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Abstract  
This paper explores the security issues found in Container Orchestration Systems (COS) 
like Kubernetes, Docker Swarm, and Apache Mesos, which are crucial for running modern 
cloud-based applications. Although COS makes it easier to deploy and manage 
applications, it also brings a set of security challenges. This paper discusses common 
security risks in COS, including unsafe configurations, threats to the supply chain, and 
setup mistakes that could let attackers gain unauthorized access or disrupt the system. 
The paper examines the responsibilities of different parts of COS. It points out the dangers 
of giving too many permissions and not having strong network security measures. The 
discussion covers how containers and the process of managing them should be securely 
set up to prevent vulnerabilities. Additionally, the paper looks at the security of 
microservices, a way of designing applications as a set of small services. It talks about how 
to safely deploy these services, manage their communication, and secure them using 
various tools and standards. A major focus of the paper is on how COS decides where to 
run containers, known as scheduling strategies, and how these can affect security. It 
reviews different strategies and proposes new ones that focus on the importance of each 
part of an application. By spreading out important parts across different servers, the 
system can be made more secure. The paper suggests ways to arrange containers in a way 
to reduces the chance of a widespread attack if one part gets compromised. In summary, 
this paper dives into the security aspects of COS, presenting a detailed look at the risks 
involved and offering guidance on how to secure these systems. It emphasizes the need 
for careful setup, constant monitoring, and smart strategies to place containers, aiming to 
protect against the ever-changing security threats in the world of cloud computing. 
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1. Introduction 

COS plays a crucial role in modern cloud-based 
software ecosystems [1, 2]. The fundamental 
concept employed by COS is a container, which 
is a lightweight package of software bundled 
with all necessary dependencies required for 
running the software. Utilizing containers 
significantly streamlines the provisioning of 
hardware and ensures reproducible 
application behavior across various platforms 
and operating systems. As containers 
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encapsulate all dependencies, they eliminate 
the risk of conflicts or issues with outdated 
versions. This contributes to the speed of cloud 
application development and facilitates the 
continuous delivery [3] process. Often used 
examples of COS include Kubernetes, Docker 
Swarm, and Apache Mesos [4]. 

The popularity of COS is related to the rise 
of applications that utilize a microservices 
architecture [5, 6]. However, the transition to 
COS and microservices is not without its 
challenges. Organizations must navigate the 
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complexities of container management, 
orchestration, and security, which demand a 
deep understanding of the underlying 
infrastructure and a careful approach to design 
and configuration. The shift also necessitates a 
cultural change, creating an environment of 
continuous learning, collaboration, and 
innovation among teams. As businesses 
increasingly rely on these systems, ensuring 
the security, reliability, and performance of 
COS becomes important. This includes not only 
protecting against external threats but also 
managing internal risks such as service 
dependencies, network configurations, and 
data management practices. 

Microservices architecture primarily 
facilitates faster software delivery [7] by 
creating bounded contexts or areas of 
responsibility managed by different teams. 
Using microservices offers additional 
advantages. One of these is the containment of 
application failure scope or “blast radius” [8]. 
Unlike monolithic applications, those divided 
into separately deployable pieces are less 
prone to complete failure due to a single 
subsystem’s issue, as these are independent 
applications and processes. Scalability is also 
an essential aspect [9]. The separation into 
distinct functions provides better granularity 
and scalability options. COS can dynamically 
allocate resources to different functions based 
on the load, optimizing the system’s scalability.  

While microservices architecture with the 
use of COS feature allows all these benefits, the 
application architecture is also important, 
without proper separation of responsibilities 
and functions proper scalability, resilience, 
and delivery speed might be hard to achieve. 

 
Figure 1: Key components of container 
orchestration system 

Fig. 1 illustrates the key components utilized 
by COS: 

1. Cluster: This represents a set of nodes, 
indicating the state of available 
hardware or virtual resources. 

2. Nodes: These are individual physical or 
virtual units where containers can be 
deployed. 

3. Container Runtime: This is the 
technology used to run containers, such 
as Docker [10]. Every node must have a 
container runtime installed to facilitate 
container operations. 

4. COS Agent: Typically, this is a program 
that operates within a node and 
primarily functions as the 
communication point to manage 
operations on that node. While the 
container runtime focuses on managing 
the containers themselves, the COS agent 
delegates such requests to the container 
runtime. 

5. Discovery Component: This 
component is responsible for tracking all 
the containers and associated 
applications. It facilitates internal 
application communication by serving as 
a central configuration point and may be 
utilized by a load balancer. 

6. Scheduler: Playing a crucial role, the 
scheduler’s primary function is to 
identify a suitable node for container 
deployment. Selecting a deployment 
strategy involves analyzing the system’s 
use case, typically balancing between 
efficient utilization of cluster resources 
and application resilience or fault 
tolerance. Common strategies include 
binpacking and spreading [11]. 
Binpacking aims to pack as many 
containers as possible into a single node 
to maximize resource utilization. 
Spreading focuses on distributing 
containers across the emptiest nodes to 
enhance application fault tolerance [12]. 
This approach allows for the deployment 
of multiple instances of the same 
application component across different 
nodes, thereby reducing the risk of 
simultaneous failures due to hardware 
or other issues. 

The adoption of COS does not come without 
its drawbacks. While COS efficiently organizes 
the management of running systems, it also 
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adds to the system’s complexity. This 
complexity is necessary to accommodate the 
diverse requirements of various applications. 
For example, Kubernetes alone offers more 
than ten different configurable abstractions to 
provide end-users with the needed flexibility. 
However, this complexity opens the door to 
potential issues, such as the risk of 
misconfiguration, which can lead to human 
errors and security vulnerabilities. 

Furthermore, the process of packaging 
software into container images requires 
precise attention to ensure that the software is 
free from vulnerabilities. The architecture of 
the application significantly influences the 
overall security of the system. Important 
considerations include how application secrets 
are managed, who has access to them, and the 
level of encryption employed in the 
communication between container nodes. 

The multifaceted nature of COS inherently 
makes security a more challenging aspect due 
to the increased number of entry points, 
exposed APIs, and the amplified potential for 
errors. This article aims to explore some of the 
threats associated with COS, with a particular 
focus on the implications raised from decisions 
made by the scheduler component, 
highlighting the critical nature of this aspect in 
the COS infrastructure. 

2. Related Works 

The OWASP vulnerabilities [13] provide a 
comprehensive list of the top ten security risks 
for Kubernetes-based applications, 
encompassing issues such as insecure 
configurations, supply chain vulnerabilities, 
overly permissive Role Based Access Control 
(RBAC) configurations, lack of centralized 
policy enforcement, inadequate logging and 
monitoring, broken authentication 
mechanisms, missing network segmentation 
controls, misconfigured cluster components, 
and outdated and vulnerable components. 
Martin and Hausenblas delve into these issues, 
categorizing threats and proposing defensive 
measures for various scenarios that apply to 
Kubernetes COS [14]. They also detail the roles 
and responsibilities of different Kubernetes 
components and highlight the importance of 
isolating the container runtime from the host 
operating system to increase security. Creane 

and Gupta extend the discussion on security 
beyond COS itself, addressing potential threats 
that may arise during the pre-deployment 
phase, such as when faulty images are built and 
deployed [15]. They advocate for robust 
monitoring techniques, alerting rules, machine 
learning-based systems, proper network 
configuration, and secure application exposure 
methods. 

Ugale et al. focus on container 
vulnerabilities in cloud environments, 
proposing a security framework that conducts 
vulnerability scans at various levels [16]. 
Security challenges in systems reliant on 
containers are explored by Sultan et al. 
highlighting the need for enhanced 
vulnerability management [17]. Rice discusses 
fundamental security concepts crucial for 
protecting applications in containers, 
introducing the “blast radius” concept to limit 
the impact of threats [18]. Lopens et al. 
propose mitigating security risks by adapting 
the seccomp profile, which restricts container 
system calls to minimize the attack surface, 
emphasizing the development of these profiles 
in a fast and scalable manner [19]. Belair et al. 
focus on the security features of the Linux 
kernel that are employed at the virtualization 
boundary between the operating kernel and 
containers [20]. 

Dias and Siriwardena comprehensively 
address the mechanisms utilized in 
microservice security, including deployments, 
communication, API gateways, JWT tokens, 
and the OAuth 2 standard [21]. They delve into 
the deployment strategies using Kubernetes 
and discuss methods to ensure secure 
configurations of Docker or alternative 
container engines. Berardi et al. explore the 
significance of the human element in the 
security of applications employing a 
microservices architecture [22]. The 
challenges of microservices security, along 
with contemporary solutions to key issues, are 
presented by Driss et al. [23], providing a 
crucial resource for secure software 
researchers and practitioners by offering a 
comprehensive catalog of security solutions 
and mechanisms for applications based on 
microservices. 
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3. Security Threats 
3.1. Gaining Access to COS Infrastructure 

One common issue in the configuration of COS, 
as noted in the OWASP top ten security risks 
for Kubernetes [13], risk of insecure workload 
configurations. Running application services 
as the root user, when not necessary, grants 
the application excessive permissions, 
potentially enabling the execution of harmful 
operations such as initiating malicious 
processes. The use of a file system that allows 
write operations can inadvertently permit the 
installation of unauthorized software, leading 
to unexpected and possibly malicious 
container behavior. Moreover, the use of 
privileged containers grants additional kernel 
capabilities, which, when coupled with other 
misconfigurations, might pave the way to 
access the host (node) itself. Gaining control 
over the host opens up access to other 
containers on that node, the container runtime, 
and the COS agent, all of which could be 
manipulated for malicious purposes. 
Furthermore, overly permissive 
configurations of RBAC permissions can 
provide unintended access to containers, 
posing a significant security risk. Addressing 
these vulnerabilities requires strict adherence 
to security best practices, including 
minimizing permissions and ensuring robust 
access controls within the COS environment. 
Additionally, compromising the supply chain is 
another avenue through which containers can 
be made vulnerable. Exploiting the software 
architecture deployed within the COS system 
and introducing vulnerabilities can also 
provide attackers with potential points of 
exploitation. 

Weak authentication mechanisms and 
absent network security controls can 
significantly broaden the scope of an attack, 
potentially extending it from a single container 
to an entire node, and from one node to others 
within the network. A lack of encryption within 
the cluster can enable an attacker who has 
gained access to a container to exploit network 
communications by intercepting traffic 
between containers. Moreover, permitting 
direct access between hosts could allow an 
attacker to exploit more critical APIs available 
within the cluster (Fig. 2). 

 
Figure 2: Example of cluster setup where 
Container 1 is compromised while connecting 
over the network to Container 2 and Container 
3 on the separate node 

The outlined approaches reveal that attack 
vectors typically start with minor threats 
within the system and progressively expand by 
accessing additional components. Although 
adhering to best practices in COS usage can 
significantly reduce the likelihood of such 
attacks, it’s important to recognize that the risk 
can never be eliminated. These best practices 
involve the use of scanning tools and properly 
configured cloud environments to ensure that 
permissions are appropriately restrictive. 
Nonetheless, the specific requirements of 
individual applications and the urgency of 
deployment can sometimes lead to more 
lenient configurations, increasing the 
vulnerability to security breaches. 

Leveraging the capabilities of scheduling 
strategies in COS can play a crucial role in 
mitigating the impact of attacks. The scheduler, 
responsible for deciding which node will host a 
new set of containers, inherently influences the 
distribution of containers across the cluster. 
This distribution, or locality, can be an 
important factor in system security. 

Recent research indicates that scheduling 
strategies can be aligned with multiple 
objectives, such as resilience to failures, 
efficient resource utilization, ensuring 
application accessibility, and rapid 
deployment speeds. Security considerations 
can also be integrated into these objectives. For 
instance, the binpacking strategy prioritizes 
nodes that are already heavily loaded, 
optimizing resource usage. However, this 
strategy also concentrates on the components 
of an application, potentially increasing its 
vulnerability to localized attacks. 
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Conversely, strategies that spread application 
components across different nodes can 
enhance security. If the components are 
distributed, gaining unauthorized access to 
one node does not automatically compromise 
the entire system, as each node operates 
independently. This approach can make it 
considerably more challenging for an attacker 
to inflict widespread damage, underscoring the 
importance of container distribution in 
increasing the overall security posture of the 
COS environment. 

The following method aims to minimize the 
impact of attacks and involves labeling 
application services according to their 
importance level. The strategy could distribute 
application containers such that containers 
with the same importance level are not 
deployed on the same node. Essentially, this 
increases the likelihood that containers of 
similar importance will be placed on different 
nodes. Strategies like spreading or usage of 
affinity controls in Kubernetes already help in 
distributing instances of the same application 
across different nodes for enhanced fault 
tolerance. Considering the importance level of 
services adds an extra layer of security. This 
approach effectively reduces the risk of an 
attacker compromising critical components by 
gaining access to a limited part of the system. 
The equation to compute the weight of the 
node, where weight can be used in the node 
selection process is the following: 

𝑊𝑖 =  ∑
1

𝑅𝑘

𝑚

𝑘=1

 
(1) 

where Wi is the weight of a particular node in 
the cluster, m is the number of container 
instances running within a node, R is the rank 
of the container, the highest rank is 1, and the 
lowest rank is defined by the system 
complexity. 

The index of a desired node can be found by 
the following formula. 

𝐾 = argmin
𝑖

𝑊𝑖 (2) 

where K is the desired node, the node having 
minimal weight, and Wi is the weight of the 
node with index i within the cluster. A node 
that for implementation purposes instead of 
using min operator it might be more 
convenient to sort the node weight values in 
ascending order, which would allow to pick the 
next node after the first one, in case the first 

one is full or does not meet other conditions of 
the strategy. 

3.2. Exploiting Publicly Available 
Containers 

Another risk involves the direct exploitation of 
vulnerabilities in the application architecture. 
Consider a scenario where an attacker targets 
a less important component of the application, 
possibly because it is less monitored or more 
prone to oversight. The attacker generates an 
excessive load on this service. If the container’s 
resource limits are not properly configured, it 
could consume an increasing share of the 
node’s resources, leading to performance 
degradation of more critical application 
components on the same node. 

 
Figure 3. Example of cluster setup Container 1 
is overloaded from the public internet, which 
affects other containers within the node 

For example, consider a financial application 
deployed on one node, while an application 
handling historical transactions is on another 
node alongside a less important service, 
depicted as container 1 in Fig. 3. Although the 
historical transactions application is not 
accessible from the public internet and is only 
used internally within the cluster, overloading 
container 1 can indirectly impact this service, 
affecting other applications reliant on it. For 
instance, if the financial application has a 
fallback mechanism that relies on a local data 
copy when the historical transactions service is 
slow or unresponsive, an attacker, aware of 
this architecture, might overload container 1. 
This overload could trigger the fallback 
mechanism, potentially allowing the attacker 
to bypass certain controls or limits within the 
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financial application. While this architecture 
prioritizes availability over consistency (in 
terms of CAP theorem [24]), which might be 
contentious for such applications, the issue 
persists in other cases where systems favor 
availability. 

This scenario introduces an additional 
potential objective for scheduling strategies: 
separating publicly accessible applications 
from those accessible only within the cluster. 
This separation aims to prevent situations 
where an attacker might indirectly overload an 
internal application by exploiting an externally 
accessible service. Implementing this measure 
through scheduling strategies can enhance the 
system’s security.  The following formula 
represents the computation of a node weight 
that along with container ranks also takes into 
account the public exposure factor: 

𝑊𝑖 = 𝑋 ( ∑
1

𝑅𝑘

𝑚

𝑘=1

) +  𝑌 ( ∑ 𝐴𝑘

𝑚

𝑘=1

)  (3) 

where Wi is the weight of the node within a 
cluster, m is the number of container instances 
running within a node, R is the rank of the 
container within the node, A is 1 in case the 
container is publicly available and 0 if it’s not, 
X is the coefficient used to control the impact of 
containers rank, Y is the coefficient used to 
control the impact of containers availability. 

System malfunction might be triggered not 
only by direct the external load but also due to 
time events, such as salaries coming out at the 
beginning of the month or high load during the 
import of bank statements. 

Additionally, it’s crucial to configure 
resource limits properly for each container, 
ensuring that there’s a defined threshold for 
resource usage. Alongside setting these limits, 
robust system monitoring with alerting rules is 
essential. Prometheus and Grafana are tools 
that can be used for such systems, providing 
great flexibility and feature sets, including 
anomaly detection and alerting [25]. 
Implementing autoscaling can further improve 
the system’s resilience, enabling it to handle 
normal usage growth and providing indicators 
for potential attack attempts. These measures 
collectively ensure that the application not 
only remains operational under typical 
conditions but also offers a level of protection 
against such attack scenarios. 

4. Discussions 

The exploration into the impact of scheduler 
decisions on application security within COS 
reveals a complex relation between system 
configurations, scheduling strategies, and 
security outcomes. This discussion has 
underscored the multifaceted nature of 
security within COS, particularly focusing on 
Kubernetes. Vulnerabilities can arise from 
various sources, including insecure workload 
configurations, supply chain risks, and the 
complex architecture of microservices.  

The consideration of service importance 
and the strategic placement of containers to 
avoid co-locating critical components on the 
same node are significant steps toward 
minimizing the attack surface. However, this 
strategy is not without challenges. The 
dynamic nature of COS and the continuous 
evolution of threats necessitate a proactive and 
adaptable approach to security. This involves 
not only intelligent scheduling but also robust 
monitoring, precise configuration 
management, and the implementation of 
responsive mechanisms such as autoscaling to 
address any anomalies promptly. Suggested 
methods for weighting nodes, embedded into 
existing strategies, present a challenge: 
deciding which is more important—resource 
consumption or reduced risk. 

The insights from related works in the 
domains of COS security, container 
vulnerabilities, and microservices security 
provide a rich context for understanding these 
challenges. These studies highlight the need for 
a holistic approach to security that includes all 
phases of the application lifecycle, from 
development and deployment to runtime 
management. 

5. Conclusions 

This paper has extensively discussed the 
security intricacies and challenges associated 
with COS like Kubernetes, Docker Swarm, and 
Apache Mesos, which play key roles in cloud-
based software ecosystems. While COS offers 
substantial benefits in terms of application 
deployment, scalability, and management, it 
also introduces a significant amount of security 
vulnerabilities and risks. The exploration of 
COS security highlighted that issues such as 
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insecure workload configurations, supply 
chain vulnerabilities, and inappropriate 
permission settings can significantly reduce 
the integrity and safety of the entire system. 

Through an in-depth analysis of related 
works, the paper emphasized the necessity of 
using strong security measures, including 
vulnerability management, robust configuration 
practices, and the implementation of necessary 
security frameworks. The role of COS 
components, such as container runtimes, COS 
agents, and schedulers, was covered, illustrating 
how their proper configuration and 
management are related to maintaining a secure 
orchestration environment. 

Moreover, the paper underscored the 
critical influence of scheduling strategies on 
the security of COS. By proposing scheduling 
strategies that consider the importance level of 
application services and ensure a strategic 
distribution of containers across nodes, the 
research advocated for a proactive stance in 
mitigating the potential impact of attacks. The 
nuanced approach to container placement, 
considering factors like the importance of 
services and public exposure, provides a 
mechanism for enhancing system resilience 
and security. 
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