
201

Comprehensive Approach for Developing an Enterprise
Cloud Infrastructure

Volodymyr Khoma1, Aziz Abibulaiev1, Andrian Piskozub1, and Taras Kret1

1Lviv Polytechnic National University, 12 S. Bandera str., Lviv, 79000, Ukraine

Abstract
The modern world is witnessing an incredibly rapid adoption of cloud technologies across
various sectors, making security in cloud environments extremely relevant. The problem
lies in the lack of a comprehensive approach to ensure multilevel protection for cloud
infrastructure solutions and the limitations of the existing “Security as Code” practice,
which would provide effective protection in this environment and meet modern
cybersecurity standards. This article aims to describe the process of implementing and
deploying a comprehensive approach to building an enterprise cloud infrastructure and
ensuring its security. The relevance of this research is confirmed by the constantly
growing interest in cloud technologies and the need to ensure a high level of security
during their usage. The aspects considered in the article can significantly facilitate the
process of infrastructure development, improve its security, and help prevent potential
threats. Therefore, the ultimate goal of the article is to implement a comprehensive
approach to developing a cloud infrastructure solution and ensuring its security, using
“Infrastructure as Code” and “Security as Code” practices. The results of this research can
be used by organizations planning or already using cloud technologies to familiarize
themselves with best practices for infrastructure development to enhance the security
level of their information resources and prevent possible threats.

Keywords 1
Defense-in-depth, Infrastructure as code, Security as code, BCP, DevOps, AWS, ETL,
software development cycle, cloud security threats, testing.

1. Introduction

In the context of modern trends and the
development of both computing power and
computing services, the use of physical servers
and equipment is no longer the optimal or sole
solution [1]. The constant and thorough
development of computing resources over the
last few decades does not allow us to predict the
optimal amount of resources for computations. A
company that acquired powerful physical
servers and other technical resources a few years
ago cannot be confident that the existing
resources of these tools will be sufficient for
further development, implementation, and
support of the product. There arises a need for
continuous improvement of methods and

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine

EMAIL volodymyr.v.khoma@lpnu.ua (V. Khoma); aziz.abibulaiev.mkbui.2022@lpnu.ua (A. Abibulaiev); andriian.z.piskozub@lpnu.ua

(A. Piskozub); taras.b.kret@lpnu.ua (T. Kret)
ORCID: 0009-0009-2289-0968 (V. Khoma); 0000-0003-3037-8373 (A. Abibulaiev); 0000-0003-3037-8373 (A. Piskozub); 0000-0002-

6333-3190 (T. Kret)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

approaches to software development and
infrastructure management, which is often not
possible for an average product IT company due
to the financial capabilities and technical
competence of the staff.

One of the key elements of modern
infrastructure is the transition from physical
equipment to cloud solutions, which allows it to
effectively address issues that physical
computing resources cannot resolve. The large
number of data centers worldwide, ensuring
resource availability from anywhere, continuous
improvement of existing technical tools and
creation of new services, and the relevance of
tools and services to user needs make cloud
provider services the best choice in today’s
realities [2, 3].

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0009-2289-0968
https://orcid.org/0000-0003-3037-8373
https://orcid.org/0000-0003-3037-8373
https://orcid.org/0000-0002-6333-3190
https://orcid.org/0000-0002-6333-3190

202

The article aims to analyze the use of modern
approaches and technologies in the field of
cloud infrastructure to overcome problems
associated with the limitations of the relevance
of computing power of physical servers in the
long term; the limitation and complexity of
infrastructure resource scaling
implementations; the inconvenience and
maladjustment of continuous data backup; the
limited level of computational resource
availability; the complexity of settings and
configuration templates; the development of a
comprehensive solution to protect the cloud
infrastructure of a product IT company from
threats such as DDoS attacks, port scanning,
SQL injections, XSS-attacks, information leaks,
and others [46].

The proposed solution aims to address such
important aspects of cloud infrastructure
security as effective access and privilege
management; logical isolation of network
resources and their configuration; continuous
monitoring, event logging, and immediate
response to anomalies and dangers; user
notification mechanism about threats; system
application vulnerability checks (posture
checking); information confidentiality checks;
data encryption tools; network traffic
protection tools; network traffic filtering and
control.

The use of the “Security as Code” approach in
this context allows for the integration of security
into DevOps processes, ensuring timely
detection and correction of vulnerabilities. This
approach not only strengthens the protection of
users and data at the level of cloud infrastructure
but also covers comprehensive monitoring and
access management, network resource isolation,
continuous monitoring, and rapid response to
anomalies.

2. Comparison of Physical and
Cloud Infrastructure

In this article, the authors focus on
understanding the appropriate approach to
deploying infrastructure and ensuring security
through cloud provider services, using real-
world experience from an IT company with an
Extract, Transform, and Load (ETL) solution [2].

Nowadays, any work with infrastructure,
deployment, and product operation must
follow the processes of the Software

Development Life Cycle (SDLC) [3]. Therefore,
the authors used the SDLC with a focus on
infrastructure deployment: planning and
selecting a platform for deployment; defining
requirements for resource capabilities; designing
infrastructure architecture; configuring
infrastructure; testing; and deployment.

Let’s start with the first point, namely the
planning and selection of a platform for
infrastructure deployment. Let’s consider
some aspects and characteristics of physical
and cloud servers that will help in choosing a
platform.

The rapid development of technologies
renders physical technical resources obsolete
over time, and Roy Longbottom [4] proves this by
comparing the Cray-1 supercomputer, built in
1978, costing 7 million USD, with the modern
Raspberry Pi, which costs 70 USD and is 4.5 times
faster than the Cray-1. Therefore, renting
technical resources from a cloud provider is a
solution to this situation. The cloud provider is
confident in the relevance of its technologies and
has the capability, financial capacity, and interest
in its developments in the field of computing
technology, operating systems, and security. For
example, Amazon Web Services (AWS) uses its
development, the AWS Nitro System for EC2
virtual machines, which significantly improves
the performance of the processor, virtual
memory, and data storage, enhances system
security and is a cheaper solution compared to
other EC2 systems.

Physical computing resources are a
company’s capital investment, where the
owner tries to select the optimal amount of
resources. However, it is quite difficult to
predict the sufficient amount of resources for
all cases and events in the company. On the
other hand, maintaining a large amount of
resources is expensive and not an optimal
solution. This problem is solved by the cloud
provider, where the customer can both obtain a
sufficient amount and opt out of excess
resources at any time, choosing a convenient
payment option—hourly, annually, or
reserving the necessary computing capacities.
This allows for more flexibility in the software
product testing process and predicting server
loads. The complexity of ensuring the fault
tolerance of computing servers lies in the need
for constant monitoring, backup support, and
automated recovery in case of failure. Without
configured fault tolerance of the software

203

product, there are high risks of errors and
failures, which, in turn, can lead to financial
losses, stopping the product and business as a
whole. The use of cloud solutions simplifies
these tasks, as most cloud service providers
guarantee a high level of availability and
uninterrupted operation thanks to distributed
data processing centers in many places around
the world, as well as backup mechanisms.

The scalability of the infrastructure solution
is an important aspect of growing business
tasks. Cloud providers offer automatic scaling,
which allows increasing or decreasing
resources according to needs, which is a more
efficient and economical solution than the
traditional purchase or upgrade of physical
equipment.

In cloud systems users can easily configure
computing power, storage, network settings,
and other components, ensuring high
flexibility and cost optimization through the
Infrastructure as Code (IaC) tool.

Another important aspect when working
with cloud resources is the shared
responsibility for infrastructure security. The
cloud provider is responsible for ensuring the
security of the “cloud” itself: physical
resources; software that ensures the operation
of the global network, databases, and
computing resources. The cloud service
customer is responsible for ensuring the
security of resources “in” the cloud: user data;
customer-side data encryption; operating
systems, firewall configurations, etc. The
general model is shown in the figure (Fig. 1).

Figure 1: AWS Shared Responsibility model [5]

The convenience of properly distributing
responsibilities between the cloud provider and
the customer helps to clearly understand and
define who is responsible for what, speeding up
and facilitating the configuration of
infrastructure and simplifying the customer’s life.
In systems with physical servers, the server
owner is responsible for everything.

Considering the aforementioned aspects
and characteristics of comparing physical and
cloud servers, we chose the cloud platform.

3. Choosing a Cloud Provider

Among the main cloud service providers are
Amazon Web Services, Google Cloud Platform,
Microsoft Azure, and IBM Cloud, which offer
their services to users worldwide. Recro [6], a
developer company working in the Cloud
Solutions field since 2015, analyzed the main
cloud providers based on market share
indicators, monthly costs for basic virtual
machine configurations, free trial licenses for
cloud resources, their advantages and
disadvantages (Fig. 2):

Figure 2: Comparison of main cloud providers based on indicators [6]

204

Thus, we chose Amazon Web Services as the
cloud provider, as the provider with the widest
range of services and the status of the first and
innovative leader among cloud providers.

4. Developing a Solution
Architecture with BCP
Implementation

The next step is to develop the infrastructure
architecture with a focus on the requirements
of the Business Continuity Plan (BCP), which
were thoroughly described in [7].

The ETL solution is a tool for various
business needs, where it is necessary to
extract, transform, and load data from one
environment to another, and this process can
be scalable. It is a product that can help obtain
a real picture of enterprise resource planning
reporting, and performs the task of
consolidating all data into a single system of
values and details, ensuring their quality and
reliability. Also, ETL is a mechanism for
ensuring data audit, allowing even after their
transformation to track the origin and exactly
what each row of the table, text, video file, and
other types of data were obtained from.

The customer’s ETL solution consists of
microservices and a relational PostgreSQL
database. This means that at the level of cloud
infrastructure and services, we need to ensure
BCP, which is quite a critical component in the
continuity of business processes and minimizing
losses.

In determining the optimal platform for
deploying our ETL solution, the authors of the
article conducted a detailed analysis of the
services offered by AWS, focusing on the
capabilities they provide for microservice
architectures. Based on [8], an analysis of
platforms for microservices from AWS was
conducted, namely—Elastic Container Service
(ECS) and Elastic Kubernetes Service (EKS).
EKS best meets the needs of the ETL solution
due to its high level of management of virtual
machines and effective load balancing.

In the context of load management, EKS
demonstrates excellent capabilities,
automatically distributing traffic between
containers to optimize performance and
service availability. This ability for effective
load balancing is key to ensuring the resilience
and efficiency of microservices ETL

applications, which depend on flexible scaling
and reliability in data processing.

Let’s consider the mechanisms for ensuring
BCP. For the PostgreSQL database, AWS
Relational Database Service (RDS) was chosen,
which provides reliability and convenience in
managing databases. Using the AWS RDS
solution, we will create an inter-regional, highly
available cluster structure for the PostgreSQL
database.

There are two types of database clustering—
master-master and master-replica. The master-
master relationship in database architecture
allows two or more servers to function as
primary (master), providing simultaneous
writing and updating of data, which increases
availability and provides distributed data
management, and is important for systems with
a high load level or to ensure uninterrupted
operation. In the master-replica architecture,
one server acts as the primary (master), and
one or more other servers act as replicas
(slaves). The primary server handles all writes
and updates and the replicas synchronize these
changes with the primary server, allowing
them to respond to read requests. Such
architecture increases read performance and
ensures fault tolerance by distributing the load
among several servers.

Based on [9], for the case of database
clustering of the ETL solution, we will use a
combination of master-master and master-
replica relationships to ensure both
uninterrupted operation and load distribution
among databases (Fig.3).

BCP is defined by such indicators as
Recovery Time Objective (RTO)—an acceptable
measure in the amount of time before the
system or application is fully restored and
returned to normal operation after an
unexpected interruption or disaster, and
Recovery Point Objective (RPO)—a measure of
data loss that is acceptable to the business. It
should be noted that RTO and RPO are entirely
individual indicators for each business [10].
Everything depends on the criticality of the
information processed by the product, the
degree of fault tolerance, and acceptable losses
in case of failures.

With a fairly simple configuration, it is
possible to achieve settings for both the
repeatable backup process and database
dumps. These processes precisely provide RTO
and RPO in the architecture of the ETL solution.

205

In our case, these backups will be made with a
period of 1, 6, 12 hours, 1, 7, 14 days. Therefore,
we will be able to roll back to a working state
with a loss of information exactly in 1 hour of
work, which is sufficient in our case and meets
the customer’s expectations.

Summarizing the conclusions of the
aforementioned aspects, the design of the ETL
solution architecture was built, which is
depicted in the diagram (Fig.3).

Figure 3: ETL application architecture

In any case, whether there are problems with
the database instance in Region A or the
availability zone, there will always be either
Region B with the master database or a replica
in another availability zone in Region A
available. Transferring the roles of the main
database to the replica happens very quickly
and can be done in just a few mouse clicks, so
business losses are limited to minutes.

The application itself is a Stateless resource,
so scaling at the level of availability zones will
be sufficient. The EKS cluster, like any
Kubernetes product, can manage its resources

and containers in pods using internal
mechanisms, so the proper configuration will
allow scaling and maintaining microservices in
a continuous, working state.

5. Infrastructure Configuration
Using IaC

The next step in the SDLC stages is
infrastructure configuration, which, in the case
of the architecture proposed in Fig. 3 can be
implemented using IaC, a powerful and flexible

206

tool for configuring infrastructure in cloud
environments. One can agree with the author’s
opinion in the article [11] that “…the
deployment time of infrastructure using
Infrastructure as Code strategies average 60
seconds with the use of ‘automation’, while
standard ‘manual’ deployment strategies take
an average of 600 seconds, regardless of the
cloud service provider”. IaC allows for control
and management of infrastructure, ranging
from the configuration of the virtual machine
or server itself (defining the type of operating
system, the number of processors, memory,
and storage capacity) to the full deployment of
the product on this infrastructure, including
setting up SSL/TLS encryption, automation of
microservices launch.

The author's work [12] highlights Terraform,
Pulumi, and other more cloud-native solutions
like CloudFormation in AWS among the tools
for implementing Infrastructure as Code.
Terraform and Pulumi are called universal. It
should be added that, in our opinion, Pulumi is
not yet a stable enough tool for a production-
ready solution, so users still prefer Terraform.
The mentioned tools have a quite serious
documentation base, so they are not very
complicated to learn.

According to the comparative analysis of
Terraform and AWS CDK tools [13], one can
fully agree with the aspects that were compiled
into a table form, which was supplemented by
our observations and is presented below
(Table 1):

Table 1
Comparative Characteristics of Cloud-Native IaC with Terraform

Feature AWS CDK Terraform

Performance Synthesizes code into CloudFormation format,
affecting deployment and update times.

Performs better in all test cases due to the ability to
interact directly with the underlying AWS APIs.

Learnability Easy to install and start with. The abstraction
layer reduces complexity and the amount of code
needed for implementation.

Quick installation and easy to start with. The DSL
requires time to learn and adapt. Sometimes describing
infrastructure requires a lot of repetitive code (which
can also be minimized using a modular approach to
writing code).

IDE Support Using GPL allows for better IDE integration and
support, as well as receiving immediate feedback
and errors in tool implementation.

Good tool development support, code navigation,
and syntax highlighting are available.

Community Support AWS CDK offers extensive and well-structured
documentation, serving as a valuable resource
for users.

A popular tool with many materials and real user
cases created by the community, with electronic
blogs, articles, and extensions to many IDEs.

Testability Supports Jest, unit testing, and snapshot testing.
Simplicity and speed in test development and
testing itself.

Supports Terratest and integration tests.
Comparative complexity in writing tests and their
implementation with AWS CDK, but Terraform tests
are better at detecting errors.

Static Code Analysis
Capability

The abstraction layer and the possibility of
“smart” default settings reduce the time to detect
misconfigurations. Using ESLint and Prettier for
code formatting and linting.

Everything is configured by the user, leaving room
for errors and deficiencies. Uses a built-in formatting
tool, code linting with TFLint.

The conducted analysis allows choosing a tool
for implementing IaC according to the needs—
a universal tool or a cloud-native solution. The
authors of the article prefer Terraform as a
universal tool with a large documentation
base, providers, and examples of working
infrastructure code.

Here is an example of configuring the
creation of a VPC with Internet Gateway for
infrastructure using code from the official
Terraform documentation source [14]:

data "aws_region" "current" {}

resource "aws_vpc" "main" {

 cidr_block = "10.0.0.0/16"

 instance_tenancy = "default"

 region = data.aws_region.current.id

 tags = {

 Name = "main"

 }

}

resource "aws_internet_gateway" "gw" {

 vpc_id = aws_vpc.main.id

 tags = {

 Name = "main"

 }

}

The next part of the code creates the Public
Subnet and the necessary resources to make
the subnetwork:

resource "aws_subnet" "public_subnet" {

 vpc_id = aws_vpc.main.id

 cidr_block = "10.0.1.0/24"

207

 map_public_ip_on_launch = "true"

 tags = {

 Name = "main"

 }

}

resource "aws_route_table" "public_subnet" {

 vpc_id = aws_vpc.main.id

 route = {

 cidr_block = "10.0.1.0/24"

 gateway_id = aws_internet_gateway.gw.id

 }

 tags = {

 Name = "main"

 }

}

resource "aws_route_table_association"

"public_subnet" {

 subnet_id = aws_subnet.public_subnet.id

 route_table_id =

aws_route_table.public_subnet.id

}

The last part of the provided Terraform code is
for creating a Private Subnet, adding a Network
Address Translation (NAT) Gateway, and other
necessary things to make the private
subnetwork

resource "aws_eip" "example" {

 domain = "vpc"

 depends_on = [aws_internet_gateway.gw]

}

resource "aws_nat_gateway" "private_nat" {

 allocation_id = aws_eip.example.id

 subnet_id = aws_subnet.example.id

 tags = {

 Name = "Private Subnet gw NAT"

 }

 depends_on = [aws_internet_gateway.gw]

}

resource "aws_subnet" "private_subnet" {

 vpc_id = aws_vpc.main.id

 cidr_block = "10.0.2.0/24"

 map_public_ip_on_launch = "false"

 tags = {

 Name = "main"

 }

}

resource "aws_route_table" "private_subnet" {

 vpc_id = aws_vpc.main.id

 route = {

 cidr_block = "10.0.2.0/24"

 allocation_id =

aws_nat_gateway.private_nat.id

 }

 tags = {

 Name = "main"

 }

}

resource "aws_route_table_association"

"private_subnet" {

 subnet_id =

aws_subnet.private_subnet.id

 route_table_id =

aws_route_table.private_subnet.id

}

With this configuration code, a VPC, Internet
Gateway, Public and Private subnets, NAT
Gateway—used for accessing the Internet from
the Private subnet, Route tables, and
associations of these tables with subnets are
created. This all allows for a configured
network for further deployment of necessary
resources. Ensuring the security of the
infrastructure is no less important aspect of the
continuous and secure operation of the
business process. The article [12] extensively
discusses the approach to ensuring security
that has gradually emerged with the
development of IaC—Security as Code (SaC).

6. Infrastructure Security Using
the “Security as Code” Approach

The existing “Security as Code” implementation
approach by O’Reilly [15], in our opinion, is
quite limited and incomplete in terms of
security solutions. “Security as Code” should be
a comprehensive approach that ensures
security at all levels of the product’s life and the
infrastructure as a whole.

Security as code is an approach to ensuring
the security of cloud infrastructure that allows
controlling tools and measures, security
policies, infrastructure and applications
settings, authentication and authorization rules,
and access restrictions through code, adding
flexibility and convenience in management and
continuous improvement of security.

Let’s consider the problems any modern
enterprise planning to use cloud resources for
building infrastructure might face, and the
solutions a cloud provider can offer, in terms of
creation, configuration, and support, as code.
Without effective access and privilege
management, uncontrolled access to cloud
environment resources can cause significant
damage to the infrastructure and is a threat to
the integrity, confidentiality, and availability of
processed information. Without a proper means
of delegating access to certain resources, a
system engineer cannot granularly control the
access an employee might have. In such a case,

208

they have two options: grant the employee
access to all resources or deny access to all
resources. This is where the problem of either

Insufficient Permissions (not enough access
rights) or Redundant Permissions (excessive
access rights) arises.

Figure 4: IAM operation demonstration

IAM offers us a fundamentally new solution (Fig.
4). An employee can authenticate using the web
console (AWS Console), utilizing the Application
Programming Interface (API), and tools from
the AWS Command Line Interface (CLI), and
within the IAM environment, assume the status
of a user, role, federated user, or application. By
assigning policies (Identity and Resource-
based) to the user, they can gain access to
various resources such as IAM, S3, and EC2,
performing actions on them by sending
requests—creating an IAM user, retrieving a file
from the S3 object storage, and launching a
virtual machine in the EC2 environment. This
mechanism provides flexible access
management to a particular service within the
cloud provider’s environment.

Authentication can occur through login-
password schemes for web access and using
ACCESS_KEY and SECRET_ACCESS_KEY for
programmatic use, for example, using the boto3
client for Python or AWS CLI.

It can be said that the main component of the
IAM service is the security policy, provided to
the entity as an Identity-based policy or
Resource-based policy. Security policies are
blocks of code that define the following
attributes: policy name; description of
privileges; permissions; and subject.

These attributes allow IAM to determine
whether a user has permission to act on the
resource they are requesting. Let’s provide an
example of a policy that grants a user
administrator access to the S3 object storage
and the ability to view existing virtual machines
(Fig. 5).

Figure 5: Example of an Identity-based policy,
as code

Moreover, IAM allows the use of roles to
perform specific tasks with cloud resources.
Combining the use of roles, resource policies,
EC2, and S3 services can organize
uninterrupted access of a virtual machine to
objects in storage. This practice is used in many
solutions, including websites.

209

IAM also offers tools for controlling privilege
and access grants—Permission Boundaries—
which control the list of permissible privileges
that can be granted to a user and a role. For
example, a user who has full access to IAM but
only read access to S3 cannot create an IAM user
with privileges to write and edit the content of
the S3 object storage, ensuring high-level
protection even in the event of potential data
compromise.

Without centralized control of software,
services, and IT devices, the problem of
“Shadow IT” [16] arises. The cloud platform
allows controlling and centralizing all processes
using IAM policies. Without sufficient
permissions, using IT department-uncontrolled
programs, services, and solutions becomes
much more challenging. Proper IAM
implementation prevents information leakage.

The implementation of the IAM service
operation defines the main idea of the Security
as Code methodology because it is through code
that a clear and flexible process of privilege and
access management to various cloud provider
resources can be implemented.

7. Logical Infrastructure Isolation

Resource isolation from external interference
is a current issue requiring special attention. In
the AWS cloud environment, VPC is
responsible for the logical isolation of the
infrastructure. A VPC can be divided into
isolated subnets from each other, being public
(Public Subnets) and private (Private Subnets).

Traffic isolation is achieved using Security
Group mechanisms and Network Access
Control Lists, where security groups operate at
the level of virtual machines/groups of virtual
machines, and the network access control list
at the subnet level (public and private).

Moreover, network access control lists
allow explicitly denying traffic—Explicit Deny,
and security groups—implicitly—Implicit
Deny. The difference in approaches to traffic
denial is that in explicit denial, we must block
traffic with rules (Fig. 6), and in implicit, the
approach is “everything not allowed is
forbidden” (Fig. 7).

Figure 6: Example of Security Group rules

Figure 7: Example of Network ACL rules

210

This allows isolating incoming traffic (from the
Internet) to our resources, thus making them
inaccessible from the outside (Fig. 8). The

logical isolation of resources is a very good
practice for ensuring a high level of
infrastructure protection.

Figure 8: Logical isolation of resources in AWS

8. Logging and Event Monitoring

The security measures, which the authors
conditionally attribute to the “Monitoring and
Incident Response” principle, must
continuously monitor the system for threats,
anomalies, and security incidents and respond
to them, i.e., address both monitoring issues and
the automation of responses to anomalous or
dangerous events.

Logging involves recording events occurring
in the system such as authentication processes,
requests for various actions with services,
anomalous events, etc. This process should also
be expanded with another process—recording
log data in a file, which should be encrypted and
stored in a secure place, such as S3 storage.

In turn, monitoring is a tool that
continuously observes logs to detect anomalous
or suspicious events, allowing for prompt
response to potential threats and ensuring
immediate reaction.

Summarizing the information above, the
authors of the article concluded that logging and
event monitoring are necessary components for
ensuring an effective response to dangerous
events, diagnosing problems, and
understanding the performance of protection
measures.

Among the tools offered by AWS, the
functions of logging and event monitoring are
performed by CloudWatch and CloudTrail
services.

CloudWatch, as a comprehensive service,
includes four functionally different
components: CloudWatch Logs—a service for
collecting and monitoring activities in the cloud
and On-Premise environments; CloudWatch
Metrics—numerical data about various
resources and services (for example, CPU usage
metrics); CloudWatch Events—a service for
automating the management of rules to respond
to certain real-time events; CloudWatch
Alarms—a notification management service
that can be configured to detect unusual or
dangerous activity in metrics and trigger
automatic actions. CloudWatch as a whole
allows users to effectively track and manage
resources in the cloud environment and
respond to changes in real time.

CloudTrail is a service that automatically
intercepts all actions with API endpoints and
records them in S3 object storage. The
integration of CloudTrail as a data source with
the CloudWatch suite of services is a true
implementation of automation for responding
to predictable, template threats (Fig. 9).

211

9. Vulnerability Assessment of
System Applications

Device posture assessment is designed to
evaluate the threat a device poses to an
organization and its systems. For instance, an
assessment can confirm whether a device has the
latest software and security updates installed, as
well as if an endpoint security solution is in place
and operational, which is crucial for the
operation of critical infrastructure.

As a cloud provider, AWS offers a solution—
Amazon Inspector—a service that can be used
for network assessments and vulnerability
assessments of computing resources,
information leaks, and automation of regular
checks. Amazon Inspector automatically
identifies workloads such as Amazon EC2
instances, containers, and Lambda functions,
and scans them for software vulnerabilities
and unintended network exposures.

Figure 9: Automation scheme for Monitoring and Logging services

10. Confidential Information
Verification

A leak of confidential information can be a
critical factor for an enterprise and can disrupt
established processes. Ensuring a secure place
for processing and storing confidential
information is one of the most important goals
of any enterprise, startup, and especially an
international company.

In the AWS environment, the authors
selected Amazon Macie, a service that uses
machine learning and pattern matching to
monitor the publication of confidential data,
provides visibility into data security risks, and
allows for the automation of protection against
these risks. Macie also identifies various types
of data, such as PII (Personally Identifiable
Information), PHI (Protected Health
Information), regulatory documents, API keys,
and secret keys. This ensures continuous
monitoring and detection of confidential data
that has been published either personally by
the user or programmatically.

11. Data Encryption Tools

Based on the description of the encryption
mechanism and its importance, it can be
concluded that data encryption is a critically
important mechanism for ensuring the
confidentiality, integrity, and immutability of
data, and thus an additional and critical level of
security without which critical infrastructure
would not be a complete system.

AWS KMS provides the ability to encrypt data
in S3 object storage and databases, as well as
encrypt traffic using TLS (Transport Layer
Security). KMS supports external key stores for
encryption keys (External Key Store) and custom
key stores for encryption keys (Custom Key
Store), offering greater flexibility in resource
configuration.
The AWS CloudHSM service ensures a high level
of security for encryption keys in the cloud
environment, utilizing physical hardware
security modules under our control.

It’s worth mentioning the Amazon Certificate
Manager service, which allows for easy issuance,

212

management, and deployment of SSL/TLS
certificates for web applications and AWS
resources. ACM automatically generates and
renews certificates within AWS, ensuring the
security and encryption of HTTPS (Hypertext
Transfer Protocol Secure) connections.

12. Filtering and Controlling
Network Traffic

A firewall performs the functions of filtering and
controlling network traffic to protect against
unauthorized access and network attacks,
including DDoS (Distributed Denial of Service)
attacks, port scanning (for openness), packet
interception and traffic analysis, SQL injections,

cross-site scripting (XSS), information leakage,
and more.

The cloud service provider AWS offers the
WAF (Amazon Web Application Firewall)
service, which is a comprehensive solution that
includes the functionality of many types of
firewalls, but its main focus is on protecting
web applications from web attacks. WAF
allows managing traffic based on web access
control lists (Web ACLs), i.e., defining rules
based on IP addresses, HTTP headers and
bodies, and custom URIs. The primary purpose
of WAF is to provide high protection against
attacks such as SQL injections, cross-site
scripting (XSS), information leakage, and
others.

Figure 10: Multilevel Security System Built on the Principles of “Security as Code”

In Fig. 10, we can see a schematic representation
of the constructed solution, i.e., a system for
ensuring multilevel security based on the
principles of “Security as Code”, which includes
aspects of the methodology, expands its
functionality, and is also an extension of the
Defense-in-Depth solution.

The developed solution fully implements
security at multiple levels, preventing attacks
such as DDoS (Distributed Denial of Service),
port scanning (for openness), packet
interception and traffic analysis, SQL
injections, Cross-Site Scripting (XSS),
information leakage, and more. It also

213

addresses crucial issues: effective access and
privilege management—IAM; logical isolation
of network resources and their configuration
—VPC, continuous monitoring, event logging,
and immediate response to anomalies and
dangers—a combination of AWS CloudTrail
(API activity logging), CloudWatch (monitoring
and logging, event response), Lambda
(serverless function) and user notification
mechanism—SNS; system application
vulnerability checking (Posture Checking)—
AWS Inspector; confidential information
verification—Macie; data encryption tools—
KMS; network traffic protection tools—
Amazon Certificate Manager; network traffic
filtering and control—AWS WAF.

13. Testing of the Constructed
Solution

Testing of the constructed solution will be
conducted using the following common checks
and attacks: Posture Checking; data
confidentiality verification; SQL injection; and
Bot Stop.

Such tests will help understand the level of
protection of the constructed solution and, in
general, prepare for defense against known
threats.

Here are the testing results:

Figure 11: Detection of Potentially Compromised Information

Figure 12: SQL Injection Request Blocked by AWS WAF

214

The conducted testing proves the objectivity
and appropriateness of the implemented
solution for infrastructure protection.

14. Conclusions

The construction of infrastructure solutions in
cloud platforms has garnered significant interest
in the last five to ten years. Physical servers, in
comparison to cloud solutions, are falling out of
trend, becoming more expensive to acquire and
maintain, have limited functionality, and are
more complex to configure. With the mass
migration of IT companies to the cloud, there
arises a problem of complexity in the approach to
developing cloud infrastructure and
mechanisms for its protection.

The flexibility in configuring infrastructure
solutions allows the use of new techniques for
product deployment. The simplicity, templating,
and modularity of IaC code enable rapid
development of existing infrastructure solutions
and the introduction of best practices. Control
over the infrastructure lifecycle, from requesting
specific virtual machine resources, network and
subnet configurations, and DNS, to the
automation of software product deployment,
opens up vast opportunities for current business
needs.

“Security as Code” represents the integration
of security with the Infrastructure as Code
approach. Correct implementation and choice of
tools for security implementation are key aspects
of this approach. Security as Code must ensure a
high degree of product and infrastructure
security, so this approach should be considered a
multilayered comprehensive structure, where
each layer of security is critically important not
only at the level of its responsibility and
functionality but also for all components of the
system’s life cycle, whether the product or the
infrastructure as a whole.

The authors of the article focused on the
practical side of building a comprehensive
solution in developing infrastructure and
ensuring its security, illustrated by an
enterprise example. The work considered
many different aspects regarding the choice of
the right platform, architecture design, and
security provision, and, as a result, built and
implemented a practical solution using the
“Infrastructure as Code” and “Security as Code”
approaches.

References

[1] J. Wu, et al., Cloud Storage as the
Infrastructure of Cloud Computing,
International Conference on Intelligent
Computing and Cognitive Informatics
(2010) 380–383. doi: 10.1109/ICICCI.
2010.119.

[2] M. TajDini, V. Sokolov, V. Buriachok,
Men-in-the-Middle Attack Simulation on
Low Energy Wireless Devices using
Software Define Radio, in: 8th
International Conference on
“Mathematics. Information Techno-
logies. Education:” Modern Machine
Learning Technologies and Data Science,
vol. 2386 (2019) 287–296.

[3] M. TajDini, V. Sokolov, P. Skladannyi,
Performing Sniffing and Spoofing Attack
Against ADS-B and Mode S using
Software Define Radio, in: IEEE
International Conference on Information
and Telecommunication Technologies
and Radio Electronics (2021) 7–11. doi:
10.1109/UkrMiCo52950.2021.9716665.

[4] V. Sokolov, P. Skladannyi, N. Korshun,
ZigBee Network Resistance to Jamming
Attacks, in: IEEE 6th International
Conference on Information and
Telecommunication Technologies and
Radio Electronics (2023) 161–165. doi:
10.1109/UkrMiCo61577.2023.10380360.

[5] V Sokolov, P. Skladannyi, V. Astapenya,
Bluetooth Low-Energy Beacon
Resistance to Jamming Attack, in: IEEE
13th International Conference on Elect-
ronics and Information Technologies
(2023) 270–274. doi: 10.1109/
ELIT61488.2023.10310815.

[6] V. Sokolov, P. Skladannyi, A. Platonenko,
Jump-Stay Jamming Attack on Wi-Fi
Systems, in: IEEE 18th International
Conference on Computer Science and
Information Technologies (2023) 1–5.
doi: 10.1109/CSIT61576.2023.10324031.

[7] Amazon, What is ETL (Extract Transform
Load)? URL: https://aws.amazon.com
/what-is/etl/#:~:text=Extract%2C%20
transform%2C%20and%20load%20(,a
nd%20machine%20learning%20(ML)

[8] S. Shylesh, A Study of Software
Development Life Cycle Process Models,

https://ieeexplore.ieee.org/document/5565955
https://ieeexplore.ieee.org/document/5565955

215

SSRN (2017). doi: 10.2139/SSRN.
2988291.

[9] R. Longbottom, Cray 1 Supercomputer
Perfomance Comparisons with Home
Computers, Phone and Tables. URL:
http://www.roylongbottom.org.uk/Cra
y%201%20Supercomputer%20Perform
ance%20Comparisons%20With%20Ho
me%20Computers%20Phones%20and
%20Tablets.htm

[10] AWS Web Services Inc. or its affiliates,
Shared Responsibility Model. URL:
https://aws.amazon.com/compliance/s
hared-responsibility-model/

[11] Recro, Top 5 Cloud Service providers: A
Comparison. URL: https://recro.io/blog
/top-5-cloud-service-providers/

[12] A. Hiles, Business Continuity: Best
Practices: World-class Business
Continuity Management, 2nd Edition,
(2004).

[13] G. Raje, Security and Microservice
Architecture on AWS, O’Relly Media, Inc,
(2021).

[14] M. Holmgren, Multi-Master Database
Replication and e-Learning, KTH School
of Information and Communication
Technology (ICT) (2015).

[15] P. Kirvan, Techtarget, RPO vs. RTO: Key
Differences Explained with Examples,
Tips (2021).

[16] J. Chijioke-Uche, Infrastructure as Code
Strategies and Benefits in Cloud
Computing, Walden University ProQuest
Dissertations Publishing (2022).

[17] O. Vakhula, I. Opirskyy, O. Mykhaylova,
Research on Security Challenges in Cloud
Environments and Solutions based on
the “Security-as-Code” Approach, in:
Cybersecurity Providing in Information
and Telecommunication Systems II Vol.
3550 (2023) pp. 55–69.

[18] A. Pessa, Comparative Study of
Infrastructure as Code Tools for Amazon
Web Services, M. Sc. Thesis, Faculty of
Information Technology and Communi-
cation Sciences (2023). URL:
https://trepo.tuni.fi/bitstream/handle/
10024/149567/PessaAntti.pdf?sequenc
e=2

[19] HashiCorp, AWS Provider Documen-
tation. URL: https://registry.terraform.
io/providers/hashicorp/aws/latest

[20] BK Sarthak Das, Virginia Chu, Security as
Code, O`Reilly Media, Inc. Book (2023).

[21] M. Silic, A. Back, Shadow IT—A View
from Behind the Curtain, Comp. Secur.
45 (2014) 274–283. doi: 10.1016/j.cose.
2014.06.007.

https://doi.org/10.2139/SSRN.2988291
https://doi.org/10.2139/SSRN.2988291
http://www.roylongbottom.org.uk/Cray%201%20Supercomputer%20Performance%20Comparisons%20With%20Home%20Computers%20Phones%20and%20Tablets.htm
http://www.roylongbottom.org.uk/Cray%201%20Supercomputer%20Performance%20Comparisons%20With%20Home%20Computers%20Phones%20and%20Tablets.htm
http://www.roylongbottom.org.uk/Cray%201%20Supercomputer%20Performance%20Comparisons%20With%20Home%20Computers%20Phones%20and%20Tablets.htm
http://www.roylongbottom.org.uk/Cray%201%20Supercomputer%20Performance%20Comparisons%20With%20Home%20Computers%20Phones%20and%20Tablets.htm
http://www.roylongbottom.org.uk/Cray%201%20Supercomputer%20Performance%20Comparisons%20With%20Home%20Computers%20Phones%20and%20Tablets.htm
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://recro.io/blog%20/top-5-cloud-service-providers/
https://recro.io/blog%20/top-5-cloud-service-providers/
https://trepo.tuni.fi/bitstream/handle/10024/149567/PessaAntti.pdf?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/149567/PessaAntti.pdf?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/149567/PessaAntti.pdf?sequence=2

