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Abstract 
Generative Adversarial Networks (GANs) have demonstrated remarkable capabilities in image 
generation, surpassing the performance of previous image generation models. However, GANs require 
large training datasets to facilitate proper learning. GANs have inherent problems such as the mode 
collapse problem, where identical images are generated, and instability problem, where the generator 
and the discriminator fail to form a successful adversarial relationship. These problems are particularly 
common when the availability of training data is limited. In this paper, we propose three techniques to 
address these challenges. Firstly, Common Feature Training (CFT) is introduced to enhance 
performance by training the Generator to recognize common features, thereby mitigating instability 
problems. Secondly, Mean Rescaling (MR) is employed to mitigate the mode collapse problem arising 
from sampling latent vectors with identical means and variances. Thirdly, an edge loss method is 
implemented, where the edge difference values between real and generated images are added to the 
GANs loss. This contributes to the classification of shapes, thereby mitigating the mode collapse problem 
and instability problem. Comparative experimental results illustrate improvements in the highlighted 
issues, and the performance enhancement is validated by metrics, namely Fréchet Inception Distance 
(FID) and Inception Score (IS). 
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1. Introduction 

Generative models have demonstrated remarkable performance improvements with the advent 
of large datasets and deep neural networks. It is used for a variety of tasks, including inpainting 
and image translation tasks [9,10]. Generative Adversarial Networks (GANs) are a framework for 
estimating generative models through adversarial learning of generators and discriminators. The 
discriminator estimates the probability that the input data is real, while the generator generates 
fake data that mimics the distribution of real data to deceive the discriminator. Due to these 
characteristics, the discriminator is trained to distinguish real data from fake data, and the 
generator is trained to produce fake data that closely approximates real data. Training GANs 
inherently require a large dataset, as insufficient data can lead to instability problem such as a 
lack of adversarial relationship between the generator and discriminator, and a mode collapse 
problem, where the generator primarily produces an identical image [1,11]. 

Extensive research has been conducted to mitigate the mode collapse problem and instability 
problem in traditional GANs by improving the model’s architecture and loss function [2]. 
However, most of these researches heavily rely on the use of large datasets. The basic solution to 
mode collapse problem and instability problem is to augment the image or add more datasets 
[12,13]. Otherwise, without such large datasets, producing diverse and high-quality data becomes 
a challenge. In this paper, we propose following three techniques to address the problems of 

 
ISE 2023: 2nd International Workshop on Intelligent Software Engineering, December 4, 2023, Seoul 
*Corresponding author. 

 songyg1020@gnu.ac.kr (Y. G. Song); gunwoo.kim@gnu.ac.kr (G. W. Kim)  

 0009-0008-6692-1925 (Y. G. Song); 0000-0001-5643-4797 (G. W. Kim) 

 
©  2023 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/


instability and mode collapse. Figure 1 shows the learning process and architecture of our 
proposed GAN model. 
 

1. Common Feature Training (CFT): We propose the Common Features Training (CFT) to 
facilitate the Generator's training and establish an adversarial relationship between the 
Generator and Discriminator to address the instability problem. 
2. Mean Rescaling (MR): We propose the Mean Rescaling (MR), which rescales the mean of 
the sampled vector z by replacing it with a random mean to mitigate the mode collapse 
problem. 
3. edge loss: We propose edge loss to inhibit the fast learning of the discriminator and use 
GANs + edge loss to classify not only the authenticity of the image but also its shape, which 
mitigates the problems of mode collapse and instability. 

2. Related work 

GANs have a different approach to generating high-quality images compared to traditional 
generative models, and they have demonstrated excellent performance in image generation since 
the release of Deep Convolutional Generative Adversarial Networks (DCGAN), which was 
changed to Deep Convolution Nets [1,3]. However, when generating an image with limited data, 
the generator and discriminator may not form an adversarial relationship due to lack of data, 
which leads to problems of instability and mode collapse. 

To address the mode collapse problem, Diverse and Limited Data Generative Adversarial 
Networks (DeLiGAN) were proposed [4]. DeLiGAN creates various components through a 
Gaussian mixture model and reparametrizes the latent vector and latent space, through random 
sampling. This research follows the approach of modifying the latent distribution to obtain 
samples in the high-probability region [5]. However, this approach involves the training of mean 
and variance components, which can be time-consuming and does not address the instability 
problem. 

3. Method 

 
Latent vectors are randomly sampled from a normal distribution but have entangled features 
because one feature is related to another [16]. We sample from a random normal distribution, 
the learning nature of the discriminator will cause the generator to synthesize an identical image 
that will best fool the discriminator [14]. The mode collapse problem can be mitigated to an extent 
by reparametrizing the distribution of the latent vector [4]. They can be trained with additional 
information to direct the generative model and slow down the learning of the discriminator [15]. 
This mitigates the instability problem. 

 

Figure 1: Learning process and architecture of the proposed GAN model. 



3.1.  Common Feature training 

Common Feature Training (CFT) is a technique to enhance the stability of learning. It consists of 
reconstructing a feature vector z into a distribution that incorporates the common features of the 
dataset, allowing for the learning of these common features. In this technique, we adopt a 
hyperparameter called Feature Differences (FD). This hyperparameter reflects the extent to which 
common features are considered and is initially set to 1. It is incremented by 1 until no instability 
problem occurs beyond epoch 30, at which point we adopt an appropriate FD value. This helps the 
generator learn to create an adversarial relationship. The equation of the reconstruction process 
is as follows: 
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 where 𝑍  is a latent vector and 𝑥  is a random value randomly sampled from a normal 
distribution. w is the weight of the common feature, 𝑥𝑖𝑤𝑁𝑖  means each feature.  Take an input of 
sampling size 𝑁 by a normal distribution and run it through a linear layout to get a trained 𝑍 of 
size 𝑁 + 𝐹𝐷. In this procedure, each feature's value is learned in such a way that it reduces the loss 
value, and a variable 𝑍 with a common feature is obtained. 

FD is a quantification of the degree to which a feature is included, and choosing a high FD value 
can result in less diverse data because the distribution learns detailed features. Conversely, 
selecting a low FD value may result in a lack of common features being incorporated. Therefore, it 
is important to set the correct FD value. Additionally, if the data does not have common features 
between individual data points, the technique may not be very effective, so prior data analysis is 
required. 

3.2.  Mean rescaling 

Mean Rescaling (MR) is a technique that involves adding a random average value, ranging from -
1 to 1, to the feature vector 𝑧 after it has undergone CFT. This technique ensures that each latent 
vector 𝑧 has a unique average, devised to mitigate the mode collapse problem occurring when the 
initial latent vectors 𝑧 have the same mean and variance. The equation of this technique is as 
follows: 

 
𝒛 = 𝒛 + 𝝁  

 
(2) 

where 𝑧 is the value of the potential vector generated by the CFT and μ is the mean value added 
to 𝑧 and is an arbitrary value between -1 and 1.  

MR enables the latent vector 𝑧  to have the mean of a user-specified range. This technique 
mitigates the mode collapse problem and overcomes the problem of generating only specific 
classes of data, enabling the generation of a variety of data categories. 

3.3.  Edge loss 

Most of the instability problem is caused by the faster training of the Discriminator compared to 
the Generator. To address this problem, we incorporate the similarity of the edges between the 
generated image and the real image into the loss function. The equation of loss function is as 
follows: 

 
𝑚𝑖𝑛

𝐺
𝑚𝑎𝑥

𝐷
𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)

[log 𝐷(𝑥) + ∑(𝐺(𝑧) − 𝑥)2] + 𝐸𝑥~𝑃𝑧(𝑧)
[log (1 − D(G(z)))] 

 
(3) 

 
where x is the real image and 𝐷(𝑥) is the probability that it is the real image. 𝐺(𝑧) − 𝑥 is the 

difference between the image 𝐺(𝑧) generated by the Generator and the real image 𝑥, which also 



allows the Discriminator to learn the shape of the image. The Generator generates images that 
look like the real image through 1 − D(G(z)).  

Since the discriminator is responsible for distinguishing between real and generated data, it 
does not recognize the shape of the generated data. However, with formula (3), the discriminator 
takes shape into consideration. This technique not only ensures the reliability of the data but also 
allows for a more accurate understanding of the image shape information. This mitigates the 
mode collapse problem and mitigates the instability problem by slowing down the learning speed 
of the Discriminator to compete with the Generator. 
 

Figure 2: Training loss of the Generator and Discriminator for each model and dataset. 
 
 

Figure 3: FID and IS graphs for each model and dataset. 
 
 
 



Table 1 
FID and IS tables for each model and dataset. 

MODEL 
Emoji CIFAR-10 

FID IS FID IS 

DCGAN 0.62 ± 0.13 0.13 ± 0.01 4.60 ± 4.21 0.22 ± 0.02 
DeLiGAN 0.34 ± 0.05 0.15 ± 0.01 0.06 ± 0.02 0.26 ± 0.03 
Proposed GAN 0.23 ± 0.05 0.17 ± 0.01 0.02 ± 0.01 0.29 ± 0.03 

4. Experiments 

The experimental environment in this paper is as follows: We used PyTorch version 1.12.1, the 
optimization algorithm is Adam [8], the learning rate is 1e-2, and the batch size is 32. Figure 2 
shows the training loss graph for each dataset and model, and we can see that our proposed GAN 
is more stable in all datasets compared to other models. 

4.1.  Metrics 

For the evaluation, we used Fréchet Inception Distance (FID) [6] and Inception Score (IS) [7]. FID 
is a metric that estimates the similarity of the distribution of real and generated data and 
calculates the distance, indicating how similar the two data are. The equation for FID is as follows: 
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where |𝜇 − 𝜇𝑤| is the feature vector mean of the true image distribution and the generated 

image distribution. ∑ + ∑  𝑤  is the sum of the true and generated image covariance matrices, and 

(∑ ∑  𝑤 )
1

2is the 
1

2
 square root matrix of the two covariances.  Add |𝜇 − 𝜇𝑤| to the value of Tr to get 

the FID. The lower the FID, the more similar the generated data is to the real data. 
IS is another metric used to evaluate the quality and diversity of generated data, predicting the 

class of generated data using the Inception Network. The equation for IS is as follows: 
 

𝐼𝑆 = 𝑒𝑥𝑝 (𝔼𝑥𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))) (5) 

 

where 𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦)) represents the Kullback-Leibler divergence between the predicted 

image distribution for image 𝑥  and the true image distribution. This quantifies the predictive 
value of the difference between these two probability distributions. The higher the IS, the better 
the performance in terms of quality and variety of data generated.  

The above metrics were used to compare the performance of each model and used to 
demonstrate the performance of the proposed GAN. 

4.2.  Dataset 

In this paper, we conducted experiments using the Emoji Dataset and CIFAR Dataset. The Emoji 
Dataset comprises 402 positive classes and 402 negative classes, totaling 804 images. The CIFAR-
10 dataset consists of 10 classes (airplane, car, bird, cat, deer, dog, frog, horse, ship, truck), with 
6,000 images per class, resulting in a total of 60,000 images. However, for this research, 1,000 
images were used. 
 
 



4.3.  Results and Performance 

In Figure 3, as well as in Table 1, the IS and FID values for each dataset and model are displayed. 
Figure 3 reveals that our proposed GAN has the optimal performance, boasting the lowest FID 
values and the highest IS. In the CIFAR-10 dataset of Figure 3, the FID of DCGAN is 
overwhelmingly large in Figure 3-(a), so we exclude it and show the FID of DeLiGAN and our 
proposed GAN in Figure 3-(b). 

When compared to DCGAN, our proposed GAN exhibits a 62.90% reduction in FID and a 30.77% 
increase in IS on the emoji dataset, as well as a 99.57% reduction in FID and a 31.82% increase 
in IS on the CIFAR-10 dataset. In comparison to DeLiGAN, our proposed GAN shows a 32.35% 
reduction in FID and a 13.33% increase in IS on the emoji dataset, and a 66.67% reduction in FID 
and an 11.54% increase in IS on the CIFAR-10 dataset.  

Examining the generated images in Figure 4, it becomes visually evident that our proposed 
GAN outperforms others by generating images that are not only clearer but also more diverse. 
This underlines that the model, enhanced with the proposed technique and compared against 
DCGAN and DeLiGAN in experiments, produces exceptionally high-quality images that bear a 
striking resemblance to real images. 

 

Figure 4: Generative image for each model and dataset. 

5. Conclusion 

In this paper, we propose Common Feature training (CFT), Mean rescaling (MR), and edge loss to 
resolve the learning instability problem and mode collapse problem. 

Common Feature training (CFT) is intended to train the latent vector z on the overall shape of 
the data. This causes the generator to learn a common feature to compete with the discriminator.  
whereby mitigates the instability problem. 

Mean rescaling (MR) is a technique to mitigate the mode collapse problem caused by a latent 
vector z sampled from a distribution with the same mean. Mitigate the mode collapse problem by 
sampling latent vectors z with different means. 

Edge loss is a loss function that adds the difference between the edge of real data and the edge 
of generative data to GANs loss and does not simply classify whether it is real or generative, but 



also learns image shape information to generate various images and slows down D's learning 
speed. whereby mitigate the mode collapse problem and instability problem. As a result, Figure 2 
shows that the proposed GAN trains reliably compared to other models, and Figure 3 shows that 
our proposed GAN produces higher quality and more diverse images compared to other models. 
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