
322

Methodology for Predicting Failures in a Smart Home
based on Machine Learning Methods

Viktoriia Zhebka1, Pavlo Skladannyi2, Serhii Zhebka1, Svitlana Shlianchak3,
and Andrii Bondarchuk1

1 State University of Information and Communication Technologies, 7 Solomenskaya str., Kyiv, 03110, Ukraine
2 Borys Grinchenko Kyiv Metropolitan University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine
3 Volodymyr Vynnychenko Central Ukrainian State University, 1 Shevchenka str., Kropyvnytskyi, 25006, Ukraine

Abstract
The article presents a platform for predicting failures in a smart home. A detailed
algorithm of the predicting platform has been described. An algorithm for integrating the
fault prediction platform into the smart home system has been developed. An algorithm
for the functioning of a smart home with a failure prediction program based on machine
learning has been presented. The software has been developed using the JHipster1
generator and the Java programming language. The use of machine learning methods in a
smart home system expands its ability to analyze large amounts of data and identify
patterns that may precede failures. This allows the system to predict possible problems
and respond to them in advance. The use of preventive measures allows the system to
automatically take measures to avoid failures, such as automatically adjusting the
operation of devices or performing backups based on predictions.

Keywords 1
Failures, machine learning methods, predicting, methodology, information technology,
IoT, smart home.

1. Introduction

The rise of smart homes, facilitated by
advancements in the Internet of Things (IoT)
and smart technologies, offers convenient
automation and control over various
household systems like lighting, heating,
security, and energy efficiency [1]. Yet, with
increased complexity comes a higher risk of
malfunctions or issues [2]. Factors such as
network instability, software glitches, and
faulty devices can create unpredictable
scenarios, compromising both the
functionality and security of a smart home [3].

Anticipating these failures has become a
pertinent concern, prompting the application
of machine learning techniques for prediction.
By leveraging machine learning algorithms, it
becomes feasible to sift through vast datasets,

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine

EMAIL: viktoria_zhebka@ukr.net (V. Zhebka); p.skladannyi@kubg.edu.ua (P. Skladannyi); szhebka@hotmail.com (S. Zhebka);

shlanchaksveta@gmail.com (S. Shlianchak); dekan.it@ukr.net (A. Bondarchuk)
ORCID: 0000-0003-4051-1190 (V. Zhebka); 0000-0002-7775-6039 (P. Skladannyi); 0009-0007-4620-9888 (S. Zhebka); 0000-0001-9893-

5709 (S. Shlianchak); 0000-0001-5124-5102 (A. Bondarchuk)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

identifying deviations and trends indicative of
impending failures. This proactive approach
enables preemptive measures to mitigate
potential problems before they manifest.

Presently, most smart home failure
prediction relies on reactive analysis, meaning
anomalies or failures are detected after they
occur, making prevention challenging.
However, employing machine learning
methods such as classification, clustering, and
prediction algorithms holds promise in
developing systems capable of forecasting
failures in advance.

These systems utilize data from various
sources including sensors, IoT devices, energy
consumption records, etc., to discern patterns
and anomalies preceding disruptions [4, 5].
Armed with this insight, machine learning
systems construct predictive models that
respond to specific signals or deviations from

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:p.skladannyi@kubg.edu.ua

323

normal operation, alerting users to potential
issues or taking corrective actions
autonomously [6–16].

While still a nascent field, ongoing research
in this domain aims to enhance smart home
control systems by enabling them to foresee
and forestall potential failures, thereby
enhancing reliability and security for users
[17–24].

2. Research Results

A fault prediction platform assumes the
existence of an IoT platform, as shown in the
upper part of Fig. 1. In particular, it assumes
the existence of two data sources, one for
operational data and the other for historical
and static data, which is reminiscent of the
Lambda architecture, the main idea of which is
that data is first processed in real time
(operational stream) and then sent for storage
and analysis (historical stream). This allows
the system to work efficiently in both real-time
and historical contexts, providing analysis and
conclusions based on the accumulated data.

Figure 1: Architecture of the failure prediction
platform. Solid lines indicate control and data
flow and dashed lines for manual tasks

An IoT platform receives data from the IoT
environment, which can be obtained from
sensors and actuators (environmental data) or
directly from devices, such as CPU and memory
usage (monitoring data). In addition, the IoT
platform stores general information about
devices (device data). Device data are obtained
when a device is registered in the IoT
environment using, for example, a device
registration component. The process can be
automated to a certain extent, but it still requires
manual intervention. IoT platforms usually use a
message broker that receives data from all the
different devices in the IoT environment. It can
be used as a source of real data. In addition, there
may be a database that permanently stores the
received data from the environment and the
static data of the devices. Usually, these two main
components are part of IoT platforms, as seen in
the example of a multi-purpose binding and
provisioning platform that implements the
Mosquito broker and the MongoDB database.
However, it is important to secure only these two
data sources regardless of the types of
components used in the background mode. The
IoT platform can explicitly provide the API
component with access to its data, or it can
establish a direct connection to the broker and
database. The lower part of Fig. 1 shows the
network composition, which should be able to
establish connections to different types of IoT
platforms and data sources. The adapter
component decouples the fault prediction
platform from specific implementations and
receives the data to be used by the models. The
message broker is used to coordinate and
permanently store data after individual
processing steps.

After the data has been received by the
adapter, they are sent to the broker and stored in
a specific group without changes. In the next
step, the data can be processed in the data
processing component before they will be used
by the models. This step can be standardized
using a predefined data template, enriched with
missing information, converted to a specific
format, or adapted in any other way.
Standardizing data using a template leads to data
consistency, which further facilitates the
implementation of models. The processed data
are sent and stored back to another group where
they can be reused by the models. This
component is necessary when working with
heterogeneous data and performs the processing

324

required by all models. Assuming that the data
comes in the form of time-stamped records, it
can be used to extract meaningful information
from the time stamp, such as hour of the day, day
of the week, holiday, etc. Another potential
option of usage, in the case of split device groups,
is to filter the data by device and send it to the
appropriate group.

Each machine learning model is integrated as
a module consisting of four main components:
API, data processing component, controller, and
the machine learning algorithm itself. The API
has the same composition for all modules and
consists of a message source and two message
consumers. There is a data consumer that
consumes pre-processed data and a command
consumer that consumes commands sent from
the dashboard. The message source sends model
results and status or progress information to the
message broker. The messaging interface
separates the machine learning modules from
the platform. However, there is a common data
processing component in the previous step.
Therefore, an additional data processing
component is integrated into each module to
prepare data for a specific algorithm. The
algorithm itself is the core of the module. It goes
through a training process that results in a model
used for forecasting. The algorithm can be
implemented in different ways and with
different libraries, but it must provide an
interface for training and predicting. Finally, all
components are managed by a controller that
performs several functions. It processes
commands, received from the outside and
performs the appropriate actions, receives data,
sends them to the processing component, and
then to the algorithm, if necessary. The controller
can implement automated hyperparametric
tuning to find the optimal parameters, i.e. the
most optimal algorithm configuration based on
the data provided. The controller also stores and
loads data into a database or file system. It can
implement a scheduler to periodically create
backups, retrain the algorithm if online learning
is not possible, or reconfigure the parameters. It
can evaluate the current processing status, and
send model predictions to the message producer.

A model repository describes a general-
purpose storage shared by all models. The
repository can be a database, a file system, or a
combination of both. The main purpose is to
store, describe, and configure algorithms, and
hyperparameters after tuning, or complete

machine learning models, i.e. internal
parameters after training. It can also store any
other information related to the model. It is
accessed through the API components of the
modules and the dashboard.

Once the machine learning model is ready and
starts making predictions, the corresponding
module sends the results to the group it has
defined. The dashboard collects all the
predictions from different models, processes
them, and visualizes the results. In addition to the
groups for predicting, each module has a group
dedicated to commands sent from the
dashboard. In addition, there may be additional
groups that are used by modules to send
information about the status and progress of
work. The dashboard should provide the ability
to interact with the modules and perform
individual steps manually. These steps can
include: importing history, starting automatic
hyperparameter tuning, training individual
algorithms, starting and stopping individual
forecasting models, saving and loading models,
etc. In addition, the dashboard has access to the
model repository to retrieve and display relevant
model information in the user interface. The
dashboard can also be used to insert information
during the model registration process. Finally,
the attendant monitors the dashboard and
performs repairs or replacements in the IoT
environment. An alert system can also be
implemented to inform technical support if a
device fails or reaches critical thresholds based
on predictions.

3. Integration of a Fault
Prediction Platform into a
Smart Home System

At the time the predictive platform is
connected to the IoT platform, the IoT platform
may already exist and collect some data. The
data can be used for initial algorithm training.

The prediction platform allows us to
retrieve old data from the database, go through
a general processing stage, and save it by a
specific topic. After that, the process of training
algorithms can be started individually. Initial
training is important because it allows you to
smoothly start model forecasting with
meaningful results right from the start. But it
can also be skipped, especially if no data has
been collected up to this point. This will lead to

325

instant training, either in the form of online
training or retraining at regular intervals.
Another important advantage of old data is
that they can be used to customize the scalers
required by some models. Scalers typically
require the calculation of internal parameters
such as minimum, maximum, or average values
before they can be applied to the incoming live
data. Performing this configuration on the go is
a more cumbersome process that is likely to
lead to poor results in the beginning. In
addition to these benefits, there is a limitation
that must be considered. The potentially huge
amount of data that could be stored in the IoT
platform’s database could not be loaded into
memory immediately. Nevertheless, in most
cases, processing data in batches or even
selecting a portion of the data can be enough to
set up scalers as well as train algorithms to
provide meaningful results in the beginning.

In the second step, before any prediction
model is made, the forecasting platform
establishes a connection to the message broker
on the IoT platform and starts receiving live
data. Again, the data go through a processing
stage and are assigned to a specific group. At
this stage, predicting can be started separately
for each model. The module receives data and
processes them further if necessary. Then the
model makes a prediction, and the controller
sends it to the appropriate prediction group.
Finally, the predictions are extracted and
visualized in a dashboard. The data passing
through the system is always saved for each
group, except for groups designated for teams
and status or progress information.

So, the entire algorithm for integrating a
fault prediction platform into a smart home
system can be represented in four steps:

Step 1. Connection to the IoT system and
usage of the available data:

• Connecting the predicting platform with
the IoT system.

• Using available data for initial algorithm
training.

Step 2. Obtaining new data:
• Connecting the forecasting platform to

the message broker on the IoT platform.
• Receiving and processing new live data.
• Structuring data by a specific topic.
Step 3. Forecasting with models:
• Starting forecasting using individual

models.

• Receive, process, and transfer forecasts
to the appropriate forecast groups.

Step 4. Visualization and storage of results:
• Extracting and visualizing predictions in

a dashboard.
• Storing data for further use and updating

models.
This algorithm allows us to work efficiently

with existing data and obtain new data to
continuously improve predictive models.

The process of integrating an information
system into a smart home begins with the
analysis of functional requirements and the
detailing of needs (Fig. 2). The next stage is the
development of specialized modules that
ensure the interaction of the information
system with the smart home through the
establishment of specific links and interfaces.

Figure 2: The process of integrating an
information system into a smart home

326

These modules are being integrated with
existing devices and systems in the smart
home, using networks and communication
protocols for data exchange and control. An
important step is to test the integrity and
efficiency of the interaction, as well as to
correct possible errors and malfunctions.

After the system is successfully integrated
into the smart home, the implementation
process takes place, when the system becomes
an active part of the home environment.
However, this is only the beginning: further
support, optimization, and continuous
improvement of the system play a key role in
ensuring its long-term and efficient operation
in the smart home, adapting to changing needs
and conditions.

Figure 3: Smart home functioning algorithm
with a machine learning-based fault prediction
program

Fig. 3 shows a block diagram of the smart home
functioning algorithm with a machine
learning-based fault prediction program. The
proposed algorithm can be divided into the
following blocks:

1. Start—usually means the beginning of a
sequence of actions.

2. Data collection is the block responsible
for checking and collecting new data. If
there are no data, the system waits for
new data. If the data are received, are
being analyzed.

3. Failure prediction—this is where the
data are checked for abnormalities. If
everything is normal, the system
continues to collect data. If anomalies
are detected, prediction algorithms are
used to identify problems and generate
notifications about them.

4. Problem-solving: if problems are
detected, the system conducts further
analysis, and determines the causes and
recommendations for their solution.

Each unit is responsible for a specific part of
the functionality of the smart home fault
prediction system. They help in collecting,
analyzing, and processing data, identifying
possible problems, and providing recom-
mendations for their elimination. Such a
system allows the smart home to be more
autonomous and respond to potential failures
or problems in real-time. After at least one day
of data collection, the system can start learning
and identifying patterns. The dataset is divided
into training and evaluation sets. The training
set makes up 75% of the total data, and the
remaining 25% is the evaluation set. This split
allows us to estimate the model’s accuracy.
Once a model is created, it is saved and can be
used to evaluate new data. The system
continues to collect data about the
environment. The diagram of the flow in Fig. 4
shows the entire system workflow when
integrating data collection with model
implementation. The “motion”, “light”,
“temperature and humidity”, “device states”,
and “main script” blocks represent the main
process of monitoring the environment in the
workflow. Monitoring is used both for data
collection, for the “action in the environment”
block, “data sets”, and for making system
decisions, indicated by the “every minute,
movement or change of the device”, “LSTM
model”, and “environment control” blocks.

327

Figure 4: Diagram of the flow

4. Software Description

The failure prediction platform has been
implemented using the JHipster1 generator.
JHipster creates a complete web application that
provides user management, a responsive user
interface, monitoring, and other benefits. The
prototype implementation uses a Java backend, a
Spring2 framework, and an Angular3 interface.
In addition, it stores data in a MongoDB database
and uses Kafka4 as a message broker. The failure
prediction dashboard is shown in Fig. 5.

The smart home failure prediction software
uses data sources in the form of a multi-purpose
binding and provisioning platform, including
MongoDB and Mosquitto. The proposed
development includes a multi-purpose platform
adapter that creates a connection to the
MongoDB database and a separate connection to
the Mosquitto broker. To show the learning and
prediction processes, the generated dataset was
integrated into the database and the broker. The
panel shows the models and their functions, as
well as two common functions that apply to all
models.

The first general function is responsible for
importing old data from the database and storing
it according to a specific group without changes.
For this purpose, Kafka is used, a fast streaming
platform that provides high-quality data storage
and allows you to create and exchange streaming

data between different systems and modules,
providing the ability to process and analyze this
data in real-time.

After that, the data are processed in a
common component implemented in Java. Given
the use of a generated dataset, it is already
preprocessed, except for the removal of
MongoDB identifiers from each record. This is
done by defining a data template without a
MongoDB ID and matching the input data
accordingly when removing the ID.

The processed data are again stored in
another group. The second general function
activates the monitoring process by establishing
a connection with the Mosquito broker and
receiving the current data. The real-time data
follow the same processing path as the old data
until they are saved again after processing.
Unfortunately, there is currently no
synchronization mechanism and these two
functions can create duplicates if they are
performed at the same time.

A machine learning model can be integrated
into a fault prediction platform in three steps. A
snapshot of the architecture of the fault
prediction platform and the components
involved in integration is shown in Fig. 5.

When it comes to integrating a machine
learning model into a fault prediction platform,
there are three steps involved. First, the model is
developed as a separate machine-learning
module. This module has a built-in Kafka

328

producer to deliver predictions and two Kafka
consumers to exchange data and commands. It is
important to choose adequate names for the
groups used in this context.

At the next stage, the model is registered in
the platform dashboard, providing various
information about the model: name, description,
type, and names of groups used for
communication and transmission of forecasts.
The model data are stored in the model
repository, which allows us to conveniently
manage, view, edit, and delete them. The model
registration area provides a convenient interface
for managing registered models and adding new
ones.

At the final stage of the module development,
it is independently integrated, which makes it
possible to interact with the dashboard through
the Kafka system. For the demonstration, we
used a simple Long Short-Term Memory model
with a sequence of one failure value. This model
has been chosen because it supports online
learning and time series prediction. An equally
important indicator of model selection is the
analysis of the effectiveness of machine learning
methods conducted in the second section, which
showed that the Long Short-Term Memory
model gives the best performance in the
predicting process. This module is implemented
in Python and integrated using the steps
described above. It uses an abstract API
component with Kafka producers and
consumers, as well as predefined abstract
methods to create the interface. This ensures a
uniform API implementation across all models.
In addition, for the Long Short-Term Memory
model, a special data processing component has
been created that transforms functions, prepares
sequences, and uses a scaler to normalize data.
The last two components of the model are the
controller and the algorithm. The controller
processes commands and performs appropriate
actions, managing the components in the model,
as well as starting and stopping the algorithm’s
learning and prediction process.

When the dashboard is initialized, all existing
models and their forecast histories are loaded, as
shown in Fig. 6. Each model has four interrelated
functions. To train the models, they move to the
group with the processed data. In this
implementation, a limited number of data
records are used to load all the data
simultaneously. However, records are being
received in limited quantities or batches. Once

training is complete, predicting can begin. If
online training is provided for a particular model,
forecasting can be started instantly. In addition,
each model, along with the corresponding scaler,
can be saved as files and retrieved at any time.

Figure 5: Failure prediction platform
architecture and components

Figure 6: Developed software

The basic algorithm of the information system
can be described as follows:

1. Initialization and loading of the models:
• When the system starts up, all

available models and their predictive
histories are loaded.

• This is done for further analysis and
use of these models in the decision-
making process.

2. Model training:
• Models can be trained by moving to

the appropriate group with pre-
processed data.

• A limited number of data records are
used for simultaneous training, but
the ability to receive data in limited
quantities or batches ensures the
efficiency of the process.

329

Figure 7: Algorithm of the information system
operation

3. Making predictions:
• Once the training process is complete,

the system is ready to run
predictions.

• New data entering the same group is
recorded for further prognostication.

• If online training is provided for a
particular model, the prediction can
be performed instantly.

4. Model management and their storage:
• Each model and its corresponding

scaler can be saved as files.
• This allows us to download already

trained models at any time for further
use.

5. Interface for user interaction:

• The dashboard provides an
opportunity to interact with the
models, their predictions, and the
management of the
training/predicting process.

• The user can interact with the system
through this interface, performing
operations with the models and
receiving prediction results.

Each block represents a separate stage of
the information system. The flowchart in Fig. 7
shows the sequence of steps in the system’s
operation, where each step leads to the next,
managing various aspects such as model
loading, training, forecasting, management,
and user interaction.

5. Study of the Effectiveness of
Introducing a Machine
Learning Block

The utilization of machine learning methods in
a smart home system offers significant
benefits. They provide the system with the
ability to analyze large amounts of data and
identify patterns that may precede failures.
This predicts possible problems and makes it
possible to avoid them or prepare in advance.
The assigned preventive action allows the
system to automatically take measures to
avoid disruptions, such as adjusting device
operations or performing backups based on
predictions.

Machine learning systems detect and
correct failures faster, allowing the system to
respond more quickly, and reducing the impact
on user experience. These algorithms can also
learn to adapt to changes in the environment,
such as automatically adjusting the
temperature in a building based on weather
changes or occupant preferences. Optimizing
energy consumption is another benefit—
systems can adapt to the habits of residents
and use energy efficiently, which can lead to
significant cost savings. This approach
improves the quality of service, ensures
efficient system operation, and increases user
comfort.

330

Table 1
Comparative characteristics of smart home systems with and without the use of machine learning
methods
Characteristics With machine learning Without machine learning

Failure prediction Predicting possible problems and avoiding them in
advance

Reactive response to failures after they occur

Preventive measures Automated actions to avoid failures No automated measures before failure
Quick detection and correction Prompt response to failures and their correction Response to failures after they occur
Adaptation to changes The ability of the system to adapt to changes in the

environment
Lower ability to adapt to changes

Optimization of energy
consumption

Efficient use of energy through automation Limited capacity for energy efficiency

Resource requirements Greater requirements for computing resources and
data quality

Lower requirements for computing resources
and data

Table 2
Indicators for comparing a smart home system with and without the use of machine learning methods
Indicator With machine learning Without machine learning

Amount of data (per week) 10 000 1 000
Number of failures (per week) 3 5
Failure detection rate 5 minutes after occurrence 30 minutes after the occurrence
Response to a failure Automatic correction Manual reaction
Failure prediction Yes No

Figure 8: Smart home system performance with and without machine learning methods
So, without machine learning, the system made
5 failures:

1. Loss of connection—problems with
connectivity in wireless networks.

2. Sensor failure—damage to the
temperature sensor, resulting in missing
data.

3. Software errors—caused the system to
malfunction.

4. Automation malfunctions—the
automation system did not respond to
signals.

5. Power problems—problems with the
power supply of the devices.

The system with machine learning avoided:
1. Predicting loss of connectivity—by

analyzing previous network and signal
data, the machine learning model
predicted possible connectivity issues
and activated mechanisms to restore
connectivity before they occurred.

2. Early detection of sensor faults—the
model detected anomalies in the usual
sensor readings, indicating a possible

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Energy
efficiency

Automation Security Comfort
management

Resource
forecasting and

optimization

Responding to
changes

System without machine learning Machine learning system

331

malfunction. Timely response to these
signals helped to take action before
serious problems occurred.

The system could not avoid:
1. Software bugs—Machine learning can

improve the detection of some software
bugs, but it cannot always predict or
avoid the occurrence of complex
software bugs or critical vulnerabilities.

2. Automation malfunction—Certain types
of malfunctions or blockages in
automated processes may be beyond the
scope of machine learning, especially if
they involve complex interactions
between devices.

3. Energy issues—Loss of power or energy
issues can occur without warning signals
or changes in normal metrics, making
them difficult to predict.

Machine learning helps to avoid certain
problems by analyzing previous data and
recognizing patterns, but it cannot predict
absolutely all possible scenarios, especially if
they arise from certain unpredictable factors
or third-party interventions.

A smart home system that uses machine
learning methods proves to be better than a
system without this technology (as the study
results show, the performance of a smart home
using failure prediction methods gives an
average of 22% better result compared to a
similar system without prediction—Fig. 8).
Machine learning allows the system to adapt to
changes in the environment and user
requirements, respond more quickly to new
conditions, and optimize resource use. This
helps to improve the system’s efficiency in
managing energy, comfort, safety, and user
satisfaction.

Machine learning allows the system to
predict and avoid failures, which ensures
greater reliability and durability of the system.
This approach also allows for increased
automation, helping the system perform
routine tasks without user intervention.
Overall, a machine learning system remains
the preferred choice due to its ability to
predict, optimize, and adapt to changes,
enabling it to provide more efficient and
convenient smart home management.

6. Conclusions

The study results showed a wide range of
modern technologies, sensors, and control
systems used in smart homes. The survey
showed that the available technologies have
the potential to improve convenience, security,
and energy efficiency.

The study identified several potential
failures in smart systems, including those
related to connectivity, sensors, and software.
This makes it possible to prepare the system in
advance to manage such situations.

The analysis of available machine learning
methods indicates their potential in predicting
and managing risks in smart homes. The
considered models have shown high accuracy
in predicting failures.

The developed methodology for predicting
failures based on machine learning methods
allows for effectively predicting and managing
possible risks.

The overall analysis showed a positive
impact of the introduction of machine learning
systems in the operation of a smart home.
Increased reliability and ability to adapt to
changing conditions are noted.

The developed software is of great practical
importance and allows the implementation of
the failure prediction platform presented in
this paper.

References

[1] O. Bahatskyi, V. Bahatskyi, V. Sokolov,
Smart Home Subsystem for Calculating
the Quality of Public Utilities, in:
Workshop on Cybersecurity Providing in
Information and Telecommunication
Systems, vol. 3421 (2023) 168–173.

[2] F. Kipchuk, et al., Assessing Approaches
of IT Infrastructure Audit, in: IEEE 8th
International Conference on Problems of
Infocommunications, Science and
Technology (2021). doi: 10.1109/
picst54195.2021.9772181.

[3] I. Kuzminykh, et al., Investigation of the
IoT Device Lifetime with Secure Data
Transmission, Internet of Things, Smart
Spaces, and Next Generation Networks
and Systems, vol. 11660 (2019) 16–27.
doi: 10.1007/978-3-030-30859-9_2.

332

[4] V. Sokolov, et al., Method for Increasing
the Various Sources Data Consistency for
IoT Sensors, in: IEEE 9th International
Conference on Problems of Infocom-
munications, Science and Technology
(PICST) (2023) 522–526. doi:
10.1109/PICST57299.2022.10238518.

[5] Z. Hu, et al., Bandwidth Research of
Wireless IoT Switches, in: IEEE 15th Int.
Conf. on Advanced Trends in
Radioelectronics, Telecom-munications
and Computer Engineering (2020). doi:
10.1109/tcset49122.2020.2354922.

[6] Y. Bazak, Comparison of machine
learning methods for predicting failures
in a smart home, Problems of Computer
Engineering, Collection of Abstracts
(2023) 125–127.

[7] A. Boiko, Modeling of the Automated
System of Operational Control of the
Parameters of the “Smart Home” in the
Proteus Environment, Technol. Design
2(35) (2020).

[8] Y. Bondarenko, Manual for the Study of
the Discipline “Statistical Analysis of
Data” (2018).

[9] K. Hureeva, O. Kudin, A. Lisnyak, A
Review of Machine Learning Methods in
the Task of forecasting Financial Time
Series, Comput. Sci. Appl. Math. (2)
(2018) 18-28.

[10] V. Zhebka, Y. Bazak, K. Storchak,
Features of Predicting Failures in a
Smart Home Based on Machine Learning
Methods, Telecommun. Inf. Technol.
4(81) (2023) 4–12.

[11] K. Kononova, Machine Learning:
Methods and Models: A Textbook for
Bachelors, Masters and Doctors of
Philosophy in Specialty 051
“Economics”, V. N. Karazin Kharkiv
National University (2020).

[12] I. Puleko, A. Yefimenko, Architecture and
Technologies of the Internet of Things: A
Textbook, State University “Zhytomyr
Polytechnic” (2022).

[13] I. Ruban, V. Martovytskyi, S. Partyka,
Classification of Methods for Detecting
Anomalies in Information Systems,
Systems of Armament and Military
Equipment 3(47) (2016) 47.

[14] Smart Home Technology: How AI
Creates a Space that is Comfortable for
Life. URL: https://www.everest.ua/

tehnologiya-rozumnogo-budynku-yak-
ai-stvoryuye-prostirkomfortnyj-dlya-
zhyttya/

[15] V. Kharchenko, Fundamentals of
Machine Learning: A Textbook, Sumy
State University (2023).

[16] T. Arsan, Smart Systems: From Design to
Implementation of Embedded Smart
Systems (2016). URL: http://ieeexplore.
ieee.org.focus.lib.kth.se/document/775
3420/

[17] X. Sun, et al., System-Level Hardware
Failure Prediction Using Deep Learning,
56th Annual Design Automation
Conference (2019).

[18] V. Malinov, et al., Biomining as an
Effective Mechanism for Utilizing the
Bioenergy Potential of Processing
Enterprises in the Agricultural Sector, in:
Cybersecurity Providing in Information
and Telecommunication Systems Vol.
3421 (2023) 223–230.

[19] V. Zhebka, et al., Optimization of Machine
Learning Method to Improve the
Management Efficiency of
Heterogeneous Telecommunication
Network, in: Cybersecurity Providing in
Information and Telecommunication
Systems Vol. 3288 (2022) 149–155.

[20] B. Zhurakovskyi, et al., Coding for
Information Systems Security and
Viability, in: CEUR Workshop
Proceedings Vol. 2859 (2021) 71–84.

[21] M. Moshenchenko, et al., Optimization
Algorithms of Smart City Wireless
Sensor Network Control, in:
Cybersecurity Providing in Information
and Telecommunication Systems II Vol.
3188 (2021) 32–42.

[22] O. Shevchenko, et al., Methods of the
Objects Identification and Recognition
Research in the Networks with the IoT
Concept Support, in: Cybersecurity
Providing in Information and
Telecommunication Systems Vol. 2923
(2021) 277–282.

[23] B. Chen, Smart Factory of Industry 4.0:
Key Technologies, Application Case, and
Challenges, IEEE Access 6 (2018) 6505–
6519.

[24] J. Mineraud, et al., A Gap Analysis of
Internet of Things Platforms, Comput.
Commun. 89–90 (2016) 5–16. doi:
10.1016/j.comcom.2016.03.015.

https://www.everest.ua/%20tehnologiya-rozumnogo-budynku-yak-ai-stvoryuye-prostirkomfortnyj-dlya-zhyttya/
https://www.everest.ua/%20tehnologiya-rozumnogo-budynku-yak-ai-stvoryuye-prostirkomfortnyj-dlya-zhyttya/
https://www.everest.ua/%20tehnologiya-rozumnogo-budynku-yak-ai-stvoryuye-prostirkomfortnyj-dlya-zhyttya/
https://www.everest.ua/%20tehnologiya-rozumnogo-budynku-yak-ai-stvoryuye-prostirkomfortnyj-dlya-zhyttya/
http://ieeexplore/
https://doi.org/10.1016/j.comcom.2016.03.015
https://doi.org/10.1016/j.comcom.2016.03.015

