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Abstract
Because Machine Learning (ML) system development has some unique characteristics that distinguish
it from traditional software development, it requires specialized processes and tools. In order to be
able to understand the specific elements of processes for developing ML systems, we conducted expert
interviews.

Based on the analysis of the interviews we were able to identify key artifacts, activities, sub-processes,
and decision points. Furthermore, we were able to identify some important SF that influence the concrete
development process of an ML system. These and four process variants derived from them are presented
and discussed.

These results provide valuable insights into the challenges and considerations associated with ML
system development and can serve as a basis for developing new development process frameworks for
ML systems.
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1. Introduction & Related Work

Developing and maintaining a Machine Learning system (ML system for short) is difficult and
expensive. ML development projects (ML projects for short) have several unique characteristics
that distinguish them from traditional software development, which results in a need for
specialized development processes.

A widely used process framework for structuring ML projects is CRISP-DM, which was
originally designed for data mining projects [1]. It focuses on the six phases of a data mining
project: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation,
and Deployment. Another well-known process framework is the Team Data Science Process
(TDSP), developed by Microsoft to guide data science projects from start to finish [2]. Similar to
CRISP-DM, the TDSP is divided into five main stages: Business Understanding, Data Acquisition
and Understanding, Modeling, Deployment, and Acceptance. It not only addresses each stage,
but also provides recommendations for project structure, analytics, and storage infrastructure.

Nascimento et al. [3] performed a case study to identify challenges in the development
process of ML systems. The authors identified that inexperienced developers work in a rather
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undefined process, lacking guidance in the tasks they have to perform. The ad-hoc character of
the performed development process also became apparent in a meta-summary study published
by Nahar et al. [4] covering experiences from more than 4000 practitioners.

Current process frameworks are rather generic and may not apply to all kinds of ML projects.
A case study by Nahar et al [5] points to the need for at least three process variants, as the
development process of ML systems can be classified as ”model-first”, ”product-first”, or ”parallel
development” depending on which artifact is the focus at the beginning of the project.

In general, each ML project takes place in a context that is determined by, e.g., the domain,
the selected technologies, or the available resources. That is, why a single development process
cannot be applied to all kinds of projects [6]. Thus, a given process framework has to be tailored
and adapted to the given project and its context [7, 8, 9, 10, 11]. The lack of research on what
development processes and practices work best in different development project contexts is also
mentioned in [4]. The context of a development project can be characterized by project-specific
characteristics and constraints. Clarke et al. introduced the notion of situational factors in [12]
to name those factors. The authors further propose a reference framework for development
processes defining 44 situational factors, each of which is divided into 8 classes. Example
situational factors are team size, changeability of requirements, quality of the application, or time
to market.

To our knowledge, no research has been published describing specific situational factors
for the ML development process. Therefore, our research aims to answer this question and
investigate how these situational factors influence the execution of the process. To this end, we
conducted expert interviews to identify such situational factors and their impact on the process.

The paper is structured as follows: In Section 2 we will describe the empirical setup of the
conducted expert interviews. Following this, in Section 3 we will explain the elements of the
ML development process, which we identified based on the the evaluation of the interviews.
Next, in Section 4 we will analyze the results of the interviews, i.e., extracted situational factors
and their impact on the process. Finally, we will summarize the results and set out the work
planned for the future.

2. Empirical Setup of Expert Interviews

Expert interviews is a qualitative researchmethodmainly used to gather in-depth and specialized
knowledge from individuals who possess extensive expertise in a particular subject, or area of
interest [13]. Because experts are frequently unaware of the significance of their actions, it is
not possible to directly access expert knowledge; instead, it must be reconstructed from the
experts’ statements.

We conducted expert interviews with experienced developers in the software industry to
gain a more detailed understanding of the development process of ML systems and to analyze
whether there are situational factors specific to ML system development that lead to different
processes.



2.1. Participants

We selected nine participants from three German companies and one Swiss company based
on their LinkedIn profiles and recommendations. All participants have at least two years
of experience in developing ML systems. Eight of them work with Python exclusively, one
participant uses both Python and R. Three of the participants hold high-level positions such as
Head of ML or Data Science, and one is a team leader. All interviewees agreed to participate
voluntarily.

2.2. Methodology

We conducted individual interviews with each participant via Zoom. The duration of the
interviews varied, lasting between 30 minutes and one hour.

At the beginning of the interview, the participant was informed about the objectives and how
the data would be collected and used. The interview was then conducted as a semi-structured
interview, with two prepared questions but also allowing for deviations when interesting issues
were raised by the participants.

Q1: Could you describe your process for developing an ML system?
Q2: Do you continue to perform experiments after deploying the ML system? If so, how do

you go about doing this?

The first question aims to identify the activities and sub-processes involved in the development
of an ML system. The second question aims at the potential round-trip character of a process.

2.3. Data Analysis

The audio of each interview was recorded and transcribed afterward. To understand and analyze
the processes described, we created a visual representation by extracting activities from each
interview and modeling them as a UML activity diagram. We then iteratively reviewed the
diagrams and revised or split them as we continued with more interviews.

2.4. Traceability of Results

The questions and transcripts of each interview as well as an overview of all questions and
answers are provided on Zenodo 1 as an Excel table. This table contains all answers either by
participant (rows) or by question (columns).

2.5. Threads to Validity

As usual, we consider the internal and the external validity.

1URL: https://zenodo.org/records/10020777?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5N2NiYjFmLWZiYzUtNGMxYS1hZjBmLTc0MjAwNjczMjM4OCIsImRhdGEiOnt9LCJyYW5kb20iOiIxMzM1M2QwODcxODk3OGQyZmIzMDNhNDAzYjViYWExMyJ9.
6KkWqe6Jgf3fZwTTnJlR4katX0yKxNvNq7XgPie61sFjFkm6Cly2PHwKS7Zg07iIGubVDfBdTXnLHwT6GLNCPg

https://zenodo.org/records/10020777?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5N2NiYjFmLWZiYzUtNGMxYS1hZjBmLTc0MjAwNjczMjM4OCIsImRhdGEiOnt9LCJyYW5kb20iOiIxMzM1M2QwODcxODk3OGQyZmIzMDNhNDAzYjViYWExMyJ9.6KkWqe6Jgf3fZwTTnJlR4katX0yKxNvNq7XgPie61sFjFkm6Cly2PHwKS7Zg07iIGubVDfBdTXnLHwT6GLNCPg
https://zenodo.org/records/10020777?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5N2NiYjFmLWZiYzUtNGMxYS1hZjBmLTc0MjAwNjczMjM4OCIsImRhdGEiOnt9LCJyYW5kb20iOiIxMzM1M2QwODcxODk3OGQyZmIzMDNhNDAzYjViYWExMyJ9.6KkWqe6Jgf3fZwTTnJlR4katX0yKxNvNq7XgPie61sFjFkm6Cly2PHwKS7Zg07iIGubVDfBdTXnLHwT6GLNCPg


• Internal Validity: Threats to internal validity refer to factors that may affect the relia-
bility of the results obtained in a study. Each participant received the same introduction
and questions from the same interviewer. Since the interviews were designed as semi-
structured, the participants were sometimes asked to clarify or elaborate on a certain
aspect. In addition, the participants could of course ask questions if they did not under-
stand a question.

• External Validity: The external validity determines how widely the results can be
generalized. One potential threat to the external validity is the small sample size. While
we made efforts to recruit a diverse group of volunteers, the pool of potential participants
was limited due to the time and openness required for participation. All participants are
from a similar geographical region and are partially colleagues in the same company.
However, three of these companies are IT service providers, whereby each participant
worked or even led teams on different ML projects for various customers. A larger sample
size would have increased the generalizability of our findings.

3. Identified Process Elements

Based on the evaluations of the expert interviews conducted, we name and describe in this
section all artifacts that are created and used in the development of an ML system. Furthermore,
we describe all identified activities and sub-processes and also the central decision points
mentioned in the interviews.

3.1. Artifacts

The following major artifacts are created and used in ML projects.

• ML System: An ML system is a software system based on an ML model. When an ML
system operates on live data providing decisions or predictions, it is called a productive
ML system.

• Experimental Code: Given an ML problem, developers explore different data processing
techniques and ML algorithms to find a suitable solution. Since the focus is on finding a
solution, the developed usually code does not follow best practices or clean code guidelines.
Usually, the experimental code is available in the form of a Jupyter Notebook, providing
explanations for the selected solution along the rather monolithic code.

• Initial Model: An initial (ML) model is a rather naive model that is produced in experi-
mentation and does not yet deliver sufficient model performance metrics or leaves room
for improvisation.

• Production-ready Code: As the name suggests, production-ready code can be run in the
productive ML system. Thus, it has to meet specific quality standards, e.g., being reliable,
maintainable, and reusable. The production-ready code follows best practices and coding
guidelines, is tested, and is well-documented.

• Model Package: A model package is a collection of files and resources used to construct
an ML model and make it available for use in an ML system. The package may also



include documentation or instructions on how to use the model. Model packages may be
provided in a variety of formats, such as Python packages.

• Placeholder Model Package: A placeholder model package does not serve as a basis
for further model package development and contains a dummy model and scripts. An
example of such a script is an ML model prediction script which just returns random
values as predictions.

• Model Serving Infrastructure (MSI): An MSI provides the tools needed to develop and
deploy an ML model to operate on live data. A central component of an MSI is the data
infrastructure, e.g. using an ETL-pipeline, which extracts data from a source, transforms
it, and loads the results to a destination. The MSI further includes the possibility to
integrate and switch out ML models, e.g., by providing different REST endpoints for
training or prediction services. Furthermore, the MSI may provide means to monitor the
performance of the ML model and to build/deploy the model automatically by an ML
pipeline if necessary.

• Model Performance Metrics: To evaluate how well an ML model is performing on data, dif-
ferent model performance metrics are continuously computed, such as accuracy, precision,
or recall.

3.2. Sub-processes and Activities

The artifacts are created through many different activities during an ML project. We have
grouped related activities into five sub-processes, that serve as building blocks to design a
concrete ML development process.

Experimentation

Our analysis clearly shows that the experimental code solving the ML problem is always
developed by a similar set of activities, adhering to the CRISP-DMmodel. Thus, experimentation
(see Fig. 1a) is the central sub-process of ML projects consisting of the activities Business and
Data Understanding, Data Preparation, Modeling, and Evaluation.

Productization

To make an ML model usable, it has to be integrated into an MSI. However, the experimental
code is not ready for integration, as it is usually developed as a Jupyter Notebook. It requires
additional effort to make it suitable for integration into the MSI. This sub-process, called
productization and depicted in Figure 1b contains the following two major activities:

• Refinement: To turn experimental code into production-ready code, the code must be
cleaned and refactored into modular and reusable pieces. This is a prerequisite for making
the code more maintainable and scalable. Additionally, the code must be prepared for its
target environment. For example, if parallel processing is required, certain functions may
need to be rewritten using a library that supports it. To ensure the code is of high quality,
it is also important to add automated tests.
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Figure 1: Overview of sub-processes as process building blocks (UML activity diagrams)

• Internal Release: To facilitate the use of the ML model in various contexts, the production-
ready code as well as explanations and usage instructions need to be provided in a way
that the code is easily integrated into applications or pipelines. This can be done through
scripts, packages, or containers. Furthermore, the crafted datasets and models need to be
stored in appropriate storage solutions. We call the aggregated output of this activity a
model package.

MSI Development

An MSI allows for the efficient and seamless deployment, hosting, and usage of an ML model.
As this is an engineering task and requires no exploratory research, conventional software
development methods and techniques are applied. This sub-process is depicted in Figure 1c
with exemplary engineering activities.

Operationalization

To bring an ML model into operation the following activities must be performed (see Fig. 1d):



• Integration: The ML model is integrated into an MSI, e.g. an ML pipeline, web service, or
model deployment platform, to create an ML system.

• Deployment: Next, the productive ML system is made available to end-users and set into
a productive mode. To this end, infrastructure such as servers and cloud systems have to
be provisioned.

Evolution

When a productive ML system is operating, it needs to be maintained like any other software
(see Fig. 1e).

• Monitoring: The performance and behavior of the deployed ML model are monitored
to detect ML model degradation early on. This includes tracking model performance
metrics such as accuracy, precision, and recall.

• Maintenance: If errors are detected, the productive ML system must be corrected. At
certain intervals, the model has to be retrained to improve its performance. Retraining
can even be automatized and just requires expert supervision.

3.3. Decision Points

We identified three key decision points occurring in all analyzed ML projects that have a
significant impact on the process structure:

• ML Model Revision: There are several reasons why developers may return to experimen-
tation after the productive ML system is deployed.

– New requirements may arise, as the business or project evolves
– Weaknesses are detected, based on monitoring or feedback from stakeholders
– Additional data sources become available
– Changes in data properties, e.g. distribution, need to be considered
– New ML algorithms/methods need to be explored

For these reasons, developers may choose to make only minor adjustments to the ML
model, such as fine-tuning some parameters, or they may choose to completely revise the
ML model.

• Feasibility: Stakeholders must decide whether the ML problem can be solved feasibly
based on the knowledge and code from the experimentation sub-process. In doing so,
stakeholders must also consider the available resources and technical capabilities.

• End of Evolution: Monitoring and maintenance are activities that need to be performed.
As a result, the ML system keeps evolving until it is no longer used.

4. ML Development Process Variants

Analyzing the information gained from the expert interviews, it became apparent that ML
projects are organized based on the identified sub-processes but in different process variants
which depend on some situational factors.



First, we will introduce the identified situational factors and their impact on the process.
Then four example process variants mentioned by the interviewees will be presented.

4.1. Situational Factors

We extracted the following three situational factors with their expressions that influence the
concrete performed ML development process (see Table 1).

• Need for Proof of Concept (POC): In some cases, it can be uncertain whether a given
problem can be effectively solved using ML methods at the start of a project. To address
this, a POC may be developed to confirm the feasibility of a particular ML solution or
gather feedback from domain experts or customers. The POC can serve as the basis for
determining whether to proceed with the project and which approach to take.
On the other hand, when developers are faced with a familiar problem or have access
to solutions for similar problems, they may be able to adapt an existing solution to
the given problem without the need for a POC. In these cases, the developers can use
their experience and knowledge to estimate feasibility, with varying levels of confidence
depending on the specifics of the problem.

• Product Development: When starting an ML project, it is not always clear how the
problem at hand can best be solved using ML methods especially if a potential solution
provides business value. This leads to a decision point where all stakeholders of the
project should continue.

• Confidence in Feasibility: If the confidence is high that a potential solution is technically
realizable and will bring business value, it saves time to start product-related activities,
such as developing the MSI, early on. Thus, the MSI can be developed in parallel to
experimentation, or even as the first step.

• Team Structure: In the reported projects, developers were members of interdisciplinary
teams of varying sizes, consisting of scientific and engineering personnel. In larger
companies, teams may be divided. The scientific team develops experimental code which
is then handed over to the engineering team for productization.

Table 1
Situational factors and expressions

Situational factor Expressions
Need for Proof of Concept yes no
Product Development yes undecided
Confidence in Feasibility high low
Team Structure small large divided

4.2. Implications on the Process

The primary situational factor affecting the process is the need for a POC. The development of
the MSI and overall product-related activities only make sense if the feasibility is established.



The determining factor for developing in parallel is the team structure. If the team is small
and includes both science and engineering skills, then the team can work on either the MSI or
the ML model. In a larger team, both can be developed in parallel.

If it was planned to build and deliver a productive ML system, developers start refining
experimental code early and are more likely to try to build the model package incrementally.
This leads to frequent switching between the experimentation and productization sub-processes.
Besides that, the possibility to continuously switch between these sub-processes depends on
the need for a POC and having an interdisciplinary team. If the team is divided each handover
creates an overhead, making frequent cycles very time-consuming.

4.3. Process Variants

Based on these situational factors and their expressions, we identified four different process
variants which are described below. An overview of the variants regarding the combinations of
situational factors is depicted in Table 2.

Table 2
Observed Process Variants

Need for Proof of Concept yes yes no no
Product Development undecided yes yes yes
Confidence in Feasibility low low low high
Team Structure divided large large small

Variant A B C D

Variant A

• Situational Factors: POC: yes | Product: undecided | Confidence: low | Team: divided
• Description: The data science team began experimenting with an ML solution in Jupyter
Notebook. If no sufficient solution is found, the project is closed. Otherwise, the experi-
mental code is transferred to scripts and refined in the productization sub-process. As
a productive ML system can now be developed, the engineering team starts to develop
the MSI. Next, the created model package and the MSI are integrated and deployed into
production. If weaknesses are identified through monitoring, the model is refined. In
some cases, retraining is sufficient. In other cases, experimentation continues in the
initial Jupyter Notebook until an improvement is reached, with changes subsequently
integrated into the productive ML system.

Variant B

• Situational Factors: POC: yes | Product: yes | Confidence: low | Team: large
• Description: First, the developers explore different approaches to establish a promising
solution. An initial ML model can be shared once a promising approach is identified
so that product-related activities can be carried out. With an initial model, the MSI
development can begin, and integration with the initial ML model can be carried out.
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Figure 2: Process variants A and B represented by UML activity diagrams

Meanwhile, developers alternate between experimentation and refinement activity, shar-
ing refinements of newly acquired capabilities immediately. Overall, the model package
is developed incrementally, and the initial model can be replaced in the system iteratively
as the model is improved.

Variant C

• Situational Factors: POC: no | Product: yes | Confidence: low | Team: large
• Description: Experimentation andMSI development are executed in parallel from the start.
If the MSI is completed before the model package is available, a placeholder package is
used temporarily, so that the succeeding activities of operationalization and evolution can
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Figure 3: Process variants C and D represented by UML activity diagrams

be performed early. The model package is developed incrementally, with each new version
being integrated into the productive ML system. After the integration of a satisfactory
model package, the system is monitored and the ML model is revised, if necessary.

Variant D

• Situational Factors: POC: no | Product: yes | Confidence: high | Team: small
• Description: The MSI and a placeholder model package are built first and are integrated to
construct an initial productive ML system. The remaining time is dedicated to enhancing
the ML model and optimizing its performance metrics. The ML model in the productive
ML system is replaced iteratively as improvements are made. This process variant is
especially beneficial when the schedule is heavily constrained.



4.4. Discussion

The extracted situational factors lead to different process variants. The placement of the sub-
process MSI Development depends heavily on the necessity of a POC. Furthermore, the team
structure determines the level of parallelization and iterations.

According to the interviews, the applied process depends on the personal experience of
ML project managers, developers, or shared experience within the company. Often, the de-
scribed situational factors are considered, but the process is essentially performed intuitively by
experienced project managers.

This in no way corresponds to a systematic engineering approach. An inexperienced project
manager lacks the experience to shape the process. Therefore, further research is needed to
define guidelines and frameworks for ML development processes that clearly describe activities,
roles, artifacts, and phases based on best practices. Such guidelines or frameworks can then be
used to execute ML projects and reduce the risk of project failure.

5. Conclusion & Future Plans

In this paper, we investigate if there are situational factors that affect the software development
process of ML systems in a way that leads to process variants. To this end, we conducted expert
interviews that surveyed developers who have a lot of experience running or even leading ML
projects. The analysis of the information collected enables us to identify artifact, activities,
sub-processes, decision points, and several situational factors that lead to different process
variants.

Project managers with several years of experience choose a process more or less intuitively.
To guide ML project managers and teams without that experience, an ML development process
framework is needed. Based on situational factors, it should support ML project managers in
the design of their development processes and also provide best practices and guidelines. This
is the only way to make ML projects plannable and avoid risks that can be traced back to an
incorrect or inadequate process.

To investigate this further, we plan to conduct a systematic literature review to extract more
situational factors affecting the software development process of ML systems. Based on that, a
concept for a reference framework will be constructed.
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