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Abstract  
Authors have analyzed the basic concepts of cybersecurity, and cybersecurity 
technologies, studied the peculiarities of artificial intelligence application in 
cybersecurity, analyzed applied machine learning methods, and presented the results of 
experimental studies of the application of machine learning methods in cybersecurity. 
Intrusion detection based on an intelligent security system using machine learning 
methods, which is designed to detect the latest malicious URLs and is extended for 
distributed denial of service (DDoS) attacks, has been studied. Experimental studies and 
performance evaluations of the investigated SIS-ID system have been carried out. 
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1. Introduction 

As the quantity of IoT-connected devices rises, 
encompassing smart thermostats, refrigerators, 
speakers, lamps, and locks, the concept of smart 
homes offers the allure of enhanced convenience 
and comfort [1]. Yet, the widespread integration 
of these smart technologies also amplifies the 
susceptibility to security vulnerabilities and 
compromises to household privacy [2]. To 
address these concerns, intrusion detection 
systems emerge as viable solutions, offering 
network-level safeguards for smart devices 
installed within residences [3–5]. 

Nowadays, the growth of network threats 
poses a challenging problem against the security 
mechanism in networks to protect sensitive data 
and its components [6]. Therefore, intelligent 
security systems will be advised to deploy them 
with machine learning techniques against the 
ever-increasing cyber threats. Machine learning 
has become a crucial cybersecurity technology 
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for protecting computer networks and systems 
from cybercriminals [7]. 

The purpose of the study is to identify ways to 
improve the security mechanism using machine 
learning methods to detect cyberattacks. 

2. Overview of Intelligent 
Intrusion Detection Security 
Systems 

Intrusion Detection Systems (IDS) and 
Intrusion Prevention Systems (IPS) are 
regarded as crucial methodologies by 
cybersecurity researchers due to their efficacy 
in identifying and thwarting novel cyberattacks 
in live networks, encompassing a range of 
attacks and irregular activities [8]. 

Evaluation of input cyber data sets is essential 
to the effectiveness of any intrusion detection 
system approach. It allows evaluation of the 
proposed methods that are qualified to detect 
and prevent cyber-attacks. Preparing datasets for 
a network IDS can be difficult to obtain due to 
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privacy issues. In addition, the biggest problem is 
the lack of public and accessible datasets to be 
used in the training phase based on machine 
learning techniques. In this work, the SIS-ID 
system was investigated by referencing datasets: 
DB-MALCURL using the ISCX-URL-2016 dataset 
(Table 1) [9] and DB-DDoS using the DDOS2019 
dataset. 

Table 1 
Class distribution for DB-MALCURL  

Type of attacks Number of rows 

Benign   7530   
Spam   7735   
Phishing   7945   
Malware   6670   
Defacement   6820   

 
Preparing the DB-DDoS dataset. A Distributed 
Denial-of-Service (DDoS) attack stands out as one 
of the most formidable threats to network 
security, aiming to overwhelm networks with a 
flood of malicious traffic. Despite the existence of 
various tools designed to detect DDoS attacks, the 
challenge of low computational performance 
persists, hindering cybersecurity experts in 
developing intrusion detection systems that rely 
on machine learning techniques, which in turn 
depend heavily on dependable datasets. Hence, 
DB-DDoS is crafted utilizing a dataset to deploy 
SIS-ID models for detecting DDoS attacks. This 
dataset encompasses recent DDoS network flow 
attacks, detailed in Table 2. This framework 
encapsulates 13 classes of DDoS attacks as 
illustrated in the subsequent table. 

Table 2 
Class distribution for DB-DDoS 

Type of attack Quantity of rows 

BENIGN   55665   
DrDoS_DNS   55975   
DrDoS_LDAP   55875   
DrDoS_MSSQL   56050   
DrDoS_NetBIOS   55635   
DrDoS_NTP   56325   
DrDoS_SNMP   56310   
DrDoS_SSDP   56625   
DrDoS_UDP   55930   
Syn   55910   
TFTP   55890   
WebDDoS   55590   

3. Analysis of Data and Function 
Realization 

This subsection presents engineering methods 
of data and designed functions used in the 
implementation of the SIS-ID system. Indeed, 
several factors can influence the results of a 
machine-learning algorithm. 

Therefore, at the implementation stage, data 
and functions are used to improve the 
performance of ML based on an intelligent model. 

Data preprocessing. The data 
preprocessing method is a critical step in 
machine learning that aims to improve the 
quality of the data to enhance the extraction of 
useful information from the desired data. This 
phase prepares the samples by processing 
them in a proper form. Thus, in this part, the 
preprocessing phase has been addressed with 
several techniques related to converting the 
subsets into a readable, understandable, and 
clean format, as the data is collected from 
sources and may contain noisy, empty, or 
irrelevant data that can potentially reduce the 
performance of the SIS-ID system. The stages of 
data pre-processing are shown in Fig. 1 and are 
listed as follows: 

Data
Preprocessed 

Data

CSV File Import Save DataImpute Missing Value
+Feature Importance

+Feature Scaling  
Figure 1: Workflow for data preprocessing 

1. Conducting data cleansing to address 
missing values by replacing them with 
valid entries. 

2. Achieving subset balance through 
techniques such as under-sampling and 
over-sampling. 

Many datasets exhibit an imbalance in the 
number of instances across their classes. To 
address this issue, a sampling method has been 
employed utilizing the scikit-learn library [10], 
which encompasses two primary algorithms 
outlined as follows: 
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• Over-sampling: duplication of 
samples from under-represented 
classes by “imblearn.over_sampling 
import RandomOverSampler.” 

• Under-sampling: removing samples 
from over-represented classes by 
“imblearn.under_sampling import 
RandomUnderSampler.” 

3. Data transformation by coding 
categorical features and scaling them. As 
a rule, most IDS datasets include features 
with different scopes and ranges. 

Indeed, the dataset includes features with 
multiple dimensions and ranges. Therefore, to 
overcome this problem, scaling methods should 
be applied to the data and they should be brought 
to the same scale of values [11]. 

Function technique. The function selection 
method used in the SIS-ID system to improve 
the efficiency of the results has been 
considered in this part. Therefore, a recursive 
function elimination based on function ranking 
is proposed, which uses the “feature_selection. 
RFECV” cross-validation method. 

Selected Functions. The recommended 
function technique assigns an importance 
score or weight to each selected function in the 
SIS-ID system. Thus, the functions with the 
lowest importance score and variance are 

excluded from the data, and the model is 
trained according to this technique:  

1. DB-MALCURL dataset.  
2. DB-DDoS dataset. 

4. Training Methodology for the 
SIS-ID System 

The SIS-ID system under investigation is an 
intelligent system developed using the Python 
language. It has been deployed via 
(data.ceh.vn) to detect recent cyberattacks 
using BDD-MALCURL and DB-DDoS, both of 
which are utilized during the training phase of 
the system outlined in this study. The training 
process is detailed in the subsequent section, 
wherein 80% of each data source is allocated 
for training, representing a significant portion 
necessary to effectively train and optimize the 
model parameters. However, the remaining 
20% of the data is reserved for testing 
purposes to ensure an unbiased evaluation of 
the SIS-ID. This testing set is consistently 
excluded from the training instances to 
compare the results with the actual classes. 
Indeed, to achieve a robust detection rate, the 
proposed SIS-ID follows a methodology that 
incorporates distinct training and testing sets, 
as depicted in Fig. 2.
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Figure 2: General architecture of the SIS-ID training methodology based on applied machine 
learning methods  

Applied machine learning methods. Herein, 
we delineate the training methodologies 
employed in the SIS-ID proposal, incorporating 

various machine learning techniques validated 
on the aforementioned datasets, namely 
BDDMALCURL and DB-DDoS. Consequently, 
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the machine learning models are chosen 
through controlled learning, including K-
Nearest Neighbors (KNN), decision trees, and 
two multi-class approaches, namely OneVsRest 
and OneVsOne models. Additionally, ensemble 
methods have been devised utilizing five 
models: Voting, Stacking, Bagging, XGBoost, 
Random Forest, and Adaboost, following a 
predefined methodology aimed at optimizing 
the system across each dataset, as elaborated 
below.: 

3. Controlled learning: 
• decision tree. 
• k-nearest neighbor algorithm. 
• multi-class techniques. 
• classifier vs. each other. 
• classifier one vs. the rest.  

4. Ensemble techniques. This method 
amalgamates several weaker base 
models to construct a robust and 
effective model. For this experiment, six 
ET models were utilized, encompassing 
extreme gradient boosting (XGBoost), 
adaboost, batching, voting, random 
forest, and stacking. 

5. Development of ensemble technique: bag 
classifier; voting classifier.  

6. Learning without control. 
The Local Outlier Factor (LOF) is considered 

to be one of the most widely used models in 
anomaly detection because of the importance 
of overcoming the problem of unknown traffic 
entering the network. 

Therefore, the interest was to propose a 
proper SIS-ID configuration to avoid any attack 
that the server might face. Therefore, 60,000 
records associated with benign instances were 
extracted from DB-DDoS to train the model on 
normal traffic. Hence, the system has been 
trained on legitimate traffic (inliers) and can be 
evaluated in real time for detecting any unusual 
activity (outliers) going forward. On the other 
hand, 40,000 records from multiple instances 
of DDoS were extracted to prove their 
effectiveness during the testing phase to detect 
any subsequent attack. As LOF operates as an 
unsupervised learning method, it evaluates the 
local density variation based on the data point 

about its neighboring points. Consequently, if a 
data point has a notably lower density 
compared to its neighbors, it will be classified 
as an outlier (indicating a potential attack), 
with LOF serving as the score for each 
anomalous sample. The model selected the 
location for the data point using the k-nearest 
neighbors method to calculate the distance and 
estimate the local intensity. 

Training implementation. In the studied 
SIS-ID system, several machine learning 
classification models are applied in the training 
phase, as described in the above section. To 
overcome the long time required to verify each 
block, the SIS-ID training methodology has 
been applied. 

Thus, the training implementation, training, 
and evaluation process for each model is 
analyzed using the cross-validation technique. 
It consists of two cycles for the training and 
evaluation phases [12]. 

At the beginning of the studied training 
system, both DB-MALCURL and DB-DDoS were 
divided into k convolutions (k = 5 in our study), 
which were approximately the same size. Then, 
in the outer loop for each iteration, we took 
20% as one data convolution to be reserved for 
the testing phase.  

Hence, the remaining convolutions (k – 1) 
are directed into the inner loop for 
hyperparameter tuning, functioning as an 
automated model that needs to be 
systematically chosen independently from the 
evaluation instances. Within each model, the 
inner loop entails a grid search for parameters 
and their values, necessitating estimation, with 
each parameter estimated via a cross-
validation step (k – 1). Additionally, the 
hyperparameters that yield the highest average 
cross-validation performance are selected. 
Consequently, the SIS-ID is trained on the 
chosen data within the (k – 1) folds based on 
the optimal parameters achieved and 
subsequently evaluated for detection 
performance across a stable fold in the outer 
contour. Ultimately, this process is iterated k 
times (k = 5), ensuring that each outer loop 
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data fold is utilized once, resulting in k 
performance evaluations of our system. 

Optimization of the learning process was a 
critical aspect of developing the intelligent 
security system under study, given its reliance 
on machine learning techniques. A significant 
challenge we encountered was determining the 
most suitable method for optimizing the SIS-ID 
system during the training phase. Our priority 
was to identify a robust approach for model 
optimization. Consequently, we employed a 
hyperparameter optimization technique, 
which constitutes a meta-optimization task. 
Each trial involving a specific hyperparameter 
setting necessitated training the model, 
essentially constituting an internal 
optimization process. This approach enabled 
us to identify the optimal set of parameter 
combinations that significantly influenced the 
performance of our chosen algorithms on the 
validation set [13]. 

The hyperparameter plays an immediate 
role in shaping the learning process of the 
system. Therefore, we utilize GridSearchCV, 
which traverses a predefined dictionary of 
hyperparameters to fine-tune the model and 
determine the optimal parameter values. This 
also allows us to specify the number of cross-
validation iterations for each set of 
hyperparameters [14, 15]. The selected 
parameters for the GridSearchCV object are 
listed as shown below: 

• Estimator: selected model. 
• Params_grid: parameters of the 

dictionary model that contains the 
hyperparameter. 

• Evaluation: the evaluation metric. 
• N_jobs: number of processes that will be 

executed in parallel. 
• cv: The cross-validation technique’s 

count, which in our system is set to 5. 
Verbose: this is corrected to 1 to get the 

detailed output while we are fitting the data to 
the GridSearchCV object. 

5. Experimental Research and 
Evaluation of SIS-ID 
Performance 

Application of the SIS-ID system on DB-
MALCURL. This section provides the outcomes 
yielded by the SIS-ID system when 
implemented on DB-MALCURL, employing 
controlled learning techniques alongside 
ensemble methods. 

Controlled learning. The models were 
assessed employing various controlled 
learning algorithms, including KNN, and 
decision tree, as well as multi-class 
methodologies such as OneVsRest and 
OneVsOne models [16]. 

As depicted in Table 3 (let’s denote Model 
OneVsRest—1, OneVsOne—2, KNN—3, 
Decision Tree—4), a compilation of 
performance metrics derived from each 
classification report of the applied models is 
provided. It was observed that the multi-class 
approaches attained the most superior 
performance, notably with OneVsRest 
achieving a precision of 98.29%, recall of 
98.23%, an F1 score of 98.24%, and an 
accuracy rate of 98.18%. 

The OneVsOne model demonstrated a 
precision of 98.16%, a recall of 98.06%, an F1 
score of 98.07%, and an accuracy reaching 
98.03%. Moreover, it was observed that the 
KNN model attained a precision of 96.38%, 
recall of 96.49%, an F1 score of 96.39%, and 
accuracy standing at 96.39% 

Table 3 
Outcomes of the controlled learning techniques 
implemented and evaluated with DB-
MALCURL 

Model 

Macro Average 

Accuracy 
Precision  Recall  F1-Score  

1  0.98296  0.98231  0.98246  0.98181 

2  0.98167  0.98065  0.98073  0.98032 

3  0.96382  0.96497  0.96395  0.96393 

4  0.94812  0.94974  0.95535  0.96019 
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Nevertheless, the decision tree model yielded a 
precision of 94.81%, a recall of 94.97%, an F1 
score of 95.53%, and achieved an accuracy rate 
of 96.01%. Furthermore, Table 4 provides a 

breakdown of class detection and 
measurement ratios using supervised learning 
models. 

Table 4 
Outcomes of identifying individual classes utilizing the measurement coefficient in conjunction 
with controlled learning models 

Model   Number  
Inst.   

Coefficient   1 2 3 4 

R D R D R D R D 

Defacement   1547   Precision   98.96%   1527   98.96%   1526   95.50%   1527   95.50%   1502   

Recall   98.71%   98.71%   Recall   98.64%   

F1-score   98.84%   97.08%   F1-score   98.80%   

Benign   1506   Precision   97.83%   1485   97.76%   1487   96.96%   1469   96.96%   1454   

Recall   98.61%   97.54%   Recall   98.74%   

F1-score   98.21%   97.25%   F1-score   98.25%   

Malware   1334   Precision   99.39%   1302   99.23%   1297   96.13%   1315   96.13%   1292   

Recall   97.60%   98.58%   Recall   97.23%   

F1-score   98.49%   97.34%   F1-score   98.22%   

Phishing   1589   Precision   95.84%   1544   95.53%   1540   96.27%   1421   96.27%   1431   

Recall   97.17%   89.43%   Recall   96.92%   

F1-score   96.50%   92.72%   F1-score   96.22%   

Spam   1364   Precision   99.41%   1350   99.19%   1347   97.25%   1344   97.25%   1335   

Recall   98.97%   98.53%   Recall   98.75%   

F1-score   99.19%   97.89%   F1-score   98.97%   

 
Let’s denote Model OneVsRest—1, 

OneVsOne—2, KNN—3, Decision Tree—4 and 
R—Rate, D—Detect. 

By analyzing Table 4, it has been found that 
one versus one achieved the most accurate 
model as well as the best classifier for detecting 
the classes of damage, phishing, and spam. The 
results were obtained from the confusion 
matrix shown in Fig. 3. Thus, among the 1547 
records classified as malicious, we detected 
1527 malicious, 1 benign, 0 malware, 17 
phishing, and 2 spam with an accuracy rate of 
98.96%, recall (98.71%), and f1 score 
(98.84%). In addition, among the 1506 entries 
classified as benign, we received 2 corruptions, 
1485 benign, 4 malware, 15 phishing, and 0 
spam with an accuracy rate of 97.83%, recall 
rate of 98.61%, and f1 score of 98.21%. Among 
the 1334 entries classified as malware, we 
found 0 corruptions, 6 benign programs, 1302 
malware, 25 phishing programs, and 1 spam 
with an accuracy rate of 99.39%, recall rate of 
97, 60% and f1 (98.49%), and among the 1589 
entries we classified as phishing, we obtained 

10 malware, 26 benign, 4 malware, 1544 
phishing and 5 spam with a precision rate of 
95.84%, recall (97.17%) and f1 (96.50%). 
Finally, among 1364 related to the spam attack, 
we achieved 4 corruptions, 0 benign, 0 
malware, 10 phishing, and 1350 spams with a 
high ratio measurement; an accuracy rate of 
99.41%, recall (98.97%), and f1 score 
(99.19%). 

 
Figure 3: Confusion matrix for the OVR model 
on DB-MALCURL 
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Moreover, the one-versus-one approach has 
been identified as the top classifier for 
detecting the benign class. The findings have 
been derived from the confusion matrix 
depicted in Fig. 4. Thus, among the 1506 
records classified as benign, we detected 1 
corruption, 1487 benign, 4 malware, 13 
phishing, and 1 spam with an accuracy of 
97.76%, recall (98.74%), and f1 score 
(98.25%).  

Furthermore, out of the 1547 entries 
categorized as malicious, 1526 were identified 
as malicious, 1 as harmless, 0 as malware, 18 as 
phishing, and 2 as spam.  

Among the 1334 entries classified as 
malware, none were corrupted, 8 were benign, 
1297 were identified as malware, 28 as 
phishing, and 1 was spam. However, among the 
1589 entries classified as phishing, 11 were 
corrupted, 25 were benign, 6 were malware, 
1540 were identified as phishing, and 7 as 
spam.  

 
Figure 4: Confusion matrix for the OVO model 
on DB-MALCURL  

Finally, out of the 1364 entries associated with 
the spam attack, the system registered 4 as 
corrupted, none as benign, none as malware, 13 
as phishing, and 1347 as spam. 

KNN emerged as the top classifier for 
detecting the malware class. The findings were 
extracted from the confusion matrix depicted 
in Fig. 5. Among the 1334 entries categorized as 
malware, we identified 0 as corrupted, 5 as 
benign, 1315 as malware, 13 as phishing, and 1 
as spam, achieving an accuracy rate of 96.13%, 

recall of 98.58%, and an F1 score of 97.34%. 
Furthermore, out of the 1547 entries classified 
as malicious, we correctly identified 1527 as 
malicious, 1 as benign, 2 as malware, 12 as 
phishing, and 5 as spam. Among the 1506 
entries classified as safe, we accurately 
classified 8 as corrupted, 1469 as benign 
programs, 11 as malware, 17 as phishing, and 1 
as spam. Additionally, among the 1589 entries 
categorized as phishing, we successfully 
detected 58 as corrupted, 40 as benign, 39 as 
malware, 1421 as phishing, and 31 as spam. 
Lastly, out of the 1364 entries related to spam 
attacks, our system accurately identified 6 as 
corrupted, none as benign, 1 as malware, 13 as 
phishing, and 1344 as spam. 

The outcomes from the decision tree 
classifier exhibited the least effectiveness in 
identifying all categories. Illustrated in the 
error matrix in Fig. 6, out of the 1547 entries 
classified as corruptions, we identified 1502 as 
corruptions, 3 as benign, 7 as malware, 28 as 
phishing, and 7 as spam.  

 
Figure 5: Confusion matrix illustrating the 
performance of the KNN model on DB-
MALCURL 
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entries classified as phishing, we received 44 
corruptions, 36 benign, 47 malware, 1431 
phishing, and 31 spam. Finally, among the 1364 
cases classified as spam, we received 7 
malicious, 1 benign, 6 malware, 15 phishing, 
and 1335 spam. 

 
Figure 6: Error matrix for the decision tree 
model in DB-MALCURL 

Application of the SIS-ID system on DB-
DDoS. The following are the results obtained 
by the investigated SIS-ID system, which was 
used in DB-DDoS using controlled learning. 

Controlled learning. The models have been 
tested using several controlled learning 
algorithms, including Decision Tree, KNN, and 
multi-class methods using OneVsRest and 
OneVsOne models. As depicted in Table 5, 
which provides a summary of the performance 
metrics acquired from the classification 
reports of these models. We found that the 
multiclass methods achieved the highest 
performance, with OneVSRest achieving 
79.60% precision, recall (76.85%), F1 score 
(76.03%), and accuracy of 76.82%, while the 
OneVsOne models recorded precision 
(79.43%), recall (76.81%), F1 score (76.02%), 
and accuracy of 76.78%. In addition, we 
noticed that the Decision Tree model achieved 
precision (79.29%), recall (76.74%), F1 score 

(75.97%), and accuracy of 76.71%, and finally, 
the KNN model achieved precision (73.51%), 
recall (72.52%), F1 score (71.98%), and 
accuracy of 72.48%. 

Table 5 
Results of the applied controlled learning 
methods tested via DB-DDoS 

Model 

Macro Average 

Accuracy 
Precision  Recall F1-Score  

OneVsRest  0.7961  0.7685  0.7604  0.7682  

OneVsOne  0.7944  0.7682  0.7603  0.7679  

Decision 
Tree  

0.793  0.7675  0.7597  0.7672  

KNN  0.7352  0.7252  0.7199  0.7248  

 
Let’s denote Model OneVsRest—1, 
OneVsOne—2, Decision Tree—3, KNN—4, and 
R—Rate, D—Detect.  

Table 6 illustrates the detection process for 
each class alongside the coefficient 
measurements employing controlled learning 
models. Upon analyzing Table 6, it becomes 
apparent that the one versus the rest method 
emerges as the most effective classifier for 
identifying the BENIGN, DrDoS_SNMP, 
DrDoS_SSDP, and TFTP classes.  

The outcomes were derived from the 
confusion matrix illustrated in Figure 7. 
Consequently, out of the 11133 entries 
categorized as benign, we correctly identified 
10998 as benign, while 135 cases were falsely 
classified as other attack classes, resulting in a 
precision rate of 99.54%, recall of 98.79%, and 
an F1 score of 99.16%. 

Moreover, out of the 11262 entries 
categorized as DrDoS_SNMP, we correctly 
identified 11156 as DrDoS_SNMP, while 106 
cases were falsely classified as other classes, 
resulting in an accuracy rate of 89.72%, recall 
of 99.06%, and an F1 score of 94.16%.  
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Table 6 
Results of detecting each class using controlled learning models tested via DB-DDoS 

Attack   Number  
Inst 

Coefficient   1 2 3 4 

R D R D R D R D 

BENIGN   11133   Precision   99.54%   10998   99.56%   10995   99.49%   10995   93.65%   10337   
Recall   98.79%   98.67%   98.79%   98.67%   
F1-score   99.16%   99.08%   99.16%   99.08%   

DrDoS_  
DNS   

11195   Precision   81.99%   5493   81.85%   5500   79.97%   5479   47.37%   8214   
Recall   49.07%   48.94%   Recall   49.13%   
F1-score   61.39%   60.72%   F1-score   61.40%   

DrDoS_  
LDAP   

11175   Precision   52.02%   8355   52.02%   8362   51.94%   8285   50.86%   4763   
Recall   74.77%   74.14%   Recall   74.83%   
F1-score   61.35%   61.09%   F1-score   61.37%   

DrDoS_  
MSSQL   

11210   Precision   71.39%   4905   71.58%   4923   71.90%   4928   58.26%   5011   
Recall   43.76%   43.96%   Recall   43.92%   
F1-score   54.26%   54.56%   F1-score   54.43%   

DrDoS_  
NetBIOS   

11127   Precision   97.52%   10550   97.57%   10551   97.28%   10549   95.57%   10185   
Recall   94.81%   94.81%   Recall   94.82%   
F1-score   96.15%   96.03%   F1-score   96.18%   

DrDoS_  
NTP   

11265   Precision   79.04%   8076   78.86%   8071   79.15%   8091   76.50%   7745   
Recall   71.69%   71.82%   Recall   71.65%   
F1-score   75.19%   75.31%   F1-score   75.08%   

DrDoS_  
SNMP   

11262   Precision   89.72%   11156   89.73%   11155   89.68%   11151   89.67%   11114   

Recall   99.06%   99.01%   Recall   99.05%   

F1-score   94.16%   94.12%   F1-score   94.16%   

DrDoS_  
SSDP   

11325   Precision   61.65%   9072   62.55%   8759   61.76%   8828   68.44%   6435   

Recall   80.11%   77.95%   Recall   77.34%   

F1-score   69.68%   68.92%   F1-score   69.16%   

DrDoS_  
UDP   

11186   Precision   70.04%   10085   69.92%   10078   70.52%   11186   68.84%   9209   

Recall   90.16%   89.04%   Recall   90.09%   

F1-score   78.84%   78.71%   F1-score   78.73%   

Syn   11182   Precision   96.05%   4714   95.83%   4709   95.52%   4729   79.44%   5158   

Recall   42.16%   42.29%   Recall   42.11%   

F1-score   58.60%   58.63%   F1-score   58.51%   

TFTP   11178   Precision   61.98%   10953   61.95%   10942   61.99%   10928   61.90%   10076   

Recall   97.99%   97.76%   Recall   97.89%   

F1-score   75.93%   75.87%   F1-score   75.88%   

UDP-lag   11244   Precision   77.13%   6400   74.31%   6657   74.63%   6702   68.96%   6255   

Recall   56.92%   59.61%   Recall   59.20%   

F1-score   65.50%   66.28%   F1-score   65.90%   

WebDDoS   11118   Precision   96.85%   11099   96.95%   11101   97.04%   11088   96.28%   11036   

Recall   99.83%   99.73%   Recall   99.85%   

F1-score   98.32%   98.37%   F1-score   98.38%   

Let’s denote Model OneVsRest—1, 
OneVsOne—2, Decision Tree—3, KNN—4 and 
R—Rate, D—Detect. 

Additionally, among the 11325 records 
labeled as DrDoS_SSDP, we accurately 
identified 9072 as DrDoS_SSDP, whereas 2253 
cases were incorrectly classified as other 

classes, yielding a precision rate of 61.65%, 
recall of 80.11%, and an F1 score of 69.68%. 
Lastly, out of the 11178 entries classified as 
TFTP, we identified 10953 as such, while 225 
cases were falsely classified as other classes, 
resulting in a precision rate of 61.98%, recall of 
97.99%, and an F1 score of 75.93%. 
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Figure 7: Error matrix for the OVR model on 
DB-DDoS 

The one vs. one approach proves to be the most 
effective classifier in identifying the 
DrDoS_LDAP and WebDDoS classes. The 
results were derived from the confusion matrix 
depicted in Figure 8. Specifically, out of the 
11175 entries classified as DrDoS_LDAP, we 
correctly identified 8362 as DrDoS_LDAP, 
while 2813 cases were falsely classified as 
other classes, resulting in an accuracy rate of 
52.02%, recall of 74.83%, and an F1 score of 
61.37%. 

 
Figure 8: Error matrix for the OVO model in 
DB-DDoS 

In addition, the decision tree model is the best 
for detecting the DrDoS_NetBIOS, DrDoS_NTP, 
DrDoS_UDP, and UDP-lag classes. The 
outcomes were derived from the confusion 
matrix depicted in Fig. 9. Thus, among the 
11127 records classified as DrDoS_NetBIOS, we 
obtained 10549 DrDoS_NetBIOS and 578 cases 
for the other classes as false positives with an 
accuracy rate of 97.28%, recall (94.81%) and f1 
score (96.03%). In addition, among the 11265 
records classified as DrDoS_NTP, we obtained 
8091 DrDoS_NTP and 3174 cases for the other 

classes as false positives with a 79.15% 
accuracy rate, 71.82% recall, and f1 score 
(75.31%).  

Furthermore, out of the 11186 entries 
classified as DrDoS_UDP, we correctly 
identified 9960 as DrDoS_UDP, while 1226 
cases were falsely classified as other classes, 
resulting in a precision level of 70.52%, recall 
of 89.04%, and an F1 score of 78.71%. 

 
Figure 9: Error matrix for the decision tree 
model in DB-DDoS 

Additionally, among the 11244 records labeled 
as UDP-lag, we identified 6702 as UDP-lag, 
whereas 4542 cases were falsely classified as 
other classes, yielding a precision rate of 
74.63%, recall of 59.61%, and an F1 score of 
66.28%. 

Ultimately, the KNN model emerged as the 
top classifier for identifying the DrDoS_DNS, 
DrDoS_MSSQL, and Syn classes. The results 
were obtained from the confusion matrix 
depicted in Fig. 10.  

 
Figure 10: Error matrix for the KNN model on 
DB-DDoS 

Additionally, among the 11210 entries 
categorized as DrDoS_MSSQL, we identified 
5011 as DrDoS_MSSQL, while 6199 cases were 
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falsely classified as other classes, leading to a 
precision rate of 58.26%, recall of 44.70%, and 
an F1 score of 50.59%. Lastly, out of the 11182 
entries classified as Syn, we accurately 
identified 5158 as Syn, while 6024 cases were 
falsely classified as other classes, resulting in a 
precision rate of 79.44%, recall rate of 46.13%, 
and an F1 score of 58.36%. 

Learning without a tutor. Next, we present 
the results of the local outlier model that was 
deployed in the tested hardware to detect 
unknown incoming traffic (novelty detection) 
(Fig. 11).  

 
Figure 11: Evaluating the performance of the 
LOF model implemented in the proposed 
apparatus  

As shown in Fig. 11, which represents the 
performance determination during the testing 
phase using DB-DDoS, the results show that 
among the 40,000 entries classified as 
subsequent attacks (outliers), we detected 
38,778 as attacks and 1222 as benign 
(internal).  

Furthermore, the model achieved an 
effective detection rate of 96.94%. 

6. Comprehensive Examination 
and Assessment of the Results 

The examined intelligent security system 
demonstrates significant success rates in 
forecasting both malicious URLs and DDoS 
attacks across ten machine-learning models. To 
substantiate our methodology and address any 
shortcomings in identifying malicious URL 
attacks, we present the efficacy of our system 
during the testing phase in Tables 7 and 8. 
These tables showcase the top-performing 
models for each attack type, along with their 
corresponding detection rates. 

Table 7 
Results of the models for identifying each attack using DB-MALCURL  
Type of attack Num. of Instance Voting Stacking XG-Boost OneVsRest KNN 

Defacement  1547  1535 1536  1538 1527 1527  

Benign  1506   1493 1482 1489 1485 1469  

Malware  1334  1312 1311 1313 1302  1315   

Phishing  1589  1539 1541 1532  1544 1421  

Spam  1364  1353  1356 1353 1350 1344  

Therefore, upon thorough examination of 
these tables, we deduce that the XGBoost model 
demonstrated the most effective performance 
in identifying the defacement attack, achieving 
a detection rate of 99.41%.  

Table 8 
The detection rate achieved by the best models 
for each attack using DB-MALCURL 
Type of 
attack  

Model Identification of 
instances 

Detection 
speed 

Defacement XGBoost   1538 99.41% 
Benign Voting   1493 99.13% 
Malware KNN   1315 98.57% 
Phishing OneVsRest   1544 97.16% 
Spam Stacking   1356 99.41% 

38778

1222

ATTACK (OUTLIER) BENIGN (INLIER)

ATTACK DETECTION RATE: 96,94%
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Similarly, the benignity voting method attained 
99.13% accuracy, while KNN proved highly 
effective for malware detection, achieving a 
rate of 98.57%.  

Furthermore, OneVsRest exhibited strong 
performance in phishing detection, with an 
accuracy of 97.16%, and the spam stack model 
showcased a detection rate of 99.41%. 
Furthermore, the system proved to be an 
improvement with decent results compared to 
the decision tree model, which recorded the 
lowest result using controlled learning, as 
shown in Table 9.  

Table 9 
Results of different ML methods tested with 
DB-MALCURL 

Model 
Macro Average 

Accuracy  
Precision  Recall  F1-Score  

Voting  0.9857  0.9855  0.9856  0.9852  

Stacking  0.9848  0.9847  0.9848  0.9844  

XGBoost  0.9846  0.9846  0.9846  0.9843  

OneVsRest  0.9828  0.9821  0.9824  0.9820  

Random Forest  0.9826  0.9818  0.9821  0.9817  

Adaboost  0.9818  0.9810  0.9813  0.9809  

OneVsOne  0.9813  0.9805  0.9809  0.9805  

Bagging  0.9799  0.9790  0.9794  0.9790  

KNN  0.9642  0.9655  0.9645  0.9640  
Decision Tree  0.9558  0.9568  0.9562  0.9555  

As a result, we improved our system’s 
performance by utilizing voting as the 
recommended ensemble model, leading to a 
3% increase in precision, 2.86% in recall, 
2.93% in F1 score, and 2.97% in accuracy. This 
was followed by stacking, which saw an 
increase of 2.90% in precision, 2.78% in recall, 
2.85% in F1 score, and 2.88% in accuracy. 

Moreover, upon juxtaposing the 
performance of malicious URL detection in our 
SIS-ID system with the findings presented by 
the CIC lab [17], outlined in Table 10, it 
becomes apparent that our method using the 
KNN model outperformed theirs. 

We observed accuracy and recall 
improvement of over 1.4%, with precision and 
recall increasing by 2.42% and 2.55% 
respectively. Meanwhile, the decision tree 
model demonstrated enhancements of 0.55% 
in precision, 1.58% in recall, and 1.68% in 
recall. Ultimately, the random forest exhibited 
superior performance, showcasing a precision 
improvement of 3.17%, an accuracy boost of 
1.26%, and an enhanced recall of 1.18%. 

In contrast, we will delve into the evaluation 
of our system’s performance utilizing DB-DDoS 
for detecting DDoS attacks. 

Table 10 
Comparative study of SIS-ID tested with DB-MALCURL 

Model CIC Laboratory SIS-ID 

Accuracy Precision Recall Accuracy Precision Recall 

Random Forest >0.95 0.97 0.97 0.98174 0.9826 0.9818 
Decision Tree >0.95 0.94 0.94 0.9555 0.9558 0.9568 

KNN >0.95 0.94 0.94 0.9640 0.9642 0.9655 

Upon examining Tables 11 and 12, which 
highlight the top-performing models for each 
class, we ascertain that the stacking model 
demonstrated the most effective performance in 
identifying the five designated classes, achieving 
the following accuracies respectively: 
DrDoS_LDAP: 75.45%, DrDoS_NetBIOS: 95.46%, 
DrDoS_NTP: 72.98%, DrDoS_SNMP: 99.18%, and 
DrDoS_UDP: 90.45%.  

Thus, we validated our methodology by 
applying ensemble models.  

Moreover, the OneVsRest model 
demonstrated superior performance in 

detecting BENIGN with an accuracy of 98.79% 
and DrDoS_SSDP with an accuracy of 80.11%, 
whereas the KNN model exhibited better 
accuracy in detecting DrDoS_DNS at 73.37% 
and Syn at 51.27%.  

Additionally, the packetization model 
achieved an accuracy of 96.47% for TFTP and 
98.97% for WebDDoS, while Adaboost attained 
44.87% accuracy in detecting DrDoS_MSSQL. 
Finally, XG-Boost achieved a detection rate of 
61.13% for the UDP delay attack. 
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Table 11 
Results of the best models for detecting each attack using DB-DDoS  

Model Stacking Bagging XG- Boost OneVsRest  Adaboost KNN 

BENIGN  10992 10997 10997 10998  10967 10337 
DrDoS_DNS  5588  5469  5545  5493  5527  8214  

DrDoS_LDAP  8431  8347  8357  8355  8328  4763 

DrDoS_MSSQL  4847  4888  5015  4905  5030  5011 

DrDoS_NetBIOS  10622   10536  10584  10550  10536  10185 

DrDoS_NTP  8221  8180  8032  8076  7944  7745 

DrDoS_SNMP  11170   11164  11162  11156  11150  11114 

DrDoS_SSDP  8812  9042  8734  9072  8730  6435 

DrDoS_UDP  10118   10095  10003  10085  10005  9209 

Syn  4716  4676  4729  4714  4728  5158 

TFTP  10912  10987  10924  10953  10963  10076 

UDP-lag  6657  6424  6748  6400  6732  6255 

WebDDoS  11094  11103  11095  11099  11093  11036 

 
The system showcased an enhancement in 
performance metrics, yielding commendable 
results compared to KNN, which registered the 
lowest accuracy among supervised learning 
models, as illustrated in Table 13. 

Hence, the system underwent evolution 
using the stacking model, resulting in 
enhancements as follows: 6.26% improvement 
in precision, 4.55% in recall, 4.29% in F1 score, 
and 4.56% in accuracy. 

 
Table 12 
Detection rates attained by best models for 
each DB-DDoS attack 
Type of Attack Model Іnstances Rate, % 

Bеnіng OneVSRest  10998 98.79 
DrDoS_DNS KNN 8214 73.37 
DrDoS_LDAP  Stacking  8431  75.45 
DrDoS_MSSQL  Adaboost  5030  44.87 
DrDoS_NetBIOS  Stacking  10622  95.46 
DrDoS_NTP  Stacking  8221  72.98 
DrDoS_SNMP  Stacking  11170  99.18 
DrDoS_SSDP  OneVSRest  9072  80.11 
DrDoS_UDP  Stacking  10118  91.35 
Syn  KNN  5163  51.27 
TFTP  Bagging  10987  96.47 
UDP-lag  XG-Boost  6748  61.13 
WebDDoS  Bagging   11103  98.97 

Comparing the studied DDoS attack detection 
approaches with the performance of the IDS 
associated with the CIC lab [17], shown in Table 
14, it is shown that the system under study 
showed better measurements using the 
random forest model; accuracy up to 2.64%, 
recall 11.87% and f1-Score (7.05%). 

Table 13 
Results of different ML methods tested with DB-DDoS 

Model 

Macro Average 

Accuracy 
Precision  Recall  

F1-
Score  

Stacking  0.79775 0.77077 0.7628 0.77047 
Voting  0.79639 0.76899 0.76091 0.76869 
Bagging  0.79762 0.76898 0.76072 0.76869 
XGBoost  0.79455 0.76894 0.76135 0.76863 
Random 
Forest  

0.79649 0.76865 0.76051 0.76837 

OneVsRest  0.79609 0.76853 0.7604 0.76824 
OneVsOne  0.79436 0.76819 0.76027 0.76788 
Adaboost  0.79343 0.76771 0.7603 0.7674 
Decision 
Tree  

0.79298 0.76749 0.75975 0.76719 

KNN  0.73518 0.72524 0.71987 0.72484 

 
 
 

 
Table 14 
Comparative study of SIS-ID tested through DB-DDoS 

 CIC Laboratory SIS-ID 

Model Precision Recall F1-Score Precision Recall F1-Score 

Random Forest 0.77 0.65 0.69 0.796485 0.768653 0.760505 
Decision Tree 0.78 0.65 0.69 0.792984 0.76749 0.759745 

 

  

https://theses.hal.science/tel-03522384/document
https://theses.hal.science/tel-03522384/document
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7. Real-Time Hardware Modelling 

The following are the results of the verification 
phase of the SIS-ID system under study, which 
was tested using DB-DDoS based on the 
configured hardware in the real-time phase. 
Due to the intrusion prevention system’s 
challenge of dealing with unknown future 
traffic that may deter cyberattacks in the 
network, the goal of implementing a 
cybersecurity mechanism to avoid any attack 

that may threaten the server is applied in this 
experiment, as shown in Fig. 12.  

Validation. The attack simulation analysis 
and hardware verification process were 
conducted to avoid the denial of service attack 
in the real-time phase. LOIC software was 
taken to perform a DOS attack and then 
verified based on Raspberry Pi as intelligent 
security hardware using the local ejection 
model. 

So, we chose a domain name as the victim. 
HTTP request is the attack method, there were 
five threads to simulate this attack.

Yes

No

Expired?

No

Attack Classified and 
preventedTimed Out

Target(URL)

Execution of LOIC

Thread Attack Method

Flood with Requests

Attack 
Summary

Apply the SIS-ID Rules Attack?

Yes

Server Reply

Raspberry PI

 
Figure 12: General architecture of the SIS-ID real-time hardware simulation

After that, a small DOS attack was carried out. 
On the other hand, the hardware was 
configured to capture the incoming packets 
using CICFLOWMETER to get the relevant 
functions related to the flows. Thus, these 
packets were generated and matched with our 
SIS-ID training system according to its rules. 

Furthermore, as shown in Fig. 13, the 
hardware proved effective in detecting the 
following attack as well as preventing it. The 
observed attack lasted 60 seconds from 
12:40:08 to 12:41:08 and bombarded the 
victim with several unusual requests.

  
Figure 13: Effectiveness of detecting the next attack in real-time

Prevention has been achieved by utilizing the 
customized firewall in our equipment to avoid 
the detected attacks. Hence, our implemented 
system successfully detected all data streams 
containing numerous abnormal packets, 
enabling the identification of the IP addresses 
linked to the source of the threat. Thus, in this 
experiment, the intelligent security hardware 
prevented five consequence flows coming from 
the IP address “10.3.141.106” to the web 
server, which confirmed dynamic rule-based 

protection. Ultimately, the attack was 
identified as blocked, and delayed for 5 
seconds as the proposed request expired to 
indicate that the server had not received any 
unusual request within the specified period. 

8. Conclusions 

The peculiarities of artificial intelligence 
applications in cybersecurity and analyses of 
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applied machine learning methods have been 
studied.  

Consideration has been given to the 
operation of a Host-Based Intrusion Detection 
System (HIDS) employing text mining 
techniques. The experimental findings 
regarding the application of machine learning 
methods in cybersecurity are presented. Four 
distinct machine learning techniques (KNN, 
SVM, Decision Tree, and MLP) were employed 
in the analysis to identify the most effective 
classification model. HIDS demonstrated the 
capability to detect SQLi, XSS, and directory 
traversal attacks. As a result, MLP achieved the 
highest accuracy of 90.67%. Following this, 
KNN attained the second-highest accuracy rate 
at 88.17%, succeeded by a decision tree with 
86.08%. Lastly, SVM exhibited the lowest 
accuracy rate of 82.67%. 

The exploration of intrusion detection 
through an intelligent security system 
employing machine learning techniques has 
been undertaken. This system is specifically 
designed to identify recent malicious URLs and 
has been expanded to encompass DDoS 
attacks. Experimental investigations and 
performance assessments of the examined SIS-
ID system have been conducted. 

In addition, several measurements on the 
achieved detection rate for each model in 
terms of each considered SIS-ID attack have 
been discussed. The studied SIS-ID system has 
been verified as intrusion prevention 
hardware with the effectiveness of preventing 
DOS attacks in the real-time phase. 
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