

471

Application Security Optimization in Container
Orchestration Systems Through Strategic Scheduler
Decisions

Yevhenii Voievodin1 and Inna Rozlomii1

1 Bohdan Khmelnytsky National University of Cherkasy, 81, Shevchenko Blvd., Cherkasy, 18031, Ukraine

Abstract
This paper explores the security issues found in Container Orchestration Systems (COS)
like Kubernetes, Docker Swarm, and Apache Mesos, which are crucial for running modern
cloud-based applications. Although COS makes it easier to deploy and manage
applications, it also brings a set of security challenges. This paper discusses common
security risks in COS, including unsafe configurations, threats to the supply chain, and
setup mistakes that could let attackers gain unauthorized access or disrupt the system.
The paper examines the responsibilities of different parts of COS. It points out the dangers
of giving too many permissions and not having strong network security measures. The
discussion covers how containers and the process of managing them should be securely
set up to prevent vulnerabilities. Additionally, the paper looks at the security of
microservices, a way of designing applications as a set of small services. It talks about how
to safely deploy these services, manage their communication, and secure them using
various tools and standards. A major focus of the paper is on how COS decides where to
run containers, known as scheduling strategies, and how these can affect security. It
reviews different strategies and proposes new ones that focus on the importance of each
part of an application. By spreading out important parts across different servers, the
system can be made more secure. The paper suggests ways to arrange containers in a way
to reduces the chance of a widespread attack if one part gets compromised. In summary,
this paper dives into the security aspects of COS, presenting a detailed look at the risks
involved and offering guidance on how to secure these systems. It emphasizes the need
for careful setup, constant monitoring, and smart strategies to place containers, aiming to
protect against the ever-changing security threats in the world of cloud computing.

Keywords 1
Container orchestration system, Kubernetes, Docker, Docker Swarm, microservices,
security.

1. Introduction

COS plays a crucial role in modern cloud-based
software ecosystems [1, 2]. The fundamental
concept employed by COS is a container, which
is a lightweight package of software bundled
with all necessary dependencies required for
running the software. Utilizing containers
significantly streamlines the provisioning of
hardware and ensures reproducible
application behavior across various platforms
and operating systems. As containers

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine
EMAIL: yevhenii.voievodin@vu.cdu.edu.ua (Y. Voievodin); inna-roz@ukr.net (I. Rozlomii)

ORCID: 0000-0002-6415-8566 (Y. Voievodin); 0000-0001-5065-9004 (I. Rozlomii)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

encapsulate all dependencies, they eliminate
the risk of conflicts or issues with outdated
versions. This contributes to the speed of cloud
application development and facilitates the
continuous delivery [3] process. Often used
examples of COS include Kubernetes, Docker
Swarm, and Apache Mesos [4].

The popularity of COS is related to the rise
of applications that utilize a microservices
architecture [5, 6]. However, the transition to
COS and microservices is not without its
challenges. Organizations must navigate the

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yevhenii.voievodin@vu.cdu.edu.ua
mailto:inna-roz@ukr.net
https://orcid.org/0000-0002-6415-8566
https://orcid.org/0000-0001-5065-9004

472

complexities of container management,
orchestration, and security, which demand a
deep understanding of the underlying
infrastructure and a careful approach to design
and configuration. The shift also necessitates a
cultural change, creating an environment of
continuous learning, collaboration, and
innovation among teams. As businesses
increasingly rely on these systems, ensuring
the security, reliability, and performance of
COS becomes important. This includes not only
protecting against external threats but also
managing internal risks such as service
dependencies, network configurations, and
data management practices.

Microservices architecture primarily
facilitates faster software delivery [7] by
creating bounded contexts or areas of
responsibility managed by different teams.
Using microservices offers additional
advantages. One of these is the containment of
application failure scope or “blast radius” [8].
Unlike monolithic applications, those divided
into separately deployable pieces are less
prone to complete failure due to a single
subsystem’s issue, as these are independent
applications and processes. Scalability is also
an essential aspect [9]. The separation into
distinct functions provides better granularity
and scalability options. COS can dynamically
allocate resources to different functions based
on the load, optimizing the system’s scalability.

While microservices architecture with the
use of COS feature allows all these benefits, the
application architecture is also important,
without proper separation of responsibilities
and functions proper scalability, resilience,
and delivery speed might be hard to achieve.

Figure 1: Key components of container
orchestration system

Fig. 1 illustrates the key components utilized
by COS:

1. Cluster: This represents a set of nodes,
indicating the state of available
hardware or virtual resources.

2. Nodes: These are individual physical or
virtual units where containers can be
deployed.

3. Container Runtime: This is the
technology used to run containers, such
as Docker [10]. Every node must have a
container runtime installed to facilitate
container operations.

4. COS Agent: Typically, this is a program
that operates within a node and
primarily functions as the
communication point to manage
operations on that node. While the
container runtime focuses on managing
the containers themselves, the COS agent
delegates such requests to the container
runtime.

5. Discovery Component: This
component is responsible for tracking all
the containers and associated
applications. It facilitates internal
application communication by serving as
a central configuration point and may be
utilized by a load balancer.

6. Scheduler: Playing a crucial role, the
scheduler’s primary function is to
identify a suitable node for container
deployment. Selecting a deployment
strategy involves analyzing the system’s
use case, typically balancing between
efficient utilization of cluster resources
and application resilience or fault
tolerance. Common strategies include
binpacking and spreading [11].
Binpacking aims to pack as many
containers as possible into a single node
to maximize resource utilization.
Spreading focuses on distributing
containers across the emptiest nodes to
enhance application fault tolerance [12].
This approach allows for the deployment
of multiple instances of the same
application component across different
nodes, thereby reducing the risk of
simultaneous failures due to hardware
or other issues.

The adoption of COS does not come without
its drawbacks. While COS efficiently organizes
the management of running systems, it also

473

adds to the system’s complexity. This
complexity is necessary to accommodate the
diverse requirements of various applications.
For example, Kubernetes alone offers more
than ten different configurable abstractions to
provide end-users with the needed flexibility.
However, this complexity opens the door to
potential issues, such as the risk of
misconfiguration, which can lead to human
errors and security vulnerabilities.

Furthermore, the process of packaging
software into container images requires
precise attention to ensure that the software is
free from vulnerabilities. The architecture of
the application significantly influences the
overall security of the system. Important
considerations include how application secrets
are managed, who has access to them, and the
level of encryption employed in the
communication between container nodes.

The multifaceted nature of COS inherently
makes security a more challenging aspect due
to the increased number of entry points,
exposed APIs, and the amplified potential for
errors. This article aims to explore some of the
threats associated with COS, with a particular
focus on the implications raised from decisions
made by the scheduler component,
highlighting the critical nature of this aspect in
the COS infrastructure.

2. Related Works

The OWASP vulnerabilities [13] provide a
comprehensive list of the top ten security risks
for Kubernetes-based applications,
encompassing issues such as insecure
configurations, supply chain vulnerabilities,
overly permissive Role Based Access Control
(RBAC) configurations, lack of centralized
policy enforcement, inadequate logging and
monitoring, broken authentication
mechanisms, missing network segmentation
controls, misconfigured cluster components,
and outdated and vulnerable components.
Martin and Hausenblas delve into these issues,
categorizing threats and proposing defensive
measures for various scenarios that apply to
Kubernetes COS [14]. They also detail the roles
and responsibilities of different Kubernetes
components and highlight the importance of
isolating the container runtime from the host
operating system to increase security. Creane

and Gupta extend the discussion on security
beyond COS itself, addressing potential threats
that may arise during the pre-deployment
phase, such as when faulty images are built and
deployed [15]. They advocate for robust
monitoring techniques, alerting rules, machine
learning-based systems, proper network
configuration, and secure application exposure
methods.

Ugale et al. focus on container
vulnerabilities in cloud environments,
proposing a security framework that conducts
vulnerability scans at various levels [16].
Security challenges in systems reliant on
containers are explored by Sultan et al.
highlighting the need for enhanced
vulnerability management [17]. Rice discusses
fundamental security concepts crucial for
protecting applications in containers,
introducing the “blast radius” concept to limit
the impact of threats [18]. Lopens et al.
propose mitigating security risks by adapting
the seccomp profile, which restricts container
system calls to minimize the attack surface,
emphasizing the development of these profiles
in a fast and scalable manner [19]. Belair et al.
focus on the security features of the Linux
kernel that are employed at the virtualization
boundary between the operating kernel and
containers [20].

Dias and Siriwardena comprehensively
address the mechanisms utilized in
microservice security, including deployments,
communication, API gateways, JWT tokens,
and the OAuth 2 standard [21]. They delve into
the deployment strategies using Kubernetes
and discuss methods to ensure secure
configurations of Docker or alternative
container engines. Berardi et al. explore the
significance of the human element in the
security of applications employing a
microservices architecture [22]. The
challenges of microservices security, along
with contemporary solutions to key issues, are
presented by Driss et al. [23], providing a
crucial resource for secure software
researchers and practitioners by offering a
comprehensive catalog of security solutions
and mechanisms for applications based on
microservices.

474

3. Security Threats
3.1. Gaining Access to COS Infrastructure

One common issue in the configuration of COS,
as noted in the OWASP top ten security risks
for Kubernetes [13], risk of insecure workload
configurations. Running application services
as the root user, when not necessary, grants
the application excessive permissions,
potentially enabling the execution of harmful
operations such as initiating malicious
processes. The use of a file system that allows
write operations can inadvertently permit the
installation of unauthorized software, leading
to unexpected and possibly malicious
container behavior. Moreover, the use of
privileged containers grants additional kernel
capabilities, which, when coupled with other
misconfigurations, might pave the way to
access the host (node) itself. Gaining control
over the host opens up access to other
containers on that node, the container runtime,
and the COS agent, all of which could be
manipulated for malicious purposes.
Furthermore, overly permissive
configurations of RBAC permissions can
provide unintended access to containers,
posing a significant security risk. Addressing
these vulnerabilities requires strict adherence
to security best practices, including
minimizing permissions and ensuring robust
access controls within the COS environment.
Additionally, compromising the supply chain is
another avenue through which containers can
be made vulnerable. Exploiting the software
architecture deployed within the COS system
and introducing vulnerabilities can also
provide attackers with potential points of
exploitation.

Weak authentication mechanisms and
absent network security controls can
significantly broaden the scope of an attack,
potentially extending it from a single container
to an entire node, and from one node to others
within the network. A lack of encryption within
the cluster can enable an attacker who has
gained access to a container to exploit network
communications by intercepting traffic
between containers. Moreover, permitting
direct access between hosts could allow an
attacker to exploit more critical APIs available
within the cluster (Fig. 2).

Figure 2: Example of cluster setup where
Container 1 is compromised while connecting
over the network to Container 2 and Container
3 on the separate node

The outlined approaches reveal that attack
vectors typically start with minor threats
within the system and progressively expand by
accessing additional components. Although
adhering to best practices in COS usage can
significantly reduce the likelihood of such
attacks, it’s important to recognize that the risk
can never be eliminated. These best practices
involve the use of scanning tools and properly
configured cloud environments to ensure that
permissions are appropriately restrictive.
Nonetheless, the specific requirements of
individual applications and the urgency of
deployment can sometimes lead to more
lenient configurations, increasing the
vulnerability to security breaches.

Leveraging the capabilities of scheduling
strategies in COS can play a crucial role in
mitigating the impact of attacks. The scheduler,
responsible for deciding which node will host a
new set of containers, inherently influences the
distribution of containers across the cluster.
This distribution, or locality, can be an
important factor in system security.

Recent research indicates that scheduling
strategies can be aligned with multiple
objectives, such as resilience to failures,
efficient resource utilization, ensuring
application accessibility, and rapid
deployment speeds. Security considerations
can also be integrated into these objectives. For
instance, the binpacking strategy prioritizes
nodes that are already heavily loaded,
optimizing resource usage. However, this
strategy also concentrates on the components
of an application, potentially increasing its
vulnerability to localized attacks.

475

Conversely, strategies that spread application
components across different nodes can
enhance security. If the components are
distributed, gaining unauthorized access to
one node does not automatically compromise
the entire system, as each node operates
independently. This approach can make it
considerably more challenging for an attacker
to inflict widespread damage, underscoring the
importance of container distribution in
increasing the overall security posture of the
COS environment.

The following method aims to minimize the
impact of attacks and involves labeling
application services according to their
importance level. The strategy could distribute
application containers such that containers
with the same importance level are not
deployed on the same node. Essentially, this
increases the likelihood that containers of
similar importance will be placed on different
nodes. Strategies like spreading or usage of
affinity controls in Kubernetes already help in
distributing instances of the same application
across different nodes for enhanced fault
tolerance. Considering the importance level of
services adds an extra layer of security. This
approach effectively reduces the risk of an
attacker compromising critical components by
gaining access to a limited part of the system.
The equation to compute the weight of the
node, where weight can be used in the node
selection process is the following:

𝑊𝑖 = ∑
1

𝑅𝑘

𝑚

𝑘=1

(1)

where Wi is the weight of a particular node in
the cluster, m is the number of container
instances running within a node, R is the rank
of the container, the highest rank is 1, and the
lowest rank is defined by the system
complexity.

The index of a desired node can be found by
the following formula.

𝐾 = argmin
𝑖

𝑊𝑖 (2)

where K is the desired node, the node having
minimal weight, and Wi is the weight of the
node with index i within the cluster. A node
that for implementation purposes instead of
using min operator it might be more
convenient to sort the node weight values in
ascending order, which would allow to pick the
next node after the first one, in case the first

one is full or does not meet other conditions of
the strategy.

3.2. Exploiting Publicly Available
Containers

Another risk involves the direct exploitation of
vulnerabilities in the application architecture.
Consider a scenario where an attacker targets
a less important component of the application,
possibly because it is less monitored or more
prone to oversight. The attacker generates an
excessive load on this service. If the container’s
resource limits are not properly configured, it
could consume an increasing share of the
node’s resources, leading to performance
degradation of more critical application
components on the same node.

Figure 3. Example of cluster setup Container 1
is overloaded from the public internet, which
affects other containers within the node

For example, consider a financial application
deployed on one node, while an application
handling historical transactions is on another
node alongside a less important service,
depicted as container 1 in Fig. 3. Although the
historical transactions application is not
accessible from the public internet and is only
used internally within the cluster, overloading
container 1 can indirectly impact this service,
affecting other applications reliant on it. For
instance, if the financial application has a
fallback mechanism that relies on a local data
copy when the historical transactions service is
slow or unresponsive, an attacker, aware of
this architecture, might overload container 1.
This overload could trigger the fallback
mechanism, potentially allowing the attacker
to bypass certain controls or limits within the

476

financial application. While this architecture
prioritizes availability over consistency (in
terms of CAP theorem [24]), which might be
contentious for such applications, the issue
persists in other cases where systems favor
availability.

This scenario introduces an additional
potential objective for scheduling strategies:
separating publicly accessible applications
from those accessible only within the cluster.
This separation aims to prevent situations
where an attacker might indirectly overload an
internal application by exploiting an externally
accessible service. Implementing this measure
through scheduling strategies can enhance the
system’s security. The following formula
represents the computation of a node weight
that along with container ranks also takes into
account the public exposure factor:

𝑊𝑖 = 𝑋 (∑
1

𝑅𝑘

𝑚

𝑘=1

) + 𝑌 (∑ 𝐴𝑘

𝑚

𝑘=1

) (3)

where Wi is the weight of the node within a
cluster, m is the number of container instances
running within a node, R is the rank of the
container within the node, A is 1 in case the
container is publicly available and 0 if it’s not,
X is the coefficient used to control the impact of
containers rank, Y is the coefficient used to
control the impact of containers availability.

System malfunction might be triggered not
only by direct the external load but also due to
time events, such as salaries coming out at the
beginning of the month or high load during the
import of bank statements.

Additionally, it’s crucial to configure
resource limits properly for each container,
ensuring that there’s a defined threshold for
resource usage. Alongside setting these limits,
robust system monitoring with alerting rules is
essential. Prometheus and Grafana are tools
that can be used for such systems, providing
great flexibility and feature sets, including
anomaly detection and alerting [25].
Implementing autoscaling can further improve
the system’s resilience, enabling it to handle
normal usage growth and providing indicators
for potential attack attempts. These measures
collectively ensure that the application not
only remains operational under typical
conditions but also offers a level of protection
against such attack scenarios.

4. Discussions

The exploration into the impact of scheduler
decisions on application security within COS
reveals a complex relation between system
configurations, scheduling strategies, and
security outcomes. This discussion has
underscored the multifaceted nature of
security within COS, particularly focusing on
Kubernetes. Vulnerabilities can arise from
various sources, including insecure workload
configurations, supply chain risks, and the
complex architecture of microservices.

The consideration of service importance
and the strategic placement of containers to
avoid co-locating critical components on the
same node are significant steps toward
minimizing the attack surface. However, this
strategy is not without challenges. The
dynamic nature of COS and the continuous
evolution of threats necessitate a proactive and
adaptable approach to security. This involves
not only intelligent scheduling but also robust
monitoring, precise configuration
management, and the implementation of
responsive mechanisms such as autoscaling to
address any anomalies promptly. Suggested
methods for weighting nodes, embedded into
existing strategies, present a challenge:
deciding which is more important—resource
consumption or reduced risk.

The insights from related works in the
domains of COS security, container
vulnerabilities, and microservices security
provide a rich context for understanding these
challenges. These studies highlight the need for
a holistic approach to security that includes all
phases of the application lifecycle, from
development and deployment to runtime
management.

5. Conclusions

This paper has extensively discussed the
security intricacies and challenges associated
with COS like Kubernetes, Docker Swarm, and
Apache Mesos, which play key roles in cloud-
based software ecosystems. While COS offers
substantial benefits in terms of application
deployment, scalability, and management, it
also introduces a significant amount of security
vulnerabilities and risks. The exploration of
COS security highlighted that issues such as

477

insecure workload configurations, supply
chain vulnerabilities, and inappropriate
permission settings can significantly reduce
the integrity and safety of the entire system.

Through an in-depth analysis of related
works, the paper emphasized the necessity of
using strong security measures, including
vulnerability management, robust configuration
practices, and the implementation of necessary
security frameworks. The role of COS
components, such as container runtimes, COS
agents, and schedulers, was covered, illustrating
how their proper configuration and
management are related to maintaining a secure
orchestration environment.

Moreover, the paper underscored the
critical influence of scheduling strategies on
the security of COS. By proposing scheduling
strategies that consider the importance level of
application services and ensure a strategic
distribution of containers across nodes, the
research advocated for a proactive stance in
mitigating the potential impact of attacks. The
nuanced approach to container placement,
considering factors like the importance of
services and public exposure, provides a
mechanism for enhancing system resilience
and security.

References

[1] A. Prajapati, D. Patel, Container
Scheduling: A Taxonomy, Open Issues
and Future Directions for Scheduling of
Containerized Microservices, SSRN
(2024).

[2] O. Oleghe, Container Placement and
Migration in Edge Computing: Concept
and Scheduling Models, IEEE Access 9
(2021) 68028–68043. doi: 10.1109/
ACCESS.2021.3077550.

[3] A. Sabau, S. Hacks, A. Steffens,
Implementation of a Continuous
Delivery Pipeline for Enterprise
Architecture Model Evolution, Softw.
Syst. Model. 20 (2021) 117–145. doi:
10.1007/s10270-020-00828-z.

[4] L. Mercl, J. Pavlik, The Comparison of
Container Orchestrators, International
Congress on Information and
Communication Technology (2018)
677–685.

[5] A. Saboor, et al., Containerized
Microservices Orchestration and
Provisioning in Cloud Computing: A
Conceptual Framework and Future
Perspectives, Appl. Sci. 12(12) (2022)
5793. doi: 10.3390/app12125793.

[6] V. Bushong, et al., On Microservice
Analysis and Architecture Evolution: A
Systematic Mapping Study, Appl. Sci.
11(17) (2021) 7856. doi:
10.3390/app11177856.

[7] L. Händel, Microservices in the Context
of a Fast-Growing Company (2020).

[8] P. Raj, G. David, Engineering Resilient
Microservices toward System
Reliability: The Technologies and Tools,
Cloud Reliability Eng. (2021) 77–116.

[9] G. Blinowski, A. Ojdowska, A. Przybyłek,
Monolithic vs. Microservice Architec-
ture: A Performance and Scalability
Evaluation, IEEE Access 10 (2022)
20357–20374. doi: 10.1109/ACCESS.
2022.3152803.

[10] M. Moravcik, et al., Comparison of LXC
and Docker Technologies, 18th
International Conference on Emerging
eLearning Technologies and Appli-
cations (2020) 481–486. doi:
10.1109/ICETA51985.2020.9379212.

[11] C. Cérin, et al., A New Docker Swarm
Scheduling Strategy, IEEE 7th

International Symposium on Cloud and
Service Computing (2017) 112–117. doi:
10.1109/SC2.2017.24.

[12] M. Kleppmann, Designing Data-Intensive
Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable
Systems. O’Reilly Media (2017).

[13] Owasp Kubernetes Top Ten. OWASP.
URL: https://owasp.org/www-project-
kubernetes-top-ten/

[14] A. Martin, M. Hausenblas, Hacking
Kubernetes, O’Reilly Media (2021).

[15] B. Creane, A. Gupta, Kubernetes Security
and Observability, O’Reilly Media
(2021).

[16] S. Ugale, A. Potgantwar, Container
Security in Cloud Environments: A
Comprehensive Analysis and Future
Directions for DevSecOps, Eng. Proc.
59(1) (2023) 57. doi: 10.3390/engp
roc2023059057.

[17] S. Sultan, I. Ahmad, T. Dimitriou,
Container Security: Issues, Challenges,

https://doi.org/10.1109/ACCESS.2021.3077550
https://doi.org/10.1109/ACCESS.2021.3077550
https://link.springer.com/article/10.1007/s10270-020-00828-z
https://doi.org/10.3390/app12125793
https://doi.org/10.3390/app11177856
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/ICETA51985.2020.9379212
https://doi.org/10.1109/SC2.2017.24
https://doi.org/10.3390/engproc2023059057
https://doi.org/10.3390/engproc2023059057

478

and the Road Ahead, IEEE Access 7
(2019) 52976–52996. doi: 10.1109/
ACCESS.2019.2911732.

[18] L. Rice, Container Security: Fundamental
Technology Concepts that Protect
Containerized Applications, O’Reilly
Media (2020).

[19] N. Lopes, et al., Container Hardening
Through Automated Seccomp Profiling,
6th International Workshop on Container
Technologies and Container Clouds
(2020) 31–36.

[20] M. Bélair, S. Laniepce, J. Menaud,
Leveraging Kernel Security Mechanisms
to Improve Container Security: A Survey,
14th International Conference on
Availability, Reliability and Security
(2019) 1–6.

[21] W. Dias, P. Siriwardena, Microservices
Security in Action, Simon and Schuster
(2020).

[22] D. Berardi, et al., Microservice Security:
A Systematic Literature Review, PeerJ
Comput. Sci. 8 (2022) e779. doi:
10.7717/peerj-cs.779.

[23] M. Driss, et al., Microservices in IoT
Security: Current Solutions, Research
Challenges, and Future Directions,
Procedia Comput. Sci. 192 (2021) 2385–
2395. doi: 10.1016/j.procs.2021.09.007.

[24] E. Lee, et al., Quantifying and
Generalizing the CAP Theorem, arXiv
preprint (2021).

[25] M. Holopainen, Monitoring Container
Environment with Prometheus and
Grafana (2021).

https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.7717/peerj-cs.779
http://dx.doi.org/10.1016/j.procs.2021.09.007

