
189

Approaches to Solving Proxy Performance Problems
for HTTP and SOCKS5 Protocols for the Case of Multi-Port
Passwordless Access

Oleksandr Nonik1, Nadiia Lobanchykova1, Tetiana Vakaliuk1,2,3, Viacheslav Osadchyi2,4,

and Oleksandr Farrakhov5

1 Zhytomyr Polytechnic State University, 103 Chudnivsyka str., Zhytomyr, 10005, Ukraine
2 Institute for Digitalisation of Education of the NAES of Ukraine, 9 M. Berlynskoho str., Kyiv, 04060, Ukraine
3 Kryvyi Rih State Pedagogical University, 54 Gagarin ave., Kryvyi Rih, 50086, Ukraine
4 Borys Grinchenko Kyiv Metropolitan University, 18/2 Bulvarno-Kudriavska str, Kyiv, 04053, Ukraine
5 Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the
National Academy of Sciences of Ukraine, 34a Palladin ave., Kyiv, 03142, Ukraine

Abstract
The main problem is that most users use proxies for browsers that need more password
authentication support. Most services solve this problem using IP address authentication
and a “one port, one proxy” approach. This approach helps to solve the problem in
principle, but a severe problem arises when scaling services vertically. A study showed
that performance decreases in proportion to the number of ports listened to, and
sometimes even 2x increases with further increases in the number of ports. The study also
found that even three proxies can negatively affect server performance if they listen to
thousands of ports. A way to solve this problem was by using efficient I/O (eBPF) in the
Linux kernel and adding a universal proxy handler that can automatically detect whether
it is a SOCKS, HTTP, or other type of Proxy. The purpose of the proxy reactor is to change
incoming packet headers, and the whole scheme of the proxy reactor is based on loading
a small, very lightweight piece of code into the Linux kernel to make dynamic changes.
According to this concept, the default port can listen to an unlimited number of ports,
more precisely, 65,000 ports and other numbers. Physically, only one socket in the system
will serve this port, regardless of how operations are performed. The approach is aimed
at optimizing and solving the above problems.

Keywords 1
SOCKS, SOCKS5, HTTP, HTTPS, Go, Linux, IP, TCP, UDP.

1. Introduction

Ensuring the high performance of proxy servers
is one of the most critical problems in modern
network infrastructure. Proxy servers are widely
used for various purposes, including access to
blocked resources, anonymous web browsing,
and protection against malware. The growing
demand for these services has led to an increase
in the load on proxy servers [1]. Many existing
proxy servers cannot perform well to meet the
growing demand. This can lead to delays in

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine

EMAIL: nonikaleksandr@gmail.com (O. Nonik); lobanchikovanadia@gmail.com (N. Lobanchykova); tetianavakaliuk@gmail.com

(T. Vakaliuk); v.osadchyi@kubg.edu.ua (V. Osadchui); farrakhov@ukr.net (O. Farrakhov)
ORCID: 0009-0008-5970-3583 (O. Nonik); 0009-0006-0856-6182 (N. Lobanchykova); 0000-0001-6825-4697 (T. Vakaliuk); 0000-0001-

5659-4774 (V. Osadchui); 0000-0003-4988-126X (O. Farrakhov)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

accessing resources and other known problems.
Many modern applications use multi-port
network access [2]. This can lead to an additional
load on proxy servers. Several approaches have
been developed to solve this problem, such as
parallel and asynchronous algorithms, caching,
and traffic optimization. However, these
approaches have limitations; in some cases, they
cannot provide the required performance [3].

The problem of proxy server performance is
especially relevant in the case of multi-port
passwordless access. Many modern applications

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

190

use multi-port access to the network. This can
lead to an additional load on proxy servers, as
each port requires separate request processing.

This paper aims to develop new approaches
to solving the performance problems of proxy
servers for HTTP and SOCKS5 protocols in the
case of multi-port passwordless access.

2. Theoretical Background
2.1. Main Aspects of Proxy Servers for

HTTP and SOCKS5 Protocol

Proxy servers are essential in today’s online
space, acting as a gateway between users and
the Internet. These systems act as
intermediaries, redirecting user requests to
the appropriate servers and returning the
received responses. This not only simplifies
access to Internet resources but also provides
additional security, as a proxy server can filter
incoming and outgoing traffic and block access
to malicious sites [4].

These servers also play a crucial role in
ensuring anonymity and privacy on the
Internet. They allow users to hide their real IP
addresses, essential for protecting personal
information and bypassing geographic
restrictions on accessing content. This is
especially useful for circumventing geo-
restrictions or accessing content that may be
blocked in the user’s region [5]. Using different
IP addresses on users’ behalf helps hide their
real addresses from web servers. This ensures
anonymity and helps avoid potential
cyberattacks, as the user’s IP address remains
unknown. Proxy servers can perform various
functions, including redirecting requests from
client applications to other servers [6].

Proxy servers simplify and optimize
Internet access within local networks, such as
office buildings or educational institutions [7,
8]. They allow centralized Internet traffic
management, ensuring efficiency and security
[9]. By acting as intermediaries between
clients seeking resources and servers
providing those resources, they can effectively
distribute the load on network resources and
optimize access to web content [10].

They perform actions on behalf of other
servers, which is critical to improving
performance and security on the Internet.
They can be used to cache data, reduce server
load, and improve the overall efficiency of

network operations [11]. A sequence diagram
illustrating the data transfer between the user
and the end resource, both with and without a
proxy server, is shown in Fig. 1.

These features make proxy servers
indispensable in the modern digital world, where
data security and privacy are essential. They help
users to remain secure and anonymous while
interacting with the Internet [12]. “Proxy” means
“intermediary” in English. In the context of the
Internet, a Proxy server is a program that acts as
an intermediary between a client and a server. It
receives requests from the client and forwards
them to the server. The server responds to the
request, and the Proxy returns the response to
the client [13].

In the diagram shown in Fig. 1, you can see
how user requests are redirected through the
proxy server to the web server, and then the
web server response is returned to the user
through the proxy server. In the case of direct
data transfer, the user’s request is sent directly
to the web server, and the response from the
web server is sent directly to the user.

Figure 1: A sequence diagram illustrating the
transfer of data between the user and the end
resource

A detailed study of the proxy server
functionality allowed us to identify several
application tasks that they solve—for example,
improving the efficiency of IPTV, where proxy
servers are used to reduce the delay when
watching IPTV, in particular when changing
channels and playing Video on Demand (VoD).
The use of P2P and proxy servers significantly
reduces response times and improves the
quality of services [4, 14]. Proxies are also used
to develop “living” prototypes in intelligent

191

cities—innovative prototypes in smart cities
that allow for detailed data collection and real-
time interaction with users, facilitating the
development and design process [15, 16].

Web service caching: Proxy servers are
used to cache web service data, providing high
performance and efficiency. This is especially
important for SOAP-based web services, where
a properly configured cache can significantly
improve performance [17]. Targeted
subsidization of medical services: Proxies are
used to identify target groups for subsidized
healthcare services in countries with limited
government capacity, such as Myanmar. This
helps to ensure that subsidies are provided to
those who need them most.

2.2. Types and Classification of Proxy
Servers

Proxy servers can perform different functions
so they can be divided into several types based
on different criteria. One of the most important
criteria is the protocol the proxy server uses.
Let us analyse the protocols, in Fig. 2:

• An FTP proxy is used to upload data to an
FTP server.

• CGI proxies (anonymizers) help to open
any website in a browser by masking the
user’s IP address.

• SMTP, POP3, and IMAP proxies are used
to send and receive email.

• HTTP and HTTPS proxies are used to
browse the web. HTTP proxies are used
for normal web browsing, and HTTPS
proxies are used for encrypted web
browsing.

• SOCKS proxies are the most anonymous
type of proxy servers because they
redirect all data to the end server as a
client.

Figure 2: Diagram illustrating different types
of proxy servers by protocol

HTTP, HTTPS, and SOCKS proxies are the most
commonly used. Each type of proxy server
plays a unique role in network communication
and has specific functions.

According to the level of anonymity, proxy
servers are divided into Fig. 3:

• Transparent proxy servers do not change
the requested or received data, so
anonymity is not assumed, and websites
can read your IP address. They are used
for caching content or for securing local
networks.

• Anonymous proxies change your IP
address to the address of a proxy server to
hide your actual IP address. This can be
useful for protecting your privacy or
accessing websites blocked in certain
regions.

• High-anonymity proxies use additional
measures to protect your privacy, such as
encrypting your data or changing your IP
address periodically. They are the most
secure option for anonymous browsing.

Figure 3: Diagram illustrating different levels
of proxy anonymity

A diagram of proxy server classification by IP
origin is shown in Fig. 4:

• Proxy data centers are used by
companies specializing in proxy
services. They have high bandwidth and
can handle a large number of requests
simultaneously.

• Residential proxy servers are provided
by individuals who use their personal
computers as proxy servers. They
typically have lower bandwidth than
proxy data centers, but they can be more
secure because you know who you trust
with your traffic.

Figure 4: Diagram illustrating different types
of proxy servers by IP address origin

A diagram illustrating the different types of
proxy servers by the way they are used is
shown in Fig. 5. This criterion distinguishes the
following types of proxy servers:

192

• Public proxy servers are available for
free and do not require registration.
They are a good option for one-time use
but can be slow and insecure.

• Companies or individuals provide
private proxy servers. They are usually
paid for but offer better performance
and security than public proxy servers.

Figure 5: A graphical diagram illustrating the
different types of proxy servers by how they are
used

The following types of proxy servers are
distinguished based on the duration of IP
address use (Fig. 6):

• Non-reversible or static IP proxy servers
always have the same IP address. This can
be useful for applications that require
constant access to a particular server.

• Revolving or variable IP proxy servers
change their IP address periodically. This
can be useful for protecting privacy or for
bypassing blocking.

Figure 6: A graphical chart illustrating the
different types of proxy servers based on the
duration of IP address usage

A diagram illustrating different types of proxies
based on data modification is shown in Fig. 7.

Figure 7: A graphical diagram illustrating
different types of proxies based on data
modification

The following types of proxy servers are
distinguished:

• Direct proxies redirect requests from
clients to destination servers. They do
not make any changes to the data.

Reverse proxy servers can perform various
functions, such as caching content, filtering
requests, or redirecting traffic to different servers.

2.3. Analyzing the Advantages and
Disadvantages of Using Proxy
Servers

The advantages of proxy servers include:
1. Protecting the network and users: proxy

servers protect the network and its users
by offering a secure and fast Internet
connection. They are instrumental in
business and academic environments.

2. Improving the efficiency of VoD systems:
Proxies are used to improve the efficiency
of Video-On-Demand (VoD) systems by
reducing latency and improving the
quality of service.

3. Efficient proxy selection in cooperative
caching: Proxies can select the server that
efficiently offers the best response time to
the client, reducing overall network traffic
consumption and improving average
response time.

4. Improving caching architecture:
Integrating browser and proxy caches can
reduce Internet traffic by integrating
browser caches with proxy servers to
improve cache management.

5. Ensuring access to digital resources: proxy
servers are used by libraries to provide
access to proprietary databases for off-
campus users, as well as to restrict access
to specific databases or classes of users
within the library.

The disadvantages of proxy servers include:
1. Bandwidth and speed limitations: proxy

servers can have bandwidth and speed
limitations, especially in the case of a large
number of simultaneous requests.

2. Potential security issues: Proxy servers
can pose potential risks, especially if they
are not correctly configured or outdated.

3. Difficulty in scaling: Proxy servers can be
challenging, especially with many users or
high data volumes. Proxies can lead to
performance degradation by adding an
extra step in the request processing
process.

193

2.4. Overview of the Primary Proxy
Server Protocols

Let us analyze the primary proxy server
protocols. An HTTP proxy is the most common
type of Proxy. Its primary purpose is to
organize the work of browsers and other HTTP
programs. How it works: a program or browser
sends a request to a proxy server to open a
specific URL resource, and the proxy server
receives data from the requested resource and
transmits it to the browser. With the help of an
HTTP proxy, you can control such requests:

• Caching of data (images, pages, etc.).
Provides a speed boost with static content
and low bandwidth of the external
communication channel. Restricting
access to specific resources: creating a
blacklist of prohibited sites or a white list
of allowed sites.

• Substitution of a resource for a request
other than the one requested by the user:
for example, instead of banners with
advertising, transparent images are
displayed, significantly saving loading
time and traffic.

• Uniform distribution of bandwidth
between users of the local network: for
example, you can limit the speed of file
uploads to avoid server congestion.

• Logging: you can count traffic for each user
and see a list of popular websites.

• Request routing: send some requests
directly and redirect others through other
proxies.

However, the lack of encryption support
makes it impossible to work with HTTPS
websites. Also, an HTTP proxy can transmit
your IP address in the request headers, which
excludes this type of Proxy from the category
of anonymous proxies. An HTTPS proxy is an
HTTP proxy that uses encryption (S-Secure).
All traffic passing through the proxy server is
encrypted with a tamper-resistant algorithm.
With this approach, there is no way to find out
what kind of information (picture, video,
document) is being transmitted through the
proxy server since the proxy server is not
involved in encrypting and decrypting
information. This allows you to use an HTTPS
proxy to transfer almost any TCP protocol:
POP3, SMTP, IMAP, NNTP, etc. HTTPS can still
transmit your IP address in the request

headers, which excludes this type of Proxy
from the category of anonymous proxies.

Socks Proxy is the most advanced information
transfer protocol. The SOCKS protocol was
developed to allow applications that do not
support using proxies to use network resources.
The protocol is a translator, but the Socks client
is located between the application and transport
layers in the network compared to other proxies.
The Socks server is located at the application
layer, eliminating the need for high-level
protocols. A Socks server does not transmit IP in
the request header, being anonymous. Socks
proxies support almost all protocols, including
HTTP, HTTPS, FTP, SSH, Telnet, etc. This makes
them a versatile tool for networking. It disguises
actual IP addresses, hides physical locations, and
prevents outsiders from tracking your online
activities. Although a SOCKS5 proxy is not as
reliable and versatile in terms of protection as a
VPN, it offers several serious advantages,
including anonymity: The IP address is hidden,
and Internet traffic is routed through a proxy
server, making the client less vulnerable to
tracking; bypassing blockages: SOCKS5 allows
you to bypass geographic restrictions and
content blocking; speed: SOCKS5 offers high data
transfer speeds.

The choice of proxy server depends on
needs and requirements. If you need a proxy to
work with a browser, then an HTTP proxy or
HTTPS Proxy will be a good choice. If you need
a proxy to work with applications that do not
support proxies, then a Socks proxy is the best
option. If you need anonymity, then a Socks
proxy is the only option.

3. Discussion
3.1. Overview of Popular Proxy Server

Solutions

Many software solutions can be used to raise a
proxy server. Here are some of the most
popular ones: Squid is a free and open-source
proxy server that supports a wide range of
protocols and functions; Apache is a web
server that can also be used as a proxy; Nginx
is another web server that can be used as a
proxy; HAProxy is a highly available proxy
server that can be used to balance the load
between different servers; Varnish is a fast and
efficient proxy server that can be used for
caching content; Shadowsocks is a popular

194

proxy server protocol that supports various
encryption and anonymity methods; V2Ray is
a new proxy server protocol that is faster and
more efficient than Shadowsocks; Trojan is
another proxy server protocol that is popular
in China. The following solutions are also
available: GoAgent, Clash, X-Tunnel, Psiphon,
and Windscribe.

In addition, some other software solutions
can be used to raise a proxy server:

• ProxyChains is a command-line tool that
allows you to use proxy servers for various
applications.

• Proxifier is a Windows tool that allows you
to use proxy servers for various
applications.

• FoxyProxy is a Firefox browser extension
that allows you to use proxy servers for
various websites.

• SwitchyOmega is a Chrome browser
extension that allows you to use proxy
servers for various websites.

The choice of a specific software solution
depends on your needs and requirements. If you
need a simple and reliable proxy server, Squid or
Apache are good choices. If you need a highly
available proxy server, HAProxy is a good choice.
Varnish is a good choice if you need a fast and
efficient proxy server for caching content.

3.2. Overview and Analysis of 3proxy

3proxy is a popular solution for creating and
configuring proxy servers. It is known for its
ease of configuration, support for various
protocols and features, and high performance
and stability. Here are some of its features:

• Supports numerous protocols, including
HTTP, HTTPS, FTP, SOCKS, SMTP, POP3,
IMAP, TELNET, and others.

• Provides various types of anonymity, from
transparent to highly effective.

• Allows you to filter traffic based on IP
addresses, users, domain names,
protocols, and headers.

• Caches content to improve performance.
Supports load balancing to distribute
traffic across multiple servers.

• Has a built-in system to protect against
attacks.

The advantages of 3proxy include easy setup
and use, open source code available for free use
and modification, support for a wide range of

protocols and features, high performance and
stability, and online resources for training and
support.

Among the disadvantages is that it can be
difficult for advanced users to configure; some
features require additional modules or
configuration and do not guarantee complete
anonymity, especially with accessible settings.

3proxy provides many additional features
that can be configured in the configuration file,
including traffic filtering, data caching, load
balancing, and access control.

3.3. Advanced Overview and
Configuration of the Squid Proxy
Server

Here is an advanced overview and configuration
of the Squid proxy server. Squid is an accessible,
open-source proxy server that improves
network performance, security, and control. It
was developed at the National Supercomputing
Centre in the United States and was first released
in 1996. Squid supports many protocols,
including HTTP, HTTPS, FTP, SMTP, IMAP, and
POP3. It can also be used for load balancing
between multiple servers. One of the main
features of Squid is caching data in the proxy
server’s memory. This allows you to reduce
delays and increase the speed of loading
websites and other resources. Squid can also be
used for traffic filtering (blocking or allowing
certain types of traffic). This can be useful for
protecting your network from malware and
other threats. Squid can be used for network
access control (allowing or denying access to
certain websites or resources). This can be useful
for companies that want to protect employees
from harmful content. Squid is a popular choice
for web servers in corporate networks and other
organizations that need to improve performance,
security, and network control. The main benefits
of using Squid include improved security, access
control, load balancing, data caching, and traffic
filtering.

4. Results

The proxy reactor operates based on the joint
work of low-level mechanisms (iptables, ebpf)
and high-level network traffic processing code
(golang, gnet), Fig. 8.

195

Figure 8: Sequence diagram illustrating the process of processing an incoming connection

The process of processing an incoming
connection can be briefly described as follows.
The incoming TCP packet is analyzed, and the
port number is written to the packet’s mark
(fwmark) using eBPF. Iptables, according to
the rule, redirects any port in the specified
range to a single port. The service accepts the
connection and extracts the marker attached in
the first step. This way, it receives information
about the original port to which the user sent
the connection request. The initial bytes in the
incoming packet are analyzed, and based on
them, the protocol used by the user (SOCKS5 or
HTTP(S)) is determined. Processing of the
protocol that was determined in the previous
step is started.

The algorithm for processing an incoming
connection can be represented as follows:

Step 1: The incoming TCP packet is analyzed
using eBPF. eBPF is a technology that allows
developers to write code that executes directly
in the Linux kernel. In this case, the eBPF code
extracts the incoming port number from the
packet. The port number is then written to the
packet’s fwmark.

Step 2: iptables is a Linux firewall that can
filter network traffic. In this case, iptables is
configured to redirect any port within a
specified range to a single port. This allows the
service to accept connections on any port and
forward them to the appropriate destination.

Step 3: The service accepts the connection
and extracts the token attached in step one.
The token contains the original port the user
sent the connection request.

Step 4: The initial bytes of the incoming
packet are analyzed. The first few bytes of a
SOCKS5 or HTTP(S) packet contain a unique
identifier that can be used to determine the
protocol the user is using.

Step 5: If the protocol is SOCKS5 or HTTP(S),
the appropriate processing is started. For
example, if the protocol is SOCKS5, the service
will create a SOCKS5 proxy connection to the
destination server.

A SOCKS5 proxy server performs the
following actions: transmits data from the user
to the destination server, receives data from
the destination server, and transmits it to the
user. A SOCKS5 proxy server can perform
additional functions like traffic filtering,
security settings, and logging.

In the case of HTTP(S), the proxy server
performs the following actions: receives an
HTTP request from the user, sends the HTTP
request to the destination server, receives an
HTTP response from the destination server,
and transmits the HTTP response to the user.

An HTTP(S) proxy server can perform
additional functions, such as data caching,
accelerating the loading of web pages, security
settings, and logging.

4.1. Development of High-Level
Network Traffic Processing Code
for Protocol Processing

One of the most essential parts of traffic
processing is packet queuing. This is due to the
asynchronous nature of the architecture,
which is more critical due to the frequent
imbalance between the channel speeds
between the user and the proxy server and the
proxy server and the server to which the traffic
is proxied. One of the most common cases is
when the client and proxy server have a higher
ping and slow speed, and the proxy server has
a wide channel and minimal ping, Fig. 9:

196

Figure 9: Demonstration of imbalance
between client and proxy, proxy and server
bandwidth

This feature makes it necessary to implement a
queue of packets that are compiled in memory
and sent whenever possible.

A more complex approach is used that does
not require blocking the flow:

• Asynchronously receives a portion of
traffic from the sender.

• Write the received traffic to the end of
the queue.

• Get the first packet in the queue from the
queue.

• Send the asynchronous record to the
recipient.

This approach is more complicated, but it
allows you to guarantee the sequence of
sending the received traffic under conditions
of different pings, bandwidths, and other
network factors.

Instead of using byte array allocation to
process and temporarily store packets, the
entire project uses byte slice, a specialized sync
version. Pool for byte arrays. This reduces the
load on the garbage collector and generally
optimizes memory usage by minimizing
memory fragmentation.

At the heart of the processing of these flows
is a state machine that handles the sequence
greeting—authorization—connection—
tunneling. In code, this describes the following
states:

negotiateHandle—by the SOCKS5 protocol
specification, the first packet sends the
authorization method supported by the client.
This method can go into the following states:
authStatus—the client supports login and
password authentication. You need to process
the next packet in which the login and
password will be sent: connectStatus—the
client has sent that it does not support any
authorization methods (passwordless
authorization). If the client’s IP address is on
the list, it is possible to skip the authorization
stage and go straight to the connect status
status. In case of a protocol error or
authorization failure, a SOCKS5 error is sent,
and the connection is closed.

authStatus—the sent packet with the
client’s login and password is steamed and

checked for correctness. It can switch to the
connectStatus state or send a client
authentication error and close the connection.

connectStatus—according to the SOCKS5
protocol specification, the client sends a
command to connect to the target servers. At
this point, all the blinklists (port, IP) are
checked, and the connection to the server sent
by the client is launched. It can switch to the
tunnelStatus state or send a protocol error to
the client and close the connection. The final
status is when the handler pumps traffic
between the client and the server using the
packet queue.

This handler hides two protocols that are
quite different in their logic. However, to
optimize performance, the processing was
combined into one handler because both
protocols use the HTTP format for initial
packets (and subsequent packets in the case of
HTTP).

An example of a packet for proxying an
HTTP request:

GET http://example.com/ HTTP/1.1
Host: example.com
Proxy-Authorization: Basic <base64

encoded user:password>
User-Agent: curl/8.4.0
Accept: */*
Proxy-Connection: Keep-Alive
An example of the first packet for proxying

an HTTPS request:
CONNECT example.com:443 HTTP/1.1
Host: example.com:443
Proxy-Authorization: Basic <base64

encoded user:password>
User-Agent: curl/8.4.0
Proxy-Connection: Keep-Alive

Processing of both protocols begins with
waiting for all request headers to arrive from
the client:

func headersReady(c gnet.Conn) (bool,
error) {

 buf, err := c.Peek(-1)
 if err != nil {
 return false, err
 }

 contains := bytes.Contains(buf,

[]byte("\r\n\r\n"))
 return contains nil
}

197

func (h *httpProxy) negotiateHandle(state
*State, c gnet.Conn) ([]byte, error) {

 if ready, err := headersReady(c); !ready ||
err != nil {

 return nil, err
 }
Next, the headers are manually processed,

and a “cleaned” packet is formed, which will be
sent to the target server in the case of the HTTP
protocol. We use the first header to get
information about the server to which we want
to connect. This approach is universal for
HTTP and HTTPS.

If this is a Proxy-Authorisation header, we
note that the user has sent a login and
password for further authorization
(passwordless authorization based on the
user’s IP is possible). “Dangerous” headers are
removed if they are present (Proxy-
Authenticate, Proxy-Authorisation, Proxy-
Connection) to ensure user privacy in the case
of the HTTP protocol, as sending these headers
will reveal to the target server the fact that the
user is using a proxy.

Further processing is divided into HTTPS
and HTTP protocols. This protocol is very
similar to the SOCKS5 approach. After
authorization, the proxy server establishes a
connection with the target server and then
pumps traffic in both directions.

var (
 connectMethod = []byte("CONNECT")
)

parser :=

wildcat.NewSizedHTTPParser(headerCount)
state.tunnel =

bytes.EqualFold(parser.Method,
connectMethod)

func (h *httpProxy) handleTraffic(state

*State, c gnet.Conn) error {
 …
If state. tunnel {
 _, err := state.queue.CopyAsync(c,

state.downstream.Current)
 return err
}
 …
}

The processing logic of this protocol is more
complex than HTTPS because it is impossible
to “transfer” traffic between the parties.
However, it requires complete packet
processing, header transformation, and analysis
to determine the actual size of the request.

In the previous step, during the header
transformation processing, a packet that is
already safe to send to the target server was
generated. However, for correct operation, it is
necessary to additionally find out the size of the
request body by extracting the number of bytes
specified in the Content-Length header.

Based on this information, the following logic
is run:

1. Connect to the target server.
2. Send the cleaned headers to the target

server.
3. Write to the connection state in the byte

from the Content-Length header that you
want to transfer “as is”.

The transfer of the specified number of
bytes is in the httpProxy.handleTraffic method:

func (h *httpProxy) handleTraffic(state
*State, c gnet.Conn) error {

 …
 if state.tunnelSized > 0 {
 t, err := state.queue.CopyAsync(c,

state.downstream.Current)
 if err != nil {
 state.tunnelSized = 0
 return err
 }

 atomic.AddInt64(&state.tunnelSized, -t)
 return nil
 }
 …
}
After the specified number of bytes has been

transferred, the system checks to see if more data
is needed to process. If the incoming data stream
is not exhausted, the processor continues to
receive and analyze the following packets,
ensuring continuous data transfer between the
client and the server. This allows you to process
multiple requests or long sessions without
interruption.

The measurements will be made on a VPS
hosted by DigitalOcean. Requirements: the
system should be able to listen to 5000
HTTP(S)+SOCKS5 ports and support
passwordless IP authentication.

198

Testing process: 100 threads are accessed from a
server in the same data center to random ports
in the range of 5000 thousand, and a 16 KB file is
downloaded through a proxy.

3proxy—the software does not support one
port = 2 protocols; to meet this limitation, you
need to listen to 5000×2 ports.

The system idle state is shown in Fig. 10.
Demonstrating the load of 3proxy on the VPS
during downtime allows you to analyze and
make management decisions.

Figure 10: Demonstration of 3proxy load on
VPS during idle time

A demonstration of 3proxy load on a VPS under
load is shown in Fig. 11.

Figure 11: Demonstration of 3proxy load on
VPS under load

A demonstration of the Proxy Reactor load on
the VPS during downtime is shown in Fig. 12.

Figure 12: Demonstration of the Proxy
Reactor load on VPS during idle time

A demonstration of the Proxy Reactor load on
the VPS during load is shown in Fig. 13.

Figure 13: Demonstration of the Proxy
Reactor load on VPS under load

Under load, the proxy reactor demonstrated
significantly better performance and resource
management efficiency than 3proxy, ensuring
stability and high request processing speed
even with many simultaneous connections.

5. Conclusions

This study is devoted to the issue of proxy
server performance optimization, reflecting
current challenges in the field of network
technologies. The topic’s relevance is justified
by the constant growth of the load on proxy
servers caused by the increasing demand for
high-performance, reliable, and secure
network services.

The paper focuses on analyzing existing
performance problems, particularly pronounced

199

in the context of multi-port access and
passwordless authentication methods. The
theoretical foundations of new optimization
methods are developed, including parallel and
asynchronous algorithms, dynamic load
balancing between ports, and innovative
solutions using eBPF and backtracking
algorithms to determine the original port.

Experimental verification and testing of the
proposed approaches have shown their
effectiveness in practical conditions, significantly
improving proxy servers’ performance. The
results confirmed the work’s scientific novelty
and opened the way for further development and
improvement of network technologies.

Thus, this study contributes to the
networking technology field by offering new
solutions to proxy server performance problems
that are of great practical importance for modern
network infrastructure.

References

[1] Y. Sadykov, et al., Technology of Location
Hiding by Spoofing the Mobile Operator
IP Address, in: IEEE International
Conference on Information and
Telecommunication Technologies and
Radio Electronics (2021) 22–25. doi:
10.1109/UkrMiCo52950.2021.9716700.

[2] A. Carlsson, et al., Sustainability
Research of the Secure Wireless
Communication System with Channel
Reservation, in: 2020 IEEE 15th
International Conference on Advanced
Trends in Radioelectronics, Telecom-
munications and Computer Engineering
(2020). doi:10.1109/tcset49122.2020.
235583.

[3] V. Buriachok, V. Sokolov, P. Skladannyi,
Security Rating Metrics for Distributed
Wireless Systems, in: Workshop of the
8th International Conference on
“Mathematics. Information Techno-
logies. Education:” Modern Machine
Learning Technologies and Data Science,
vol. 2386 (2019) 222–233.

[4] S. Bhandari, G. Lee, N. Crespi, Peer to
Peer Proxy Based IPTV Services, IEEE
Globecom Workshops (2009) 1–6. doi:
10.1109/GLOCOMW.2009.5360711.

[5] M. Boonen, B. Lievens, The Use of Live-
Prototypes as Proxy Technology in

Smart City Living Lab Pilots, Distributed,
Ambient and Pervasive Interactions:
Understanding Humans, LNISA 10921
(2018) 203–213. doi: /10.1007/978-3-
319-91125-0_17.

[6] P. Küngas, M. Dumas, Configurable SOAP
Proxy Cache for Data Provisioning Web
Services, SAC'11: ACM Symposium on
Applied Computing (2011) 1614–1621.
doi: 10.1145/1982185.1982523.

[7] R. Marusenko, V. Sokolov, P. Skladannyi,
Social Engineering Penetration Testing
in Higher Education Institutions,
Advances in Computer Science for
Engineering and Education VI, vol. 181
(2023) 1132–1147.

[8] R. Marusenko, V. Sokolov, V. Buriachok,
Experimental Evaluation of Phishing
Attack on High School Students,
Advances in Computer Science for
Engineering and Education III, vol. 1247
(2020) 668–680. doi:10.1007/978-3-
030-55506-1_59.

[9] S. Htet, T. Ludwick, A. Mahal, Targeting
Subsidised Inpatient Services to the Poor
in a Setting with Limited State Capacity:
Proxy Means Testing in Myanmar’s
Hospital Equity Fund Scheme, Trop.
Med. Int. Health 24(9) (2019) 1042–
1053. doi: 10.1111/tmi.13286.

[10] I. Khalil, G. PeiQi, Efficient Proxy
Selection in Cooperative Web Caching,
15th IEEE International Conference on
Networks (2007) 376–381. doi:
10.1109/ICON.2007.4444116.

[11] A. Imtiaz, M. Hossain, Distributed Cache
Management Architecture: To Reduce
the Internet Traffic by Integrating
Browser and Proxy Caches, International
Conference on Electrical Engineering
and Information & Communication
Technology (2014) 1–4. doi:
10.1109/ICEEICT.2014.6919088.

[12] J. Duke, X. Yu Authenticating Users
Inside and Outside the Library, Internet
Ref. Serv. Q. 4(3) (1999) 25–41. doi:
10.1300/J136v04n03_05.

[13] M. Sysel, O. Doležal, An Educational
HTTP Proxy Server, Proced. Eng. 69
(2014) 128–132. doi: 10.1016/j.proeng.
2014.02.212.

[14] S. Chen, et al., Pretty-Bad-Proxy: An
Overlooked Adversary in Browsers’
HTTPS Deployments, 30th IEEE

https://doi.org/10.1007/978-3-319-91125-0_17
https://doi.org/10.1007/978-3-319-91125-0_17

200

Symposium on Security and Privacy,
(2009) 347–359. doi: 10.1109/SP.2009.
12.

[15] O. Talaver, T. Vakaliuk, Reliable
Distributed Systems: Review of Modern
Approaches. J. Edge Comput. 2(1) (2023)
84–101. doi: 10.55056/jec.586.

[16] N. Lobanchykova, I. Pilkevych,
O. Korchenko, Analysis and Protection of
IoT Systems: Edge Computing and
Decentralised Decision-Making, J. Edge
Comput. 1(1) (2022) 55–67. doi:
10.55056/jec.573.

[17] A. Jony, A. Arnob, A Long Short-Term
Memory Based Approach for Detecting
Cyber Attacks in IoT Using CIC-IoT2023
Dataset. J. Edge Comput. (2024). doi:
10.55056/jec.648.

https://doi.org/10.55056/jec.648
https://doi.org/10.55056/jec.648

