–179. URL: http://doi.acm.org/10.1145/
543613.543636. doi:10.1145/543613.543636.

[14] M. Caniupán, L. Bravo, C. A. Hurtado, Repair-
ing inconsistent dimensions in data warehouses,
Data & Knowledge Engineering 79-80 (2012) 17–
39. URL: https://www.sciencedirect.com/science/
article/pii/S0169023X12000596. doi:https://doi.
org/10.1016/j.datak.2012.04.002.

[15] C. Dyreson, T. Pedersen, C. Jensen, Incom-
plete information in multidimensional databases,
Multidimensional databases (2003). doi:10.4018/
978-1-59140-053-0.ch010.

[16] L. Bertossi, M. Milani, Ontological Multidimen-
sional Data Models and Contextual Data Quality, J.
Data and Information Quality 9 (2018) 14:1–14:36.
URL: http://doi.acm.org/10.1145/3148239. doi:10.
1145/3148239.

[17] pyDatalog library, https://pypi.org/project/
pyDatalog/, 2023.

[18] C. Sanz, A. Marotta, Using ontologies as context for
data warehouse quality assessment, in: Big Data
Analytics and Knowledge Discovery: 25th Interna-
tional Conference, DaWaK 2023, Penang, Malaysia,
August 28–30, 2023, Proceedings, Springer-Verlag,
Berlin, Heidelberg, 2023, p. 3–17. URL: https://doi.
org/10.1007/978-3-031-39831-5_1. doi:10.1007/
978-3-031-39831-5_1.

[19] owlready2, owlready2 library, https://owlready2.
readthedocs.io/en/v0.37/, 2023.

[20] C. Sanz, Movies example, 2023. URL: https://github.
com/camila-sanz/Example.

http://link.springer.com/10.1007/978-3-319-24106-7
http://link.springer.com/10.1007/978-3-319-24106-7
http://dx.doi.org/10.1007/978-3-319-24106-7
http://ceur-ws.org/Vol-3186/paper_3.pdf
https://yago-knowledge.org/
https://yago-knowledge.org/
https://dbpedia.org
https://dbpedia.org
https://books.google.com.uy/books?id=cRMkPa3TpPYC
https://books.google.com.uy/books?id=cRMkPa3TpPYC
https://link.springer.com/chapter/10.1007/978-3-642-22970-1_5
https://link.springer.com/chapter/10.1007/978-3-642-22970-1_5
http://dx.doi.org/10.1007/978-3-642-22970-1_5
http://dx.doi.org/10.1007/978-3-642-22970-1_5
http://dx.doi.org/10.1109/COINFO.2009.65
http://dx.doi.org/10.1109/HICSS.2014.439
http://dx.doi.org/10.1109/HICSS.2014.439
http://dx.doi.org/10.1109/CogSIMA.2013.6523818
http://dx.doi.org/10.1109/CogSIMA.2013.6523818
http://doi.acm.org/10.1145/253769.253804
http://dx.doi.org/10.1145/253769.253804
http://dx.doi.org/10.1145/253769.253804
http://arxiv.org/abs/2204.10655
https://link-springer-com.proxy.timbo.org.uy:88/article/10.1007/s00779-003-0251-x
https://link-springer-com.proxy.timbo.org.uy:88/article/10.1007/s00779-003-0251-x
http://dx.doi.org/10.1007/s00779-003-0251-x
http://doi.acm.org/10.1145/543613.543636
http://doi.acm.org/10.1145/543613.543636
http://dx.doi.org/10.1145/543613.543636
https://www.sciencedirect.com/science/article/pii/S0169023X12000596
https://www.sciencedirect.com/science/article/pii/S0169023X12000596
http://dx.doi.org/https://doi.org/10.1016/j.datak.2012.04.002
http://dx.doi.org/https://doi.org/10.1016/j.datak.2012.04.002
http://dx.doi.org/10.4018/978-1-59140-053-0.ch010
http://dx.doi.org/10.4018/978-1-59140-053-0.ch010
http://doi.acm.org/10.1145/3148239
http://dx.doi.org/10.1145/3148239
http://dx.doi.org/10.1145/3148239
https://pypi.org/project/pyDatalog/
https://pypi.org/project/pyDatalog/
https://doi.org/10.1007/978-3-031-39831-5_1
https://doi.org/10.1007/978-3-031-39831-5_1
http://dx.doi.org/10.1007/978-3-031-39831-5_1
http://dx.doi.org/10.1007/978-3-031-39831-5_1
https://owlready2.readthedocs.io/en/v0.37/
https://owlready2.readthedocs.io/en/v0.37/
https://github.com/camila-sanz/Example
https://github.com/camila-sanz/Example

	1 Introduction
	2 Previous Definitions
	3 Assessing Hierarchy Completeness Using Context
	4 Example
	5 Implementation and Validation
	6 Conclusions

