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Abstract  
The article presents a platform for predicting failures in a smart home. A detailed 
algorithm of the predicting platform has been described. An algorithm for integrating the 
fault prediction platform into the smart home system has been developed. An algorithm 
for the functioning of a smart home with a failure prediction program based on machine 
learning has been presented. The software has been developed using the JHipster1 
generator and the Java programming language. The use of machine learning methods in a 
smart home system expands its ability to analyze large amounts of data and identify 
patterns that may precede failures. This allows the system to predict possible problems 
and respond to them in advance. The use of preventive measures allows the system to 
automatically take measures to avoid failures, such as automatically adjusting the 
operation of devices or performing backups based on predictions. 
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1. Introduction 

The rise of smart homes, facilitated by 
advancements in the Internet of Things (IoT) 
and smart technologies, offers convenient 
automation and control over various 
household systems like lighting, heating, 
security, and energy efficiency [1]. Yet, with 
increased complexity comes a higher risk of 
malfunctions or issues [2]. Factors such as 
network instability, software glitches, and 
faulty devices can create unpredictable 
scenarios, compromising both the 
functionality and security of a smart home [3]. 

Anticipating these failures has become a 
pertinent concern, prompting the application 
of machine learning techniques for prediction. 
By leveraging machine learning algorithms, it 
becomes feasible to sift through vast datasets, 
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identifying deviations and trends indicative of 
impending failures. This proactive approach 
enables preemptive measures to mitigate 
potential problems before they manifest. 

Presently, most smart home failure 
prediction relies on reactive analysis, meaning 
anomalies or failures are detected after they 
occur, making prevention challenging. 
However, employing machine learning 
methods such as classification, clustering, and 
prediction algorithms holds promise in 
developing systems capable of forecasting 
failures in advance. 

These systems utilize data from various 
sources including sensors, IoT devices, energy 
consumption records, etc., to discern patterns 
and anomalies preceding disruptions [4, 5]. 
Armed with this insight, machine learning 
systems construct predictive models that 
respond to specific signals or deviations from 
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normal operation, alerting users to potential 
issues or taking corrective actions 
autonomously [6–16]. 

While still a nascent field, ongoing research 
in this domain aims to enhance smart home 
control systems by enabling them to foresee 
and forestall potential failures, thereby 
enhancing reliability and security for users 
[17–24]. 

2. Research Results 

A fault prediction platform assumes the 
existence of an IoT platform, as shown in the 
upper part of Fig. 1. In particular, it assumes 
the existence of two data sources, one for 
operational data and the other for historical 
and static data, which is reminiscent of the 
Lambda architecture, the main idea of which is 
that data is first processed in real time 
(operational stream) and then sent for storage 
and analysis (historical stream). This allows 
the system to work efficiently in both real-time 
and historical contexts, providing analysis and 
conclusions based on the accumulated data. 

 
Figure 1: Architecture of the failure prediction 
platform. Solid lines indicate control and data 
flow and dashed lines for manual tasks 

An IoT platform receives data from the IoT 
environment, which can be obtained from 
sensors and actuators (environmental data) or 
directly from devices, such as CPU and memory 
usage (monitoring data). In addition, the IoT 
platform stores general information about 
devices (device data). Device data are obtained 
when a device is registered in the IoT 
environment using, for example, a device 
registration component. The process can be 
automated to a certain extent, but it still requires 
manual intervention. IoT platforms usually use a 
message broker that receives data from all the 
different devices in the IoT environment. It can 
be used as a source of real data. In addition, there 
may be a database that permanently stores the 
received data from the environment and the 
static data of the devices. Usually, these two main 
components are part of IoT platforms, as seen in 
the example of a multi-purpose binding and 
provisioning platform that implements the 
Mosquito broker and the MongoDB database. 
However, it is important to secure only these two 
data sources regardless of the types of 
components used in the background mode. The 
IoT platform can explicitly provide the API 
component with access to its data, or it can 
establish a direct connection to the broker and 
database. The lower part of Fig. 1 shows the 
network composition, which should be able to 
establish connections to different types of IoT 
platforms and data sources. The adapter 
component decouples the fault prediction 
platform from specific implementations and 
receives the data to be used by the models. The 
message broker is used to coordinate and 
permanently store data after individual 
processing steps. 

After the data has been received by the 
adapter, they are sent to the broker and stored in 
a specific group without changes. In the next 
step, the data can be processed in the data 
processing component before they will be used 
by the models. This step can be standardized 
using a predefined data template, enriched with 
missing information, converted to a specific 
format, or adapted in any other way. 
Standardizing data using a template leads to data 
consistency, which further facilitates the 
implementation of models. The processed data 
are sent and stored back to another group where 
they can be reused by the models. This 
component is necessary when working with 
heterogeneous data and performs the processing 
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required by all models. Assuming that the data 
comes in the form of time-stamped records, it 
can be used to extract meaningful information 
from the time stamp, such as hour of the day, day 
of the week, holiday, etc. Another potential 
option of usage, in the case of split device groups, 
is to filter the data by device and send it to the 
appropriate group. 

Each machine learning model is integrated as 
a module consisting of four main components: 
API, data processing component, controller, and 
the machine learning algorithm itself. The API 
has the same composition for all modules and 
consists of a message source and two message 
consumers. There is a data consumer that 
consumes pre-processed data and a command 
consumer that consumes commands sent from 
the dashboard. The message source sends model 
results and status or progress information to the 
message broker. The messaging interface 
separates the machine learning modules from 
the platform. However, there is a common data 
processing component in the previous step. 
Therefore, an additional data processing 
component is integrated into each module to 
prepare data for a specific algorithm. The 
algorithm itself is the core of the module. It goes 
through a training process that results in a model 
used for forecasting. The algorithm can be 
implemented in different ways and with 
different libraries, but it must provide an 
interface for training and predicting. Finally, all 
components are managed by a controller that 
performs several functions. It processes 
commands, received from the outside and 
performs the appropriate actions, receives data, 
sends them to the processing component, and 
then to the algorithm, if necessary. The controller 
can implement automated hyperparametric 
tuning to find the optimal parameters, i.e. the 
most optimal algorithm configuration based on 
the data provided. The controller also stores and 
loads data into a database or file system. It can 
implement a scheduler to periodically create 
backups, retrain the algorithm if online learning 
is not possible, or reconfigure the parameters. It 
can evaluate the current processing status, and 
send model predictions to the message producer. 

A model repository describes a general-
purpose storage shared by all models. The 
repository can be a database, a file system, or a 
combination of both. The main purpose is to 
store, describe, and configure algorithms, and 
hyperparameters after tuning, or complete 

machine learning models, i.e. internal 
parameters after training. It can also store any 
other information related to the model. It is 
accessed through the API components of the 
modules and the dashboard. 

Once the machine learning model is ready and 
starts making predictions, the corresponding 
module sends the results to the group it has 
defined. The dashboard collects all the 
predictions from different models, processes 
them, and visualizes the results. In addition to the 
groups for predicting, each module has a group 
dedicated to commands sent from the 
dashboard. In addition, there may be additional 
groups that are used by modules to send 
information about the status and progress of 
work. The dashboard should provide the ability 
to interact with the modules and perform 
individual steps manually. These steps can 
include: importing history, starting automatic 
hyperparameter tuning, training individual 
algorithms, starting and stopping individual 
forecasting models, saving and loading models, 
etc. In addition, the dashboard has access to the 
model repository to retrieve and display relevant 
model information in the user interface. The 
dashboard can also be used to insert information 
during the model registration process. Finally, 
the attendant monitors the dashboard and 
performs repairs or replacements in the IoT 
environment. An alert system can also be 
implemented to inform technical support if a 
device fails or reaches critical thresholds based 
on predictions. 

3. Integration of a Fault 
Prediction Platform into a 
Smart Home System 

At the time the predictive platform is 
connected to the IoT platform, the IoT platform 
may already exist and collect some data. The 
data can be used for initial algorithm training. 

The prediction platform allows us to 
retrieve old data from the database, go through 
a general processing stage, and save it by a 
specific topic. After that, the process of training 
algorithms can be started individually. Initial 
training is important because it allows you to 
smoothly start model forecasting with 
meaningful results right from the start. But it 
can also be skipped, especially if no data has 
been collected up to this point. This will lead to 
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instant training, either in the form of online 
training or retraining at regular intervals. 
Another important advantage of old data is 
that they can be used to customize the scalers 
required by some models. Scalers typically 
require the calculation of internal parameters 
such as minimum, maximum, or average values 
before they can be applied to the incoming live 
data. Performing this configuration on the go is 
a more cumbersome process that is likely to 
lead to poor results in the beginning. In 
addition to these benefits, there is a limitation 
that must be considered. The potentially huge 
amount of data that could be stored in the IoT 
platform’s database could not be loaded into 
memory immediately. Nevertheless, in most 
cases, processing data in batches or even 
selecting a portion of the data can be enough to 
set up scalers as well as train algorithms to 
provide meaningful results in the beginning. 

In the second step, before any prediction 
model is made, the forecasting platform 
establishes a connection to the message broker 
on the IoT platform and starts receiving live 
data. Again, the data go through a processing 
stage and are assigned to a specific group. At 
this stage, predicting can be started separately 
for each model. The module receives data and 
processes them further if necessary. Then the 
model makes a prediction, and the controller 
sends it to the appropriate prediction group. 
Finally, the predictions are extracted and 
visualized in a dashboard. The data passing 
through the system is always saved for each 
group, except for groups designated for teams 
and status or progress information. 

So, the entire algorithm for integrating a 
fault prediction platform into a smart home 
system can be represented in four steps: 

Step 1. Connection to the IoT system and 
usage of the available data: 

• Connecting the predicting platform with 
the IoT system. 

• Using available data for initial algorithm 
training. 

Step 2. Obtaining new data: 
• Connecting the forecasting platform to 

the message broker on the IoT platform. 
• Receiving and processing new live data. 
• Structuring data by a specific topic. 
Step 3. Forecasting with models: 
• Starting forecasting using individual 

models. 

• Receive, process, and transfer forecasts 
to the appropriate forecast groups. 

Step 4. Visualization and storage of results: 
• Extracting and visualizing predictions in 

a dashboard. 
• Storing data for further use and updating 

models. 
This algorithm allows us to work efficiently 

with existing data and obtain new data to 
continuously improve predictive models. 

The process of integrating an information 
system into a smart home begins with the 
analysis of functional requirements and the 
detailing of needs (Fig. 2). The next stage is the 
development of specialized modules that 
ensure the interaction of the information 
system with the smart home through the 
establishment of specific links and interfaces. 

 
Figure 2: The process of integrating an 
information system into a smart home 
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These modules are being integrated with 
existing devices and systems in the smart 
home, using networks and communication 
protocols for data exchange and control. An 
important step is to test the integrity and 
efficiency of the interaction, as well as to 
correct possible errors and malfunctions. 

After the system is successfully integrated 
into the smart home, the implementation 
process takes place, when the system becomes 
an active part of the home environment. 
However, this is only the beginning: further 
support, optimization, and continuous 
improvement of the system play a key role in 
ensuring its long-term and efficient operation 
in the smart home, adapting to changing needs 
and conditions. 

 
Figure 3: Smart home functioning algorithm 
with a machine learning-based fault prediction 
program 

Fig. 3 shows a block diagram of the smart home 
functioning algorithm with a machine 
learning-based fault prediction program. The 
proposed algorithm can be divided into the 
following blocks: 

1. Start—usually means the beginning of a 
sequence of actions. 

2. Data collection is the block responsible 
for checking and collecting new data. If 
there are no data, the system waits for 
new data. If the data are received, are 
being analyzed. 

3. Failure prediction—this is where the 
data are checked for abnormalities. If 
everything is normal, the system 
continues to collect data. If anomalies 
are detected, prediction algorithms are 
used to identify problems and generate 
notifications about them. 

4. Problem-solving: if problems are 
detected, the system conducts further 
analysis, and determines the causes and 
recommendations for their solution. 

Each unit is responsible for a specific part of 
the functionality of the smart home fault 
prediction system. They help in collecting, 
analyzing, and processing data, identifying 
possible problems, and providing recom-
mendations for their elimination. Such a 
system allows the smart home to be more 
autonomous and respond to potential failures 
or problems in real-time. After at least one day 
of data collection, the system can start learning 
and identifying patterns. The dataset is divided 
into training and evaluation sets. The training 
set makes up 75% of the total data, and the 
remaining 25% is the evaluation set. This split 
allows us to estimate the model’s accuracy. 
Once a model is created, it is saved and can be 
used to evaluate new data. The system 
continues to collect data about the 
environment. The diagram of the flow in Fig. 4 
shows the entire system workflow when 
integrating data collection with model 
implementation. The “motion”, “light”, 
“temperature and humidity”, “device states”, 
and “main script” blocks represent the main 
process of monitoring the environment in the 
workflow. Monitoring is used both for data 
collection, for the “action in the environment” 
block, “data sets”, and for making system 
decisions, indicated by the “every minute, 
movement or change of the device”, “LSTM 
model”, and “environment control” blocks. 
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Figure 4: Diagram of the flow

4. Software Description 

The failure prediction platform has been 
implemented using the JHipster1 generator. 
JHipster creates a complete web application that 
provides user management, a responsive user 
interface, monitoring, and other benefits. The 
prototype implementation uses a Java backend, a 
Spring2 framework, and an Angular3 interface. 
In addition, it stores data in a MongoDB database 
and uses Kafka4 as a message broker. The failure 
prediction dashboard is shown in Fig. 5. 

The smart home failure prediction software 
uses data sources in the form of a multi-purpose 
binding and provisioning platform, including 
MongoDB and Mosquitto. The proposed 
development includes a multi-purpose platform 
adapter that creates a connection to the 
MongoDB database and a separate connection to 
the Mosquitto broker. To show the learning and 
prediction processes, the generated dataset was 
integrated into the database and the broker. The 
panel shows the models and their functions, as 
well as two common functions that apply to all 
models. 

The first general function is responsible for 
importing old data from the database and storing 
it according to a specific group without changes. 
For this purpose, Kafka is used, a fast streaming 
platform that provides high-quality data storage 
and allows you to create and exchange streaming 

data between different systems and modules, 
providing the ability to process and analyze this 
data in real-time. 

After that, the data are processed in a 
common component implemented in Java. Given 
the use of a generated dataset, it is already 
preprocessed, except for the removal of 
MongoDB identifiers from each record. This is 
done by defining a data template without a 
MongoDB ID and matching the input data 
accordingly when removing the ID. 

The processed data are again stored in 
another group. The second general function 
activates the monitoring process by establishing 
a connection with the Mosquito broker and 
receiving the current data. The real-time data 
follow the same processing path as the old data 
until they are saved again after processing. 
Unfortunately, there is currently no 
synchronization mechanism and these two 
functions can create duplicates if they are 
performed at the same time. 

A machine learning model can be integrated 
into a fault prediction platform in three steps. A 
snapshot of the architecture of the fault 
prediction platform and the components 
involved in integration is shown in Fig. 5. 

When it comes to integrating a machine 
learning model into a fault prediction platform, 
there are three steps involved. First, the model is 
developed as a separate machine-learning 
module. This module has a built-in Kafka 
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producer to deliver predictions and two Kafka 
consumers to exchange data and commands. It is 
important to choose adequate names for the 
groups used in this context. 

At the next stage, the model is registered in 
the platform dashboard, providing various 
information about the model: name, description, 
type, and names of groups used for 
communication and transmission of forecasts. 
The model data are stored in the model 
repository, which allows us to conveniently 
manage, view, edit, and delete them. The model 
registration area provides a convenient interface 
for managing registered models and adding new 
ones. 

At the final stage of the module development, 
it is independently integrated, which makes it 
possible to interact with the dashboard through 
the Kafka system. For the demonstration, we 
used a simple Long Short-Term Memory model 
with a sequence of one failure value. This model 
has been chosen because it supports online 
learning and time series prediction. An equally 
important indicator of model selection is the 
analysis of the effectiveness of machine learning 
methods conducted in the second section, which 
showed that the Long Short-Term Memory 
model gives the best performance in the 
predicting process. This module is implemented 
in Python and integrated using the steps 
described above. It uses an abstract API 
component with Kafka producers and 
consumers, as well as predefined abstract 
methods to create the interface. This ensures a 
uniform API implementation across all models. 
In addition, for the Long Short-Term Memory 
model, a special data processing component has 
been created that transforms functions, prepares 
sequences, and uses a scaler to normalize data. 
The last two components of the model are the 
controller and the algorithm. The controller 
processes commands and performs appropriate 
actions, managing the components in the model, 
as well as starting and stopping the algorithm’s 
learning and prediction process. 

When the dashboard is initialized, all existing 
models and their forecast histories are loaded, as 
shown in Fig. 6. Each model has four interrelated 
functions. To train the models, they move to the 
group with the processed data. In this 
implementation, a limited number of data 
records are used to load all the data 
simultaneously. However, records are being 
received in limited quantities or batches. Once 

training is complete, predicting can begin. If 
online training is provided for a particular model, 
forecasting can be started instantly. In addition, 
each model, along with the corresponding scaler, 
can be saved as files and retrieved at any time. 

 
Figure 5: Failure prediction platform 
architecture and components 

 
Figure 6: Developed software 

The basic algorithm of the information system 
can be described as follows: 

1. Initialization and loading of the models: 
• When the system starts up, all 

available models and their predictive 
histories are loaded. 

• This is done for further analysis and 
use of these models in the decision-
making process. 

2. Model training: 
• Models can be trained by moving to 

the appropriate group with pre-
processed data. 

• A limited number of data records are 
used for simultaneous training, but 
the ability to receive data in limited 
quantities or batches ensures the 
efficiency of the process. 

 



329 

 
Figure 7: Algorithm of the information system 
operation 

3. Making predictions: 
• Once the training process is complete, 

the system is ready to run 
predictions. 

• New data entering the same group is 
recorded for further prognostication. 

• If online training is provided for a 
particular model, the prediction can 
be performed instantly. 

4. Model management and their storage: 
• Each model and its corresponding 

scaler can be saved as files. 
• This allows us to download already 

trained models at any time for further 
use. 

5. Interface for user interaction: 

• The dashboard provides an 
opportunity to interact with the 
models, their predictions, and the 
management of the 
training/predicting process. 

• The user can interact with the system 
through this interface, performing 
operations with the models and 
receiving prediction results. 

Each block represents a separate stage of 
the information system. The flowchart in Fig. 7 
shows the sequence of steps in the system’s 
operation, where each step leads to the next, 
managing various aspects such as model 
loading, training, forecasting, management, 
and user interaction. 

5. Study of the Effectiveness of 
Introducing a Machine 
Learning Block 

The utilization of machine learning methods in 
a smart home system offers significant 
benefits. They provide the system with the 
ability to analyze large amounts of data and 
identify patterns that may precede failures. 
This predicts possible problems and makes it 
possible to avoid them or prepare in advance. 
The assigned preventive action allows the 
system to automatically take measures to 
avoid disruptions, such as adjusting device 
operations or performing backups based on 
predictions. 

Machine learning systems detect and 
correct failures faster, allowing the system to 
respond more quickly, and reducing the impact 
on user experience. These algorithms can also 
learn to adapt to changes in the environment, 
such as automatically adjusting the 
temperature in a building based on weather 
changes or occupant preferences. Optimizing 
energy consumption is another benefit—
systems can adapt to the habits of residents 
and use energy efficiently, which can lead to 
significant cost savings. This approach 
improves the quality of service, ensures 
efficient system operation, and increases user 
comfort. 
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Table 1 
Comparative characteristics of smart home systems with and without the use of machine learning 
methods 
Characteristics With machine learning Without machine learning 

Failure prediction Predicting possible problems and avoiding them in 
advance 

Reactive response to failures after they occur 

Preventive measures Automated actions to avoid failures No automated measures before failure 
Quick detection and correction Prompt response to failures and their correction Response to failures after they occur 
Adaptation to changes The ability of the system to adapt to changes in the 

environment 
Lower ability to adapt to changes 

Optimization of energy 
consumption 

Efficient use of energy through automation Limited capacity for energy efficiency 

Resource requirements Greater requirements for computing resources and 
data quality 

Lower requirements for computing resources 
and data 

Table 2 
Indicators for comparing a smart home system with and without the use of machine learning methods 
Indicator With machine learning Without machine learning 

Amount of data (per week) 10 000 1 000 
Number of failures (per week) 3 5 
Failure detection rate 5 minutes after occurrence 30 minutes after the occurrence 
Response to a failure Automatic correction Manual reaction 
Failure prediction Yes No 

 
Figure 8: Smart home system performance with and without machine learning methods 
So, without machine learning, the system made 
5 failures: 

1. Loss of connection—problems with 
connectivity in wireless networks. 

2. Sensor failure—damage to the 
temperature sensor, resulting in missing 
data. 

3. Software errors—caused the system to 
malfunction. 

4. Automation malfunctions—the 
automation system did not respond to 
signals. 

5. Power problems—problems with the 
power supply of the devices. 

The system with machine learning avoided: 
1. Predicting loss of connectivity—by 

analyzing previous network and signal 
data, the machine learning model 
predicted possible connectivity issues 
and activated mechanisms to restore 
connectivity before they occurred. 

2. Early detection of sensor faults—the 
model detected anomalies in the usual 
sensor readings, indicating a possible 
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malfunction. Timely response to these 
signals helped to take action before 
serious problems occurred. 

The system could not avoid: 
1. Software bugs—Machine learning can 

improve the detection of some software 
bugs, but it cannot always predict or 
avoid the occurrence of complex 
software bugs or critical vulnerabilities. 

2. Automation malfunction—Certain types 
of malfunctions or blockages in 
automated processes may be beyond the 
scope of machine learning, especially if 
they involve complex interactions 
between devices. 

3. Energy issues—Loss of power or energy 
issues can occur without warning signals 
or changes in normal metrics, making 
them difficult to predict. 

Machine learning helps to avoid certain 
problems by analyzing previous data and 
recognizing patterns, but it cannot predict 
absolutely all possible scenarios, especially if 
they arise from certain unpredictable factors 
or third-party interventions. 

A smart home system that uses machine 
learning methods proves to be better than a 
system without this technology (as the study 
results show, the performance of a smart home 
using failure prediction methods gives an 
average of 22% better result compared to a 
similar system without prediction—Fig. 8). 
Machine learning allows the system to adapt to 
changes in the environment and user 
requirements, respond more quickly to new 
conditions, and optimize resource use. This 
helps to improve the system’s efficiency in 
managing energy, comfort, safety, and user 
satisfaction. 

Machine learning allows the system to 
predict and avoid failures, which ensures 
greater reliability and durability of the system. 
This approach also allows for increased 
automation, helping the system perform 
routine tasks without user intervention. 
Overall, a machine learning system remains 
the preferred choice due to its ability to 
predict, optimize, and adapt to changes, 
enabling it to provide more efficient and 
convenient smart home management. 

 
 

6. Conclusions 

The study results showed a wide range of 
modern technologies, sensors, and control 
systems used in smart homes. The survey 
showed that the available technologies have 
the potential to improve convenience, security, 
and energy efficiency. 

The study identified several potential 
failures in smart systems, including those 
related to connectivity, sensors, and software. 
This makes it possible to prepare the system in 
advance to manage such situations. 

The analysis of available machine learning 
methods indicates their potential in predicting 
and managing risks in smart homes. The 
considered models have shown high accuracy 
in predicting failures. 

The developed methodology for predicting 
failures based on machine learning methods 
allows for effectively predicting and managing 
possible risks. 

The overall analysis showed a positive 
impact of the introduction of machine learning 
systems in the operation of a smart home. 
Increased reliability and ability to adapt to 
changing conditions are noted. 

The developed software is of great practical 
importance and allows the implementation of 
the failure prediction platform presented in 
this paper. 
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