
505

Optimizing Reference Routes through Waypoint
Sequence Variation in Emergency Events
of Natural and Technological Origin

Igor Sіnitsyn1, Yevhen Derevianko1, Stanislav Denysyuk1, and Volodymyr Shevchenko2

1 Institute of Software Systems of the National Academy of Sciences of Ukraine, 40 Academician Glushkova ave.,
Building 5, Kyiv, 03187, Ukraine
2 Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv, 01601, Ukraine

Abstract
The likelihood of rescuing people caught in emergencies of natural or technological origin
depends on the speed with which they are provided the necessary information. In conditions
where normal communication means (radio, television, Internet) are disrupted, unmanned
aerial vehicles (drones) can serve as an alternative means of notification, providing
information to the population through built-in audio broadcasting systems or by dropping
instructions on paper, plastic, and other carriers. Similarly, essential cargo such as rescue
equipment, food, water, etc., can be dropped. In the context of the rapid flow of dangerous
processes and the limited number of drones available, optimizing the flight route for time
becomes crucial. This work analyses existing methods of constructing flight routes through a
given set of waypoints: exhaustive search methods, Bellman’s discrete dynamic programming
method, greedy algorithms (nearest neighbor method), and anytime algorithms. To save
onboard computer resources, a method for improving the reference trajectory, which was
initially found using the nearest neighbor method, was chosen. Improving the reference
trajectory is done by varying the sequence of waypoints. The advantage of this approach is
that at each step of the iterative improvement of the trajectory, new information that has
become available at the current time can be taken into account. Changes to the set of necessary
waypoints can occur due to changes in the emergency, the completion of tasks by other
drones, or the failure of other drones. The workability of the algorithm with low
computational time costs onboard computers was tested for routes that include from 8 to 200
points.

Keywords 1
Emergency, drone, flight route, route points, optimization, reference solution.

1. Introduction

The primary task in ensuring the safety of the
population caught in an emergency zone is to
provide notifications as quickly as possible
under conditions of potential disruption to
conventional means of communication—radio,
television, Internet [1–3].

Unmanned aerial vehicles (drones) can
serve as an alternative means of notification [4].
In the absence of the possibility for emergency

CPITS-2024: Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2024, Kyiv, Ukraine

EMAIL: ips2014@ukr.net (I. Sinitsyn); evg.derevjanko@gmail.com (Y. Derevianko); sstdenysyuk@gmail.com (S. Denysyuk);

vladimir_337@ukr.net (V. Shevchenko)
ORCID: 0000-0002-4120-0784 (I. Sinitsyn); 0000-0003-2949-8896 (Y. Derevianko); 0009-0006-9308-6959 (S. Denysyuk); 0000-0002-

2152-6816 (V. Shevchenko)

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

service personnel to quickly enter the danger
zone, drones can fly into the required area and
provide the necessary information to the
population through audio messages using built-
in broadcasting equipment or by dropping
instructions on paper, plastic, and other media.
Similarly, essential supplies such as rescue
equipment, food, water, etc., can be dropped.

The relevance of this work lies in the fact that
the likelihood of rescuing people in danger
significantly depends on the speed of providing

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

506

them with the necessary information and
material aid.

In conditions of the rapid flow of dangerous
processes of natural and technological origin,
and the limited resources (fleet) of unmanned
vehicles, optimizing the flight route for time
becomes a critical issue.

During an emergency, conditions can change
very quickly, with new points being added or
existing ones disappearing from the route.
There is a need to develop methods that allow
for finding optimal routes using the limited
capabilities of the unmanned aerial vehicle’s
onboard computer, not only in conditions of
communication with the base but also during
autonomous flight. Under certain conditions, an
unmanned aerial vehicle can identify the
situation in real time through onboard sensors
or can receive information from other drones
nearby [5]. This necessitates the constant
recalculation of the optimal route, taking into
account new data received at the current
moment. This is critical because it increases the
chances of saving people’s lives.

2. Literature Analysis

Let’s analyze the state of existing research on
creating optimal flight routes for unmanned
aerial vehicles.

In the tasks of constructing optimal routes,
Dijkstra’s algorithm [6] is very common, but it
is mostly used for building the shortest route
between two points. In this case, passing
through all points is not mandatory.

The discrete dynamic programming method
of Bellman [7] allows finding optimal routes,
including solving the problem in reverse time.
Among optimization specialists, there is a
widespread saying attributed to Bellman: “Any
optimization problem can be solved provided
there are sufficient computational resources”
(the authors do not have information on
whether this quote is accurate, or whether the
information about the authorship of the quote
is reliable). However, many researchers,
including [8, 9], note that the cost of
calculations can become a limitation that, in the
conditions of a specific problem setting, does
not allow the use of good iterative methods
with good convergence, such as the Bellman
method.

Therefore, researchers’ attention remains

on fast, albeit imperfect methods like greedy
algorithms [10–12], which provide decent
results if the solution quality requirements are
not high. The drawback of the greedy algorithm
is that it finds the best solution at the current
iteration step without considering the
consequences this current decision might have
in the future. The low quality of the solution is
the price paid for the speed of obtaining the
decision.

In other situations, the greedy algorithm is
used to find a reference solution that will then
be refined by more precise methods.
Sometimes these algorithms are called anytime
algorithms, to note the fact that the iterative
procedure for improving the reference solution
can be interrupted at any moment, and the
solution obtained at that moment will be at
least no worse than the previous ones [13, 14].
In our view, a more accurate name would be the
“improving the reference solution” method
[15], as it reflects the essence of the actions
taken about existing solutions. However, this
does not change the essence of the optimization
process.

Details of the processes occurring when
working with anytime algorithms for finding
fault routes in cloud systems are considered in
[16]. In [17], improving the reference solution
is called continuous optimization and is used
for optimizing control in the well-known game
Pinball, where flippers are used to control
metal balls on a physical playfield covered with
glass. In [8], the focus is on, perhaps, the most
significant advantage of anytime algorithms,
namely, that the algorithm allows for
considering new information that arrives in
real-time at each iteration of improving the
reference solution. The disadvantages of the
considered anytime algorithms are that they
are adapted to the specifics of particular tasks
and do not take into account the peculiarities of
searching for an optimal route with the
performance of certain actions at each point of
the route.

The anytime algorithm can be particularly
effective in situations where the decision-
making time is commensurate with the time it
takes for the initial conditions to find a solution
to change. Indeed, in an emergency, waypoints
may appear or disappear during the drone’s
flight and while searching for the optimal route,
especially if this search takes a considerable
amount of time. This can occur both due to

507

changes at the waypoints themselves and
because several drones, which distribute the
waypoints among themselves and duplicate
each other’s actions in case of failure, may be
allocated for task execution. In such a scenario,
some waypoints may disappear from the plan
due to the actions of other drones or,
conversely, be added to the task plan due to the
failure of other drones that were scheduled for
that task. In any case, a recalculation of the
optimal route will be necessary.

The most closely related to the problem
statement in this work are studies [18, 19],
which are dedicated to constructing the
optimal flight route of a UAV (drone) based on
criteria of minimum energy, minimum cost, and
maximization of territory coverage by onboard
sensors. However, the task of passing through
specific waypoints with the execution of certain
tasks at them was not considered. Instead of
working at waypoints, the tasks were aimed at
operating in certain areas.

Thus, part of the unresolved problem is the
methods of constructing and further improving
the UAV flight trajectory during an emergency
event by the criterion of minimum time. The
trajectory is built by determining the order of
passing through the waypoints, the set of which
is clearly defined. A waypoint is considered a
point where the drone must stop and perform a
task: make an audio announcement, deliver
cargo (material aid or information), etc.

The goal of the work is to develop algorithms
for improving the reference trajectory based on
varying the sequence of passing through the
waypoints.

3. Drone Route Optimization
Strategies

Let’s accept the main assumptions of the
study.

Assumption 1. The operational time of the
drone at each waypoint is the same, as the
execution of an identical set of actions is
assumed at every point.

Assumption 2. The drone flies at a constant
speed across all segments of the route, which
is cruise speed, as it allows for energy savings,
thereby increasing the available time and
flight range.

Assumption 3. The drone starts from the
base (the initial point of the route) and returns

to the base after flying over all waypoints.
As a result of studying the characteristics of

existing drones, it was found that, with a
certain margin of error, the total energy a
drone can use for a flight task can be related to
the flight time through the following equation

𝐸𝑚𝑎𝑥 = 𝑘𝑡 𝑡 + 𝑘𝑠(𝑉) 𝑉 𝑡, (1)

where 𝐸𝑚𝑎𝑥 is the total energy of the drone’s
battery, 𝑡 is flight time, 𝑉 is flight speed, 𝑘𝑡 is
battery energy expenditure coefficient
depending on time, 𝑘𝑠(𝑉) is battery energy
expenditure coefficient depending on the
flight range (distance covered).

In turn, the coefficient ks(V) also depends on
the flight speed. Up to a certain flight speed,
the coefficient remains unchanged. However,
after reaching a certain value, it starts to
increase, leading to accelerated battery energy
consumption. In simplified form, this
dependency can be represented as

𝑘s(𝑉)

= {
𝑘s0 when 𝑉 ≤ 𝑉cruise

𝑘s0(𝑉/𝑉cruise) when 𝑉 > 𝑉cruise
 , (2)

where 𝑘s0 is the battery energy expenditure
coefficient depending on the flight range
(distance covered) at a speed not exceeding
cruise speed, 𝑉cruise is cruise flight speed, at
which the battery energy is used most
efficiently.

In this study, we will assume that the flight
speed does not exceed the cruise speed.

Considering the possible change over time t
of the speed 𝑉 and, accordingly, the coefficient
𝑘𝑠(𝑉), the expression for the drone’s energy
expenditure can be represented in the form

𝐸(𝑡) = ∫(𝑘𝑡 + 𝑘𝑠(𝑉(𝑡)) 𝑉(𝑡) 𝑑𝑡

𝑡

0

 , (3)

3.1. Exhaustive Search of Options

The simplest way to construct the optimal route
is to enumerate all possible sequences of
passing through the waypoints. However, in this
case, for a route that includes 𝑁 points, it will be
necessary to check several options equal to
(Fig. 1).

𝑁! ≈ 10𝑂𝑟𝑑𝑒𝑟,

𝑂𝑟𝑑𝑒𝑟 = ∑ lg 𝑁.

𝑁

𝑖=1

508

Figure 1: The order of magnitude equal to the
number of options that need to be iterated
through brute force for optimizing a route
consisting of N points

In our case, brute force iteration of route
options makes sense when the number of route
points is no more than 10–15, depending on
the power of the onboard computer. For a
larger number of route points, more
computationally efficient methods are
required. However in doing so, one might have
to pay for the speed of finding the route with
the loss of some of its quality.

3.2. The Nearest Point Method

The simplest way to find a route that
approximates the optimal is to find the nearest
point that the drone has not yet visited. To do
this, for the current point (𝑥0, 𝑦0), we build an
array of Euclidean distances to all other points
(𝑥𝑖 , 𝑦𝑖) where the drone has not been yet:

𝐷𝑒(0, 𝑖) = √(𝑥0 − 𝑥𝑖)2 + (𝑦0 − 𝑦𝑖)2.
We find the smallest:

𝐷𝑒 𝑚𝑖𝑛(0) = min
𝑖

𝐷𝑒(0, 𝑖).

We remember the found index and remove
the corresponding route point from further
consideration. The procedure continues until
all route points have been considered, i.e., an
array of indices corresponding to the order of
visiting the route points is constructed:

𝑖𝑅𝑜𝑢𝑡𝑒2
The found route has a route length indicator

𝐷2 much better than the length of the initial
route 𝐷1, which corresponded to the sequential
numbers of the points visited, but in most
cases, 𝐷2 is still not optimal.

3.3. Refinement of the Reference
Solution

Since the solution 𝑖𝑅𝑜𝑢𝑡𝑒2 is not optimal but
approximates the optimal, it is subsequently
taken as a reference solution that needs to be
refined. The refinement of the reference route
is carried out by varying the order of the route
points in 𝑖𝑅𝑜𝑢𝑡𝑒2. For each point of the route
𝑖𝑅𝑜𝑢𝑡𝑒2, the following algorithm for improving
the reference route is implemented:

1. The first route point is selected.
2. The route point in the order of visiting in

𝑖𝑅𝑜𝑢𝑡𝑒2 is moved to a new position.
3. The value of the route length 𝐷3 is

calculated.
4. If the condition 𝐷3 < 𝐷2 is met, then the

variation is considered successful and
fixed. If not, the result of the variation is
ignored.

5. The next variation is selected—a new
position for the transfer of the chosen
reference route point (while all possible
options are sequentially considered).

6. Steps 3–5 are repeated.
7. If all possible options for the new

placement of the reference route point
have been considered, a new reference
route point is selected to search for a
better place in the sequence 𝑖𝑅𝑜𝑢𝑡𝑒2.

8. Steps 2–7 are repeated.
9. The found value is considered the best.
Steps 1–9 can be repeated several times.

This allows for increasing the depth of
variations and further improving the quality of
the optimal solution.

4. Algorithm Testing

In the graphs showing the route change during
the improvement of the reference solution, the
following notations with route length are
adopted:

• 𝐷1 is the route length for the initial order
of route points (non-optimal)—indicated
by a light blue line in the diagram.

• 𝐷2 is the route length optimized by the
nearest neighbor method—indicated by a
thick blue line in the diagram.

• 𝐷3 is the route length optimized by the
method of varying the reference
solution—indicated by a medium red line
in the diagram.

509

As seen in Figs. 2–3, with a small number of
route points (𝑁 = 8), the nearest neighbor
method does not require further improvement.
The solution is already optimal.

Figure 2: Route for 𝑵 = 𝟖

Figure 3: Route for 𝑵 = 𝟖

For 30 route points, varying the reference
solution results in improvements, but only to a
depth of no more than 2–3 complete cycles of
variations (depending on the placement of the
route points). As the dynamics of the change in
𝐷3 (caption above Figs. 4–6) show, that
increasing the depth of variations beyond 2–3
does not lead to an improvement in the 𝐷3
indicator.

Figure 4: Route for 𝑁 = 30

Figure 5: Route for 𝑁 = 30

Figure 6: Route for 𝑁 = 30

For 50 route points, varying the reference
solution can lead to improvements at a
variation depth of 3 to 5, also depending on the
placement of the route points (Figs. 7–9).

510

Figure 7: Route for 𝑁 = 50

Figure 8: Route for 𝑁 = 50

Figure 9: Route for 𝑁 = 50

For 100 route points, varying the reference
solution can lead to improvements at a
variation depth of 3 to 5, just as for 50 points,
depending on the placement of the route
points (Figs. 10–12).

Figure 10: Route for 𝑁 = 100

Figure 11: Route for 𝑁 = 100

Figure 12: Route for 𝑁 = 100

For 200 route points, the algorithm is also
operational. However, the calculation time can
increase to 10–20 seconds. Varying the
reference solution can lead to improvements at
a variation depth of 3 to 5, just as for 50 or 100
points, depending on the placement of the route
points (Figs. 13–14).

511

Figure 13: Route for 𝑁 = 200

Figure 14: Route for 𝑁 = 200

5. Conclusions

Thus, the work analyzed existing algorithms for
constructing flight routes for drones that would
have to fly through a given set of route points.

It was found that under conditions of
possible changes to the set of route points
during flight in the absence of communication
with the control point, the use of methods for
improving the reference trajectory (anytime
algorithms) is most appropriate. For this, the
construction of a reference trajectory using the
nearest neighbor method and further
refinement of the trajectory by varying the
sequence of passing the route points were used.

The operability of the algorithm with low
computational time costs on onboard
computers for routes that include from 8 to 200
route points was tested.

Directions for further research include
testing other possible approaches to varying
reference trajectories, particularly through
clustering route points.

References

[1] I. Kuzminykh, et al., Investigation of the
IoT Device Lifetime with Secure Data
Transmission, Internet of Things, Smart
Spaces, and Next Generation Networks
and Systems, vol. 11660 (2019) 16–27.
doi: 10.1007/978-3-030-30859-9_2.

[2] V. Sokolov, et al., Method for Increasing
the Various Sources Data Consistency
for IoT Sensors, in: IEEE 9th
International Conference on Problems
of Infocommunications, Science and
Technology (2023) 522–526. doi:
10.1109/PICST57299.2022.10238518

[3] V. Astapenya, et al., Last Mile Technique
for Wireless Delivery System using an
Accelerating Lens, in: 2020 IEEE
International Conference on Problems
of Infocommunications. Science and
Technology (2020). doi: 10.1109/
picst51311.2020.9467886.

[4] V. Sokolov, P. Skladannyi, A. Platonenko,
Video Channel Suppression Method of
Unmanned Aerial Vehicles, in: IEEE 41st
International Conference on Electronics
and Nanotechnology (2022) 473–477.
doi: 10.1109/elnano54667.2022.
9927105.

[5] M. Vladymyrenko, et al., Analysis of
Implementation Results of the
Distributed Access Control System. in:
IEEE International Scientific-Practical
Conference Problems of Infocommuni-
cations, Science and Tech-nology
(2019). doi: 10.1109/picst47496.2019.
9061376.

[6] R. Chen, Dijkstra’s Shortest Path
Algorithm and Its Application on Bus
Routing, International Conference on
Urban Planning and Regional Economy
(2022). doi: 10.2991/aebmr.k.220502.
058.

[7] R. Bellman, S. Dreyfus, Dynamic
Programming, Princeton University
Press (2021). doi: 10.2307/j.ctv1nxcw0f.

[8] M. Horsch, D. Poole, An Anytime
Algorithm for Decision Making Under
Uncertainty, Fourteenth Conference on
Uncertainty in Artificial Intelligence
(1998) 246–255.

[9] K. Li, N. Fard, A Novel Nonparametric
Feature Selection Approach Based on

https://doi.org/10.2991/aebmr.k.220502.058
https://doi.org/10.2991/aebmr.k.220502.058
https://dx.doi.org/10.2307/j.ctv1nxcw0f

512

Mutual Information Transfer Network,
Entropy 24(9) (2022) 1255. doi:
10.3390/e24091255.

[10] D. Szeszlér, Sufficient Conditions for the
Optimality of the Greedy Algorithm in
Greedoids, J. Comb. Optim. 44 (2022)
287–302. doi: 10.1007/s10878-021-
00833-y.

[11] S. Bouamama, C. Blum, An Improved
Greedy Heuristic for the Minimum
Positive Influence Dominating Set
Problem in Social Networks, Algorithms
14(3) (2021) 79. doi: 10.3390/a1403
0079.

[12] Y. Wang, Review on Greedy Algorithm,
Theor. Nat. Sci. 14. (2023) 233-239. doi:
10.54254/2753-8818/14/20241041.

[13] S. Zilberstein, Using Anytime
Algorithms in Intelligent Systems, AI
Magazine 17 (3) (1996) 73–83. doi:
10.1609/aimag.v17i3.1232.

[14] J. Grass, S. Zilberstein, Anytime
Algorithm Development Tools, SIGART
Bulletin. 7(2) (1996) 20–27. doi:
10.1145/242587.242592.

[15] V. Shevchenko, Optimization Modeling
in Strategic Planning, TsVSD NUOU
(2011).

[16] F. Asadova, et al., A Survey of Usage of
Anytime Algorithm in Fault Detection in
Cloud Systems. 21st World Symposium
on Applied Machine Intelligence and
Informatics (2023) 69–74. doi:
10.1109/SAMI58000.2023.10044521.

[17] V. Lymperakis, A. Panagopoulos, Buggy
Pinball: A Novel Single-point Meta-
heuristic for Global Continuous
Optimization, Artificial Intelligence and
Soft Computing, LNAI 13589 (2022)
264–276. doi: 10.1007/978-3-031-
23480-4_22.

[18] V. Shevchenko, et al., Models and
Information Technologies of Coverage of
the Territory by Sensors with Energy
Consumption Optimization, Mathe-
matical Modeling and Simulation of
Systems, LNNS 344 (2022) 17–30. doi:
10.1007/978-3-030-89902-8_2.

[19] V. Shevchenko, et al., A Method for
Maximum Coverage of the Territory by
Sensors with Minimization of Cost and
Assessment of Survivability, Appl. Sci.
12(6) (2022) 3059. doi:
10.3390/app12063059.

https://doi.org/10.1007/s10878-021-00833-y
https://doi.org/10.1007/s10878-021-00833-y
https://doi.org/10.3390/a14030079
https://doi.org/10.3390/a14030079
https://en.wikipedia.org/wiki/Doi_(identifier)
http://dx.doi.org/10.1109/SAMI58000.2023.10044521
https://doi.org/10.1007/978-3-031-23480-4_22
https://doi.org/10.1007/978-3-031-23480-4_22
https://link.springer.com/book/10.1007/978-3-030-89902-8
https://link.springer.com/book/10.1007/978-3-030-89902-8
https://link.springer.com/book/10.1007/978-3-030-89902-8
https://doi.org/10.1007/978-3-030-89902-8_2
https://doi.org/10.3390/app12063059

