

265

Method of Dataset Filling and Recognition of Moving
Objects in Video Sequences based on YOLO

Mariia Nazarkevych1, Vasyl Lytvyn1, Maryna Kostiak1, Nazar Oleksiv1,
and Nazar Nаconechnyi1

1 Lviv Polytechnic National University, 12 S. Bandera str., Lviv, 79000, Ukraine

Abstract
The method of filling the dataset of mobile military objects was studied. In the future,
objects captured by a video camera mounted on a moving object will be investigated. The
software used is YOLO v8, which allows you to track moving objects that fall into the video
from the video camera. We use artificial intelligence methods to recognize military
equipment. Improvements in object recognition can be achieved by contour analysis,
pattern comparison, and point-by-point comparison. In future works, we will develop
recognition of these theories. The metrics used to evaluate object recognition are shown.
A method of filling the dataset and creating a classifier is proposed. Shown are graphs, the
results of moving object recognition in Yolo8x.

Keywords 1
AI, machine learning, YOLO, computer vision, military.

1. Introduction

Today, with the rapid development of artificial
intelligence based on deep learning
technology, convolutional neural networks [1–
4] have made a breakthrough in the field of
computer vision, greatly increasing the
flexibility and automation of production [5–9].

In the field of computer vision, machine
vision is involved in the automatic recognition
of moving objects, and the detection of
obstacles during the movement of objects [10].

2. Review of Literature

The YOLO series has been updated to YOLO v8
[8]. To further improve the performance of
existing object detection algorithms, many
scientists have begun to study them. In
particular, [9] proposed an object detector based
on depth features. It enhances the ability to train
the network through multi-scaling training
methods without increasing the network size
and integrates multiple tracking features of

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine

EMAIL mariia.a.nazarkevych@lpnu.ua (M. Nazarkevych); vasyl.v.lytvyn@lpnu.ua (V. Lytvyn); maryna.y.kostiak@lpnu.ua (M. Kostiak);

nazar.oleksiv.mnsa.2020@lpnu.ua (N. Oleksiv); nazar.nakonechnyi.mttop.2022@lpnu.ua (N. Nаconechnyi)
ORCID: 0000-0002-6528-9867 (M. Nazarkevych); 0000-0002-9676-0180 (V. Lytvyn); 0000-0002-6667-7693 (M. Kostiak); 0000-0001-

7821-3522 (N. Oleksiv); 0009-0000-2456-3498 (N. Nаconechnyi)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

observation models for accurate object location.
However, this method lacks detection and false
detection in complex scenes with many objects.

In an era marked by rapid advancements in
Artificial Intelligence (AI) and computer vision,
the convergence of these technologies has
ignited revolutionary progressions with
profound implications. The domain of military
applications stands at the forefront of harnessing
AI’s potential, particularly within the sphere of
computer vision. This article embarks on a
critical exploration of this aspect, delving into the
importance of training AI models, specifically
focusing on the You Only Look Once (YOLO)
model, for the recognition of military objects,
with a specific emphasis on tanks.

As the velocity of technological innovation
intensifies, AI and computer vision have
evolved into crucial instruments that reshape
our perceptions and interactions with the
environment. In military contexts, the
incorporation of computer vision capabilities
holds paramount significance, providing
heightened situational awareness, facilitating

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mariia.a.nazarkevych@lpnu.ua

266

strategic decision-making, and optimizing
overall operational efficiency. The rapid and
accurate identification of military objects, such
as tanks, is imperative in environments
characterized by dynamism and
unpredictability.

Amidst these technological advancements,
recent geopolitical events, and the war in
Ukraine, accentuate the urgent requirement
for advanced AI models capable of detecting
military assets like tanks. The deployment of AI
in conflict zones confers a strategic advantage
by enabling real-time object recognition,
aiding in the precise allocation of resources,
and ultimately enhancing the safety and
effectiveness of military operations.

This article aims to explore how we train a
sophisticated model called YOLO to recognize
military objects. We are going to talk about the
methods we use, the difficulties we face, and
what could happen as a result. The goal is to
show how important AI and computer vision
are in changing how military technology
works, which has big effects on keeping things
safe and defending our countries.

Various methods are used to search for
objects in the image when applying computer
vision methods.

There are three main methods of object
recognition in the image:

• Contour analysis [10].
• Template matching [11].
• Feature detection, description & matching

[12].
One of the methods for recognizing objects

from a video stream is using pattern search
methods. This method has information about
what the required object looks like, what kind
of background it can have, how certain
contours of the object look, and at what
positions they can be, immediately considering
the possible location of the object detection. It
allows us to achieve a high quality of
recognition and has a good speed. However,
when the video camera captures several
objects that are similar to each other, different
patterns are satisfied and recognition
decreases. Therefore, apply a family of models
to estimate functions.

Google Collaboratory [13] (“Colab”, a cloud
version of Jupyter Notebook) will be used to
train neural networks. Using Colab does not
require installing and running or upgrading

your computer hardware to meet Python’s
CPU/GPU intensive requirements. In addition,
Colab provides free access to computing
infrastructure such as storage, RAM,
computing power, and processing with
graphics units (GPUs) [14] and tensor
processing units (TPUs) [15].

A workspace will be organized before the
project is developed. To identify enemy
targets, DataSet padding will be performed for
the corresponding data set. This process will
include searching for images and videos of the
above-mentioned objects and marking the
corresponding objects. The data set will
consist of tens of thousands of unique
images—approximately equally for each class.

2.1. Contour Analysis

One of the methods used to determine moving
objects is contour analysis [16], which is a
method of describing, storing, recognizing,
comparing, and searching for graphic images
(objects) based on their contours. The contour
completely defines the shape of the image and
contains all the necessary information for
recognizing images by their shape. This
approach allows you not to consider the
internal points of the image and thereby
significantly reduce the amount of information
that is transformed. Contour—a curve that
describes the boundary of the object in the
image. Therefore, it is possible to consider the
contours of objects, which reduces the
complexity of algorithms. The main advantage
of the contour analysis is the invariance
concerning the rotation, scale, and shift of the
contour in the image.

It is well suited for searching for an object
of a given shape. As a result, it is often possible
to ensure the system works in real-time.
However, there are significant disadvantages
of this method. There are breaks in the outline
in places. Thus, the contour analysis has a
rather weak resistance to interference, and any
violation of the integrity of the contour or poor
visibility of the object leads to either the
impossibility of detection or false positives.
Simplicity and speed of contour analysis allow
you to successfully apply this approach,
provided there is a well-defined object on a
contrasting background.

267

2.2. Template Matching

The template comparison method [17] is
performed according to the criterion of the
minimum (maximum) of some function
comparing the object and its template. This
method is one of the simplest. The input
parameters of the method are the image on
which the template must be searched, the image
of the object that must be found on the tested
image, and the size of the template must be
smaller than the size of the tested image. The
purpose of the algorithm is to find a section on
the tested image that matches the template.
Searching for a template is done by sequentially
moving it by one pixel across the image, and
evaluating the similarity of each new area to the
template. Based on the results of the check, the
section with the highest coincidence ratio is
selected. In essence, this is the percentage of
overlap between the image area and the
template. The described method of matching
with templates is simple, but there is a certain
complexity in the process of creating templates,
that is, in learning.

Template matching does not allow you to say
whether the original object was found because it
is a probabilistic characteristic that depends on
the scale, viewing angles, rotations of the image,
and the presence of physical obstacles [18].
There are also possible false positives of the
algorithm when the searched object is not there,
but there are some general details in the pattern
and area on the tested image. Of course, this
situation can be avoided by checking the match
factor value (so that it is not less than some
threshold), but this will not always work
properly.

2.3. Search by Special Points

Often algorithms use key points [19] (feature
points) of the image for their work. Key points
are understood as some areas of the picture that
are distinctive for this image. There are a large
number of methods for detecting such “special
points”, all of them differ in the speed of
operation, the number of selected points, as well
as resistance to image transformations: rotation,
changes in viewing angles, changes in scale.

Three components are used to find key points
in images and their subsequent comparison:

• Feature detector[20]—searches for key
points on the image.

• Descriptor (descriptor extractor)—
produces a description of the found key
points, evaluating their positions through
the description of the surrounding areas.

• Matcher (matcher)—builds correspon-
dences between two sets of image
points.

Unlike template matching and contour
analysis, algorithms for finding key points are
more resistant to obstacles, and
transformations and allow finding objects even
in the presence of physical obstacles.

To achieve the highest possible level of
tracking of an object (marker), it must have a
significant number of unique (stable) key
points, which the augmented reality library
can quickly highlight in the video stream and
compare with the existing template set. For
this, it is necessary to use the fastest possible
detector and descriptor, as well as to develop
an algorithm that could confidently say that the
object has been found.

This algorithm allows you to recognize
images at different angles, at different
distances from the camera, under different
lighting, and when the image is partially
overlapped [21].

3. Architecture of the YOLO
Algorithm

The YOLOv8 [22] model is widely employed for
object detection purposes. YOLOv8 is available in
four primary versions: small (s), medium (m),
large (l), and extra large (x), with each version
providing increasing levels of accuracy.
Additionally, each variant requires a distinct
amount of time for the training process.

The objective of the graph is to create a
highly efficient object detector model, with
performance indicated on the Y-axis and
inference time on the X-axis. Initial findings
indicate that YOLOv8 performs exceptionally
well in achieving this goal compared to other
cutting-edge techniques.

Examining the chart, it’s evident that all
versions of YOLOv8 exhibit quicker training
times than EfficientDet. Specifically, the most
accurate YOLOv8 model, YOLOv8x,
demonstrates the capability to process images
at a significantly faster rate while maintaining

268

a comparable level of accuracy compared to
the EfficientDet D4 [23] model.
The architecture of YOLO involves dividing the
input image predicting bounding boxes, into a
grid and and class probabilities.

Here’s a high-level overview of the YOLO
architecture:

Input Layer: YOLO takes an input image,
typically of fixed size.

Dividing into Grid: The image is divided
into an S×S grid. Each grid cell is responsible
for predicting bounding boxes and class
probabilities.

Bounding Box Prediction: Each grid cell
predicts multiple bounding boxes (usually B
bounding boxes). These bounding boxes
include information about the coordinates (x,
y) of the bounding box, width (w), height (h),
and confidence scores.

Class Prediction: For each bounding box,
the model predicts class probabilities for
different object categories. This is done using
softmax activation.

Confidence Score: Each bounding box
prediction is associated with a confidence
score, indicating how likely it is that the
bounding box contains an object. This score
takes into account both the probability of
object presence and the accuracy of the
bounding box.

Final Prediction: The final predictions are
obtained by combining the bounding box
coordinates, class probabilities, and confidence
scores. Non-maximum suppression is then
applied to filter out redundant and low-
confidence predictions.

Output: The final output is a set of bounding
boxes, each associated with a class label and a
confidence score.

Loss Function: YOLO uses a multi-part loss
function that includes terms for object
presence/absence, bounding box coordinates,
and class probabilities. This allows the model
to be trained for accurate detection.

The YOLO algorithm takes an image as input
and uses a deep convolutional neural network
to detect objects in the image.

The first 20 convolutional layers of the
model are pre-trained using ImageNet [24],
using a temporal mean pooling layer and a fully
connected layer. After that, this trained model
is transformed to perform the object detection
task, to the trained network improves its
performance. The last fully connected layer of

YOLO performs the prediction of both class
probabilities and bounding box coordinates.

YOLO assumes multiple bounding boxes for
each grid cell. During training, the aim is to
ensure that each bounding box predictor is
“responsible” for predicting the object based
on the prediction with the highest value of
sample overlap with the correct information.

To improve object detection accuracy,
YOLO uses the Non-Maximum Suppression
(NMS) method [25]. This technique allows you
to identify and remove redundant or incorrect
bounding boxes that may be created for a
single object. As a result of applying NMS, only
one bounding box is selected for each object in
the image, which improves the quality and
efficiency of the detection process.

3.1. The Difference Between YOLO and
Other Deep Learning Algorithms for
Object Detection

The main difference between YOLO algorithms
used for object detection is that it recognizes
objects quickly in real-time. The principle of
operation of YOLO involves entering the entire
image at once, which passes through the
convolutional neural network only once [26].

The performance of the YOLO algorithm is
evaluated using the COCO dataset [27] (Common
Objects in Context). The COCO dataset is a large
dataset consisting of 80 feature classes. YOLOv1,
the baseline version, can recognize 24 object
classes and has a 21.6% mAP (average accuracy)
measured using the COCO dataset. YOLOv2 can
recognize 90 feature classes with a COCO dataset
mAP of 30.2%. YOLOv3 can recognize 1000
feature classes with an mAP of 57.9%. YOLOv4
has a better performance compared to YOLOv3
but can recognize 80 feature classes with mAP of
60.0%. YOLOv8 achieves significant
performance improvements over YOLOv4 and
achieves an mAP of 83.5% on the COCO dataset.
YOLOv6 achieved 84.4% of the COCO mAP
dataset. YOLOv7 achieved a mAP of 85.4%.
YOLOv8 provides additional performance
improvements over YOLOv7 and achieves an
mAP of 86.4%.

However, the YOLO algorithm has its
drawbacks. Spatial limitations allow only
8Bbox to be projected per grid cell, making it
difficult to distinguish objects that are close
together. Multiple samples are used and a lack

269

of detail is often apparent. The third problem is
imprecise localization, and finally, since Bbox
training is performed based on data, it is
difficult for the algorithm to detect a test
dataset that does not exist in the training data.
However, the most difficult aspect of deep
learning is the preparation of training data, and
the data applicable to each application domain
is very limited.

Despite all the limitations, the YOLO model
still has a significantly higher processing speed
than other models and continues to be widely
used.

4. Construction of the Model

Artificial neural networks are complex
computing systems similar to the
corresponding systems of the human brain.
They consist of artificial neurons that receive
input signals from a certain number of
connections to the neurons of the previous
layer or the input of the network.

Figure 1: Scheme of a simple neural network
with one hidden layer

The scheme of a simple neural network with
one hidden layer is shown in Fig. 1. The process
of learning a neural network consists of
adjusting the parameters of the network to
obtain better results. For most problems in
neural networks, tutoring is used, when the
system is fed data with a ready result to
gradually train the network with real data,
where the correct answer will not be known in
advance. Improving the results and accuracy of
the network is done by minimizing a certain

error, the difference between the predicted
and actual outputs.

Accuracy measures how well the model
predicts the correct outcome compared to the
actual outcome. It is calculated by dividing the
number of correct predictions by the total
number of predictions. Although accuracy is a
useful metric, it may not be sufficient to
evaluate the performance of complex AI
models. Therefore, it is important to consider
other metrics such as precision, repeatability,
and F1-score [28].

Classification errors—confusion matrix
[29] (error matrix). If there are two classes and
an algorithm that predicts each object to one of
the classes, then the classification error matrix
will look like this:

Table1
Confusion matrix

 y=1 y=0

�̌� = 1 True Positive (TP) False Positive (FP)
�̌� = 0 False Negative (FN) True Negative (TN)

where �̌� is the answer of the algorithm on the
object, and y is the true label of the class on this
object.

Accuracy measures the ratio of correct
positive predictions to all positive predictions
made by the model. It shows how well the model
will avoid false positives. Repeatability, on the
other hand, measures the ratio of correct positive
predictions to all actual positive cases. It shows
how well the model will avoid false negatives.

In this way, classification errors are applied,
which are: False Negative (FN) and False Positive
(FP) [29].

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%, (1)

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%. (2)

The F1-score is a combination of precision
and repeatability, providing a balanced
estimate of model performanceP).

𝑅𝐹1 =
2×𝑃×𝑅

𝑃+𝑅
× 100%. (3)

Reference data sets are traditionally used
for preliminary comparison of models. The
COCO dataset uses a special mAP averaged
accuracy metric 𝑚𝐴𝑃.

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0
𝑑𝑅, (4)

𝑚𝐴𝑃 =
1

𝑛
∑

𝑇𝑃

𝐹𝑃+𝑇𝑃
3
𝑖=1 . (5)

270

This is an average accuracy measure, which is
taken from different values of the intersection
over the union.

5. Construction of the Classifier

The construction of the classifier makes it
possible to evaluate the preferences of the
choice based on the analysis of information
about the preferences of users.

We will use an artificial neural network to
build a classifier.

A neural network based on a multilayer
perceptron is a system of interconnected
layers of neurons. Each neuron is
characterized by an activation function that
converts the neuron’s input signal into an
output signal. Connections of neurons with
other neurons are characterized by connection
coefficients—weights. An important factor in
learning a neural network is the type of input
data. To achieve the best results, it is necessary
to preliminarily display the data using
centering and scaling operations (1):

𝑥𝑛 = (𝑥−𝑚𝑥) 𝑚𝑥. (6)

The learning process is an iterative sequence
of operations for calculating the output signal of
the network and subsequently changing the
weights of the connections. As an algorithm for
weight adjustment in MLP-based networks, the
error backpropagation algorithm is usually used.
It refers to methods of learning with a teacher, so
it requires that target values be set in the training
examples. This algorithm belongs to the class of
gradient algorithms, that is, the changes in the
weights of connections are made in the direction
of minimizing the gradient of the error. The
prediction error during training is equal to the
difference between the signal at the network
output and the output reference value
corresponding to the input data (2).

𝑒𝑖 = (𝑦𝑖−𝑑𝑖). (7)

The training of the network must be carried
out until the average value of the error during
one training epoch decreases. Further training
usually leads to a deterioration in the
analytical capabilities of the neural network.

The network was trained using the error
backpropagation algorithm and the gradient
descent algorithm. The basis of the idea of the
algorithm is the use of the initial error of the
neural network (7) to calculate the correction

values of the neuron weights in its hidden
layers:

E = 1 2 ∑ (y−y′) k 2 i = 1, (8)

where k is the number of output neurons of the
network, y is the target value; and y’ is the actual
output value.

This algorithm is iterative, it uses step-by-
step learning. It works as follows: one test
example is given to the learning input. Then the
weight values are adjusted. At each iteration,
forward and reverse passes of the network take
place. On a forward input, the vector propagates
from the inputs to the outputs of the network. In
this way, a certain output vector is formed, which
corresponds to the current (actual) state of the
scales. The error of the neural network is
calculated as the difference between the actual
and target values.

On the return pass, this error is propagated
from the output of the network to its inputs,
and the neuron weights are corrected
according to formula (4):

Δwji(n) = −η ∂Eav ∂wij, (9)

where wji is the weight of the ith connection of
the jth neuron; η is a learning speed parameter
that allows you to additionally control the size
of the correction step; Δwji for more accurate
adjustment to the minimum error and is
selected experimentally in the learning process
(changes in the interval from 0 to 1).

5.1. The Method of Stochastic Gradient
Descent

The stochastic gradient descent method belongs
to optimization algorithms and is used to adjust
the parameters of the machine learning model.
The gradient is usually considered the sum of the
gradients caused by each training element. The
parameter vector changes in the direction of the
anti-gradient with a given step. Therefore,
standard gradient descent requires one pass
over the training data before it can change the
parameters. In stochastic (or “operational”)
gradient descent, the value of the gradient is
approximated by the gradient of the cost
function calculated on only one training element.
The parameters then change in proportion to the
approximate gradient. Thus, the parameters of
the model change after each training object. For
large datasets, stochastic gradient descent can

271

provide a significant speed advantage over
standard gradient descent.

We will use the Python language to build the
classifier. One of the main reasons why Python is
used for machine learning is that it has many
frameworks that simplify the process of writing
code and reduce development time.

5.2. Save the Video

So, we shoot a video and process it frame by
frame [30], and we want to save this video. We
do pre-processing of images [31].

We create a VideoWriter object. Specify the
name of the output file (output.avi). Then we
specify the FourCC code and transfer the
number of frames per second (fps) and the
frame size. And the last one is Color. If True, the
encoder expects a color frame, otherwise it
works with a grayscale frame. FourCC is a 4-

byte code used to identify the video codec.
XVID codec is better. MJPG creates large-size
videos. X264 gives a small video size). On
Windows: DIVX.

6. Experiment Environment

As part of the research, a proprietary dataset
was utilized, comprising over a thousand
images of tanks from various models and
perspectives. These images were sourced from
electronic books and websites, rendering them
diverse and realistic [32]. Accordingly, it was
necessary to manually add labels to the images
for subsequent model training. This process
ensured proper classification and recognition
of tanks in the images.

The decision was made to employ the
Roboflow platform for efficient uploading and
processing of images.

Figure 2: Dataset filling

272

This not only facilitated a swift resolution of
the task but also accurately assigned labels to
each object in the images, providing the model
with sufficient information for tank recognition
and classification.

Figure 3: Filling the dataset with photos of tanks
from different viewing angles

Figure 4: Recognition of tanks

These steps in utilizing a proprietary dataset
and the Roboflow platform hold significant
importance in advancing the tank recognition
model, particularly in enhancing its accuracy
and efficiency during training.

As a result of training, the model
demonstrated impressive accuracy, achieving
a high level of correct classification of objects
in the images [33]. The graphs attached to the
article illustrate the model's high stability and
effectiveness during training, confirming its
ability to confidently recognize tanks in
various scenarios and conditions [34].

Figure 5: Precision—Confidence curve

Figure 6: Precision-Recall curve

Figure 7: Recall—Confidence curve

Figure 8: F1 Confidence curve

273

Figure 9: Convolution matrix

Furthermore, the trained model exhibited
minimal losses during training, indicating high
efficiency and optimal adaptation to the
training data. The training and loss graphs
depict a stable learning process and the
absence of significant fluctuations in losses
during model optimization [35, 36].

Overall, the obtained results affirm the high
potential and efficiency of the developed
model for tank recognition, making it a
significant contribution to the field of military
applications and security objects.

6.1.1. Model Testing

We conducted model testing under various
conditions, including image analysis and video
streaming:

6.1.2. Image Testing

The model was evaluated using diverse images of
tanks, encompassing various models sourced
from different outlets [37, 38]. Under normal
lighting conditions and various viewing angles,
the model successfully recognized tanks,
demonstrating a high level of accuracy.

6.2. Video Stream Testing

We also conducted testing using a video stream
to assess the model’s real-time tank recognition
capabilities. In this mode, the model proved to be
quite effective, adapting quickly to changes in the
images and confidently recognizing tanks in
different scenarios.

Figure 10: The result of Yolo8 work, recognition
in a video stream

Figure 11: The result of Yolo8 work, recognition
in a video stream

Figure 12: The result of Yolo8 work

Despite the overall success, it is worth noting
that the model struggled to recognize tanks in
low-light conditions, such as during nighttime
without thermal imaging illumination or in
snowy conditions. This aspect should be
considered as a potential area for further
improvements and optimizations to the model.

7. Conclusions

Our research project encompassed several key
stages aimed at creating and refining a tank
recognition model using YOLO (You Only Look
Once). We generated our dataset, consisting of

274

diverse tank images from various sources. This
dataset provided crucial material for training
and recognizing different tank models.
Utilizing the created dataset, we successfully
trained the YOLO model to recognize tanks.
The training methodology involved annotation
and systematic training to achieve high
accuracy. We assessed the model’s
effectiveness across various media, including
photos and videos. The model demonstrated a
high level of tank recognition in real-time and
images. The testing results revealed
impressive accuracy and efficiency in
recognizing tanks under different conditions
and perspectives. Upon analysis, the next step
could involve refining the model for tank
recognition in low-light conditions, such as
nighttime without thermal illumination, or
during adverse weather conditions like
snowfall. In conclusion, the developed model
holds significant potential in military
applications and security domains. Further
enhancements could make it even more
effective in real-world conditions.

References

[1] Z. Li, et al., A Survey of Convolutional
Neural Networks: Analysis, Applications,
and Prospects, IEEE Transactions on
Neural Networks and Learning Systems
33(12) (2021) 6999–7019. doi:
10.1109/TNNLS.2021.3084827.

[2] V. Grechaninov, et al., Decentralized
Access Demarcation System
Construction in Situational Center
Network, in: Workshop on Cybersecurity
Providing in Information and Tele-
communication Systems II, vol. 3188, no.
2 (2022) 197–206.

[3] P. Anakhov, et al., Protecting Objects of
Critical Information Infrastructure from
Wartime Cyber Attacks by
Decentralizing the Telecommunications
Network, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems, vol. 3550
(2023) 240–245.

[4] H. Hulak, et al., Dynamic Model of
Guarantee Capacity and Cyber Security
Management in the Critical Automated
System, in: 2nd International Conference
on Conflict Management in Global

Information Networks, vol. 3530 (2023)
102–111.

[5] V. Buriachok, V. Sokolov, P. Skladannyi,
Security Rating Metrics for Distributed
Wireless Systems, in: Workshop of the
8th International Conference on
“Mathematics. Information Tech-
nologies. Education:” Modern Machine
Learning Technologies and Data Science,
vol. 2386 (2019) 222–233.

[6] M. Vladymyrenko, et al., Analysis of
Implementation Results of the
Distributed Access Control System. in:
IEEE International Scientific-Practical
Conference Problems of Infocom-
munications, Science and Technology
(2019). doi: 10.1109/picst47496.2019.
9061376.

[7] Y. Qiao, et al., Automatic Recognition of
Static Phenomena in Retouched Images:
A Novel Approach, Advanced
Technologies for the Implementation of
New Ideas (2024) 287–291.

[8] Z. Wang, et al., E-YOLO: Recognition of
Estrus Cow Based on Improved
YOLOv8n Model, Expert Syst. Appl. 238
(2024) 122212. doi: 10.1016/j.eswa.
2023.122212.

[9] Y. Zhang, et al., DsP-YOLO: An Anchor-
Free Network with DsPAN for Small
Object Detection of Multiscale Defects,
Expert Syst. Appl. 241 (2024) 122669.
doi: 10.1016/j.eswa.2023.122669.

[10] M. Patel, et al., 3D Back Contour Metrics
in Predicting Idiopathic Scoliosis
Progression: Retrospective Cohort
Analysis, Case Series Report and Proof of
Concept, Children 11(2) (2024) 159. doi:
10.3390/children11020159.

[11] Q. Wang, et al., Transformer-Based
Multiple-Object Tracking via Anchor-
Based-Query and Template Matching,
Sensors 24(1) (2024). 229 doi:
10.3390/s24010229.

[12] H. Lu, J. Nie, Coarse Registration of Point
Cloud Base on Deep Local Extremum
Detection and Attentive Description,
Multimedia Syst. 30(1) (2024), 23. doi:
10.1007/s00530-023-01203-w.

[13] S. Shekhar, N. Thakur, Deep Learning
Framework for Forecasting Diabetic
Retinopathy: An Innovative Approach, Int.
J. Innov. Res. Comput. Sci. Technol. 12(1)

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1016/j.eswa.2023.122212
https://doi.org/10.1016/j.eswa.2023.122212
https://doi.org/10.1016/j.eswa.2023.122669
https://doi.org/10.3390/children11020159
https://doi.org/10.3390/s24010229
http://dx.doi.org/10.1007/s00530-023-01203-w

275

(2024) 17–20. doi: 10.55524/ijircst.2024.
12.1.4.

[14] U. Utkarsh, et al., Automated Translation
and Accelerated Solving of Differential
Equations on Multiple GPU Platforms,
Comput. Methods Appl. Mech. Eng. 419
(2024) 116591. doi: 10.48550/arXiv.
2304.06835.

[15] P. Feng, et al., Co-Continuous Structure
Enhanced Magnetic Responsive Shape
Memory PLLA/TPU Blend Fabricated by
4D Printing, Virtual Phys. Prototyp.
19(1) (2024) e2290186. doi: 10.1080/
17452759.2023.2290186.

[16] J. Malik, et al., Contour and Texture
Analysis for Image Segmentation, Int. J.
Comput. Vision 43 (2001) 7–27. doi:
10.1023/A:1011174803800.

[17] N. Hashemi, et al., Template Matching
Advances and Applications in Image
Analysis, arXiv preprint (2016).

[18] G. Cox, Template Matching and Measures
of Match in Image Proce-Ssing, University
of Cape Town (1995).

[19] D. Lowe, Distinctive Image Features from
Scale-Invariant Keypoints, Int. J. Comput.
Vision 60 (2004) 91–110.

[20] D. Mukherjee, M. Wu, G. Wang, A
Comparative Experimental Study of
Image Feature Detectors and
Descriptors, Mach. Vision Appl. 26
(2015) 443–466. doi: 10.1007/s00138-
015-0679-9.

[21] L. Liu, et al., CLFR-Det: Cross-Level
Feature Refinement Detector for Tiny-
Ship Detection in SAR Images,
Knowledge-Based Syst. 284 (2024). doi:
10.1016/j.knosys.2023. 111284.

[22] Q. Liu, et al., YOLOv8-CB: Dense
Pedestrian Detection Algorithm Based
on In-Vehicle Camera, Electronics 13(1)
(2024) 236. doi: 10.3390/electronics
13010236.

[23] F. Pan, et al., Zero-shot Building Attribute
Extraction from Large-Scale Vision and
Language Models, IEEE/CVF Winter
Conference on Applications of Computer
Vision (2024) 8647–8656.

[24] H. Li, C. Wang, Y. Liu, YOLO-FDD:
Efficient Defect Detection Network of
Aircraft Skin Fastener, Signal, Image and
Video Processing (2024) 1–15.

[25] S. Koga, et al., Optimizing Food Sample
Handling and Placement Pattern

Recognition with YOLO: Advanced
Techniques in Robotic Object Detection,
Cognitive Robotics (2024). doi:
10.1016/j.cogr.2024.01.001.

[26] Y. Wang, et al., GT-YOLO: Nearshore
Infrared Ship Detection Based on
Infrared Images, J. Marine Sci. Eng. 12(2)
(2024) 213. doi: 10.3390/jmse12020213.

[27] K. Gupta, A. Asthana, Reducing the Side-
Effects of Oscillations in Training of
Quantized YOLO Networks, IEEE/CVF
Winter Conference on Applications of
Computer Vision (2024) 2452–2461.

[28] P. Giudici, M. Centurelli, S. Turchetta,
Artificial Intelligence risk measurement,
Expert Systems with Applications 235
(2024) 121220.

[29] S. Shinde, et al., Artificial Intelligence
Approach for Terror Attacks Prediction
Through Machine Learning, Multidiscip.
Sci. J. 6(1) (2024) 2024011–2024011.

[30] M. Nazarkevych, et al., Evaluation of the
Effectiveness of Different Image
Skeletonization Methods in Biometric
Security Systems, Int. J. Sens. Wirel.
Commun. Control 11(5) (2021) 542–552.
doi: 10.2174/221032791066620121015
1809.

[31] M. Nazarkevych, et al., The Ateb-Gabor
Filter for Fingerprinting, International
Conference on Computer Science and
Information Technology (2019) 247–
255. doi: 10.1007/978-3-030-33695-
0_18.

[32] M. Nazarkevych, et al., Data Protection
Based on Encryption Using Ateb-
Functions, 9th International Scientific
and Technical Conference Computer
Sciences and Information Technologies
(2016) 30–32.

[33] M. Medykovskyy, et al., Methods of
Protection Document Formed from
Latent Element Located by Fractals, Xth
International Scientific and Technical
Conference Computer Sciences and
Information Technologies (2015) 70–72.

[34] V. Sheketa, et al., Formal Methods for
Solving Technological Problems in the
Infocommunications Routines of
Intelligent Decisions Making for Drilling
Control, IEEE International Scientific-
Practical Conference Problems of
Infocommunications, Science and
Technology (2019) 29–34.

https://doi.org/10.1080/17452759.2023.2290186
https://doi.org/10.1080/17452759.2023.2290186
http://dx.doi.org/10.1023/A:1011174803800
http://dx.doi.org/10.1007/s00138-015-0679-9
http://dx.doi.org/10.1007/s00138-015-0679-9
https://doi.org/10.1016/j.knosys.2023.111284
https://doi.org/10.1016/j.knosys.2023.111284
https://doi.org/10.3390/electronics13010236
https://doi.org/10.3390/electronics13010236
https://doi.org/10.1016/j.cogr.2024.01.001
https://doi.org/10.1016/j.cogr.2024.01.001
https://doi.org/10.3390/jmse12020213
https://doi.org/10.2174/2210327910666201210151809
https://doi.org/10.2174/2210327910666201210151809
https://doi.org/10.1007/978-3-030-33695-0_18
https://doi.org/10.1007/978-3-030-33695-0_18

276

[35] V. Sheketa, et al., Empirical Method of
Evaluating the Numerical Values of
Metrics in the Process of Medical
Software Quality Determination,
International Conference on Decision
Aid Sciences and Application (2020) 22–
26. doi: 10.1109/DASA51403.2020.
9317218.

[36] N. Boyko, N. Tkachuk, Processing of
Medical Different Types of Data Using
Hadoop and Java MapReduce, in: 3rd
International Conference on Informatics
& Data-Driven Medicine Vol. 2753
(2010) 405–414.

[37] N. Boyko, et al., Fractal Distribution of
Medical Data in Neural Network, IDDM
(2019) 307–318.

[38] I. Tsmots, et al., The Method and
Simulation Model of Element Base
Selection for Protection System
Synthesis and Data Transmission, Int. J.
Sens. Wirel. Commun. Control 11(5)
(2021) 518–530.

https://doi.org/10.1109/DASA51403.2020.9317218
https://doi.org/10.1109/DASA51403.2020.9317218

