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Abstract  
The likelihood of rescuing people caught in emergencies of natural or technological origin 
depends on the speed with which they are provided the necessary information. In conditions 
where normal communication means (radio, television, Internet) are disrupted, unmanned 
aerial vehicles (drones) can serve as an alternative means of notification, providing 
information to the population through built-in audio broadcasting systems or by dropping 
instructions on paper, plastic, and other carriers. Similarly, essential cargo such as rescue 
equipment, food, water, etc., can be dropped. In the context of the rapid flow of dangerous 
processes and the limited number of drones available, optimizing the flight route for time 
becomes crucial. This work analyses existing methods of constructing flight routes through a 
given set of waypoints: exhaustive search methods, Bellman’s discrete dynamic programming 
method, greedy algorithms (nearest neighbor method), and anytime algorithms. To save 
onboard computer resources, a method for improving the reference trajectory, which was 
initially found using the nearest neighbor method, was chosen. Improving the reference 
trajectory is done by varying the sequence of waypoints. The advantage of this approach is 
that at each step of the iterative improvement of the trajectory, new information that has 
become available at the current time can be taken into account. Changes to the set of necessary 
waypoints can occur due to changes in the emergency, the completion of tasks by other 
drones, or the failure of other drones. The workability of the algorithm with low 
computational time costs onboard computers was tested for routes that include from 8 to 200 
points. 
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1. Introduction 

The primary task in ensuring the safety of the 
population caught in an emergency zone is to 
provide notifications as quickly as possible 
under conditions of potential disruption to 
conventional means of communication—radio, 
television, Internet [1–3]. 

Unmanned aerial vehicles (drones) can 
serve as an alternative means of notification [4]. 
In the absence of the possibility for emergency 
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service personnel to quickly enter the danger 
zone, drones can fly into the required area and 
provide the necessary information to the 
population through audio messages using built-
in broadcasting equipment or by dropping 
instructions on paper, plastic, and other media. 
Similarly, essential supplies such as rescue 
equipment, food, water, etc., can be dropped. 

The relevance of this work lies in the fact that 
the likelihood of rescuing people in danger 
significantly depends on the speed of providing 
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them with the necessary information and 
material aid.  

In conditions of the rapid flow of dangerous 
processes of natural and technological origin, 
and the limited resources (fleet) of unmanned 
vehicles, optimizing the flight route for time 
becomes a critical issue. 

During an emergency, conditions can change 
very quickly, with new points being added or 
existing ones disappearing from the route. 
There is a need to develop methods that allow 
for finding optimal routes using the limited 
capabilities of the unmanned aerial vehicle’s 
onboard computer, not only in conditions of 
communication with the base but also during 
autonomous flight. Under certain conditions, an 
unmanned aerial vehicle can identify the 
situation in real time through onboard sensors 
or can receive information from other drones 
nearby [5]. This necessitates the constant 
recalculation of the optimal route, taking into 
account new data received at the current 
moment. This is critical because it increases the 
chances of saving people’s lives. 

2. Literature Analysis 

Let’s analyze the state of existing research on 
creating optimal flight routes for unmanned 
aerial vehicles. 

In the tasks of constructing optimal routes, 
Dijkstra’s algorithm [6] is very common, but it 
is mostly used for building the shortest route 
between two points. In this case, passing 
through all points is not mandatory. 

The discrete dynamic programming method 
of Bellman [7] allows finding optimal routes, 
including solving the problem in reverse time. 
Among optimization specialists, there is a 
widespread saying attributed to Bellman: “Any 
optimization problem can be solved provided 
there are sufficient computational resources” 
(the authors do not have information on 
whether this quote is accurate, or whether the 
information about the authorship of the quote 
is reliable). However, many researchers, 
including [8, 9], note that the cost of 
calculations can become a limitation that, in the 
conditions of a specific problem setting, does 
not allow the use of good iterative methods 
with good convergence, such as the Bellman 
method. 

Therefore, researchers’ attention remains 

on fast, albeit imperfect methods like greedy 
algorithms [10–12], which provide decent 
results if the solution quality requirements are 
not high. The drawback of the greedy algorithm 
is that it finds the best solution at the current 
iteration step without considering the 
consequences this current decision might have 
in the future. The low quality of the solution is 
the price paid for the speed of obtaining the 
decision. 

In other situations, the greedy algorithm is 
used to find a reference solution that will then 
be refined by more precise methods. 
Sometimes these algorithms are called anytime 
algorithms, to note the fact that the iterative 
procedure for improving the reference solution 
can be interrupted at any moment, and the 
solution obtained at that moment will be at 
least no worse than the previous ones [13, 14]. 
In our view, a more accurate name would be the 
“improving the reference solution” method 
[15], as it reflects the essence of the actions 
taken about existing solutions. However, this 
does not change the essence of the optimization 
process. 

Details of the processes occurring when 
working with anytime algorithms for finding 
fault routes in cloud systems are considered in 
[16]. In [17], improving the reference solution 
is called continuous optimization and is used 
for optimizing control in the well-known game 
Pinball, where flippers are used to control 
metal balls on a physical playfield covered with 
glass. In [8], the focus is on, perhaps, the most 
significant advantage of anytime algorithms, 
namely, that the algorithm allows for 
considering new information that arrives in 
real-time at each iteration of improving the 
reference solution. The disadvantages of the 
considered anytime algorithms are that they 
are adapted to the specifics of particular tasks 
and do not take into account the peculiarities of 
searching for an optimal route with the 
performance of certain actions at each point of 
the route. 

The anytime algorithm can be particularly 
effective in situations where the decision-
making time is commensurate with the time it 
takes for the initial conditions to find a solution 
to change. Indeed, in an emergency, waypoints 
may appear or disappear during the drone’s 
flight and while searching for the optimal route, 
especially if this search takes a considerable 
amount of time. This can occur both due to 
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changes at the waypoints themselves and 
because several drones, which distribute the 
waypoints among themselves and duplicate 
each other’s actions in case of failure, may be 
allocated for task execution. In such a scenario, 
some waypoints may disappear from the plan 
due to the actions of other drones or, 
conversely, be added to the task plan due to the 
failure of other drones that were scheduled for 
that task. In any case, a recalculation of the 
optimal route will be necessary. 

The most closely related to the problem 
statement in this work are studies [18, 19], 
which are dedicated to constructing the 
optimal flight route of a UAV (drone) based on 
criteria of minimum energy, minimum cost, and 
maximization of territory coverage by onboard 
sensors. However, the task of passing through 
specific waypoints with the execution of certain 
tasks at them was not considered. Instead of 
working at waypoints, the tasks were aimed at 
operating in certain areas. 

Thus, part of the unresolved problem is the 
methods of constructing and further improving 
the UAV flight trajectory during an emergency 
event by the criterion of minimum time. The 
trajectory is built by determining the order of 
passing through the waypoints, the set of which 
is clearly defined. A waypoint is considered a 
point where the drone must stop and perform a 
task: make an audio announcement, deliver 
cargo (material aid or information), etc. 

The goal of the work is to develop algorithms 
for improving the reference trajectory based on 
varying the sequence of passing through the 
waypoints. 

3. Drone Route Optimization 
Strategies 

Let’s accept the main assumptions of the 
study. 

Assumption 1. The operational time of the 
drone at each waypoint is the same, as the 
execution of an identical set of actions is 
assumed at every point. 

Assumption 2. The drone flies at a constant 
speed across all segments of the route, which 
is cruise speed, as it allows for energy savings, 
thereby increasing the available time and 
flight range. 

Assumption 3. The drone starts from the 
base (the initial point of the route) and returns 

to the base after flying over all waypoints. 
As a result of studying the characteristics of 

existing drones, it was found that, with a 
certain margin of error, the total energy a 
drone can use for a flight task can be related to 
the flight time through the following equation 

𝐸𝑚𝑎𝑥 = 𝑘𝑡 𝑡 + 𝑘𝑠(𝑉) 𝑉 𝑡, (1) 

where 𝐸𝑚𝑎𝑥 is the total energy of the drone’s 
battery, 𝑡 is flight time, 𝑉 is flight speed, 𝑘𝑡 is 
battery energy expenditure coefficient 
depending on time, 𝑘𝑠(𝑉) is battery energy 
expenditure coefficient depending on the 
flight range (distance covered). 

In turn, the coefficient ks(V) also depends on 
the flight speed. Up to a certain flight speed, 
the coefficient remains unchanged. However, 
after reaching a certain value, it starts to 
increase, leading to accelerated battery energy 
consumption. In simplified form, this 
dependency can be represented as 

𝑘s(𝑉)

= {
𝑘s0 when 𝑉 ≤  𝑉cruise 

𝑘s0(𝑉/𝑉cruise) when 𝑉 >  𝑉cruise
 , (2) 

where 𝑘s0 is the battery energy expenditure 
coefficient depending on the flight range 
(distance covered) at a speed not exceeding 
cruise speed, 𝑉cruise is cruise flight speed, at 
which the battery energy is used most 
efficiently. 

In this study, we will assume that the flight 
speed does not exceed the cruise speed. 

Considering the possible change over time t 
of the speed 𝑉 and, accordingly, the coefficient 
𝑘𝑠(𝑉), the expression for the drone’s energy 
expenditure can be represented in the form 

𝐸(𝑡) = ∫(𝑘𝑡 +  𝑘𝑠(𝑉(𝑡)) 𝑉(𝑡) 𝑑𝑡

𝑡

0

  , (3) 

3.1. Exhaustive Search of Options 

The simplest way to construct the optimal route 
is to enumerate all possible sequences of 
passing through the waypoints. However, in this 
case, for a route that includes 𝑁 points, it will be 
necessary to check several options equal to 
(Fig. 1). 

𝑁!  ≈ 10𝑂𝑟𝑑𝑒𝑟, 

𝑂𝑟𝑑𝑒𝑟 = ∑ lg 𝑁.

𝑁

𝑖=1
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Figure 1: The order of magnitude equal to the 
number of options that need to be iterated 
through brute force for optimizing a route 
consisting of N points 

In our case, brute force iteration of route 
options makes sense when the number of route 
points is no more than 10–15, depending on 
the power of the onboard computer. For a 
larger number of route points, more 
computationally efficient methods are 
required. However in doing so, one might have 
to pay for the speed of finding the route with 
the loss of some of its quality. 

3.2. The Nearest Point Method 

The simplest way to find a route that 
approximates the optimal is to find the nearest 
point that the drone has not yet visited. To do 
this, for the current point (𝑥0, 𝑦0), we build an 
array of Euclidean distances to all other points 
(𝑥𝑖 , 𝑦𝑖) where the drone has not been yet: 

𝐷𝑒(0, 𝑖) = √(𝑥0 − 𝑥𝑖)2 + (𝑦0 − 𝑦𝑖)2. 
We find the smallest: 

𝐷𝑒 𝑚𝑖𝑛(0) = min
𝑖

𝐷𝑒(0, 𝑖). 

We remember the found index and remove 
the corresponding route point from further 
consideration. The procedure continues until 
all route points have been considered, i.e., an 
array of indices corresponding to the order of 
visiting the route points is constructed:  

𝑖𝑅𝑜𝑢𝑡𝑒2 
The found route has a route length indicator 

𝐷2 much better than the length of the initial 
route 𝐷1, which corresponded to the sequential 
numbers of the points visited, but in most 
cases, 𝐷2 is still not optimal. 

3.3. Refinement of the Reference 
Solution 

Since the solution 𝑖𝑅𝑜𝑢𝑡𝑒2 is not optimal but 
approximates the optimal, it is subsequently 
taken as a reference solution that needs to be 
refined. The refinement of the reference route 
is carried out by varying the order of the route 
points in 𝑖𝑅𝑜𝑢𝑡𝑒2. For each point of the route 
𝑖𝑅𝑜𝑢𝑡𝑒2, the following algorithm for improving 
the reference route is implemented: 

1. The first route point is selected. 
2. The route point in the order of visiting in 

𝑖𝑅𝑜𝑢𝑡𝑒2 is moved to a new position. 
3. The value of the route length 𝐷3 is 

calculated. 
4. If the condition 𝐷3 < 𝐷2 is met, then the 

variation is considered successful and 
fixed. If not, the result of the variation is 
ignored. 

5. The next variation is selected—a new 
position for the transfer of the chosen 
reference route point (while all possible 
options are sequentially considered). 

6. Steps 3–5 are repeated. 
7. If all possible options for the new 

placement of the reference route point 
have been considered, a new reference 
route point is selected to search for a 
better place in the sequence 𝑖𝑅𝑜𝑢𝑡𝑒2. 

8. Steps 2–7 are repeated. 
9. The found value is considered the best. 
Steps 1–9 can be repeated several times. 

This allows for increasing the depth of 
variations and further improving the quality of 
the optimal solution. 

4. Algorithm Testing 

In the graphs showing the route change during 
the improvement of the reference solution, the 
following notations with route length are 
adopted: 

• 𝐷1 is the route length for the initial order 
of route points (non-optimal)—indicated 
by a light blue line in the diagram. 

• 𝐷2 is the route length optimized by the 
nearest neighbor method—indicated by a 
thick blue line in the diagram. 

• 𝐷3 is the route length optimized by the 
method of varying the reference 
solution—indicated by a medium red line 
in the diagram. 
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As seen in Figs. 2–3, with a small number of 
route points (𝑁 = 8), the nearest neighbor 
method does not require further improvement. 
The solution is already optimal. 

 

Figure 2: Route for 𝑵 = 𝟖 

 
Figure 3: Route for 𝑵 = 𝟖 

For 30 route points, varying the reference 
solution results in improvements, but only to a 
depth of no more than 2–3 complete cycles of 
variations (depending on the placement of the 
route points). As the dynamics of the change in 
𝐷3 (caption above Figs. 4–6) show, that 
increasing the depth of variations beyond 2–3 
does not lead to an improvement in the 𝐷3 
indicator. 

 
Figure 4: Route for 𝑁 = 30 

 
Figure 5: Route for 𝑁 = 30 

 
Figure 6: Route for 𝑁 = 30 

For 50 route points, varying the reference 
solution can lead to improvements at a 
variation depth of 3 to 5, also depending on the 
placement of the route points (Figs. 7–9). 
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Figure 7: Route for 𝑁 = 50 

 
Figure 8: Route for 𝑁 = 50 

 
Figure 9: Route for 𝑁 = 50 

For 100 route points, varying the reference 
solution can lead to improvements at a 
variation depth of 3 to 5, just as for 50 points, 
depending on the placement of the route 
points (Figs. 10–12). 

 
Figure 10: Route for 𝑁 = 100 

 
Figure 11: Route for 𝑁 = 100 

 
Figure 12: Route for 𝑁 = 100 

For 200 route points, the algorithm is also 
operational. However, the calculation time can 
increase to 10–20 seconds. Varying the 
reference solution can lead to improvements at 
a variation depth of 3 to 5, just as for 50 or 100 
points, depending on the placement of the route 
points (Figs. 13–14). 
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Figure 13: Route for 𝑁 = 200 

 
Figure 14: Route for 𝑁 = 200 

5. Conclusions 

Thus, the work analyzed existing algorithms for 
constructing flight routes for drones that would 
have to fly through a given set of route points.  

It was found that under conditions of 
possible changes to the set of route points 
during flight in the absence of communication 
with the control point, the use of methods for 
improving the reference trajectory (anytime 
algorithms) is most appropriate. For this, the 
construction of a reference trajectory using the 
nearest neighbor method and further 
refinement of the trajectory by varying the 
sequence of passing the route points were used. 

The operability of the algorithm with low 
computational time costs on onboard 
computers for routes that include from 8 to 200 
route points was tested. 

Directions for further research include 
testing other possible approaches to varying 
reference trajectories, particularly through 
clustering route points. 
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