
Measuring Modularity in JavaScript-Based
Microservices from Software Architectural
Perspectives
Claudia Cahya Primadani1,∗, Seonah Lee1,2,∗

1Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju-si,
Gyeongsangnam-do, CO 52828 Republic of Korea
2Department of Aerospace and Software Engineering and Department of AI Convergence Engineering, Gyeongsang
National University, 501 Jinjudaero, Jinju-si, Gyeongsangnam-do, CO 52828 Republic of Korea

Abstract
As businesses embrace concepts for rapid, scalable, and maintainable software systems, microservices
adoption is gaining traction. Meanwhile, the current work on software architecture metrics focuses
mainly on measuring modularity metrics in object-oriented programming, particularly in the Java
environment. To address this gap, we propose a method for measuring fundamental quality attributes
coupling and cohesion to evaluate architectural modularity specifically in the context of JavaScript-based
microservices. In addition, we conduct a case study with coupling and cohesion measurement methods
for evaluating architectural modularity in JavaScript-based microservices. We finally discuss future
directions of refining these metrics in the dynamic context of microservices design.

Keywords
software architecture, microservices architecture, software architecture metric

1. Introduction

The introduction of microservices architecture into the industrial technological landscape of soft-
ware development has altered the way applications are developed and deployed. Microservices
provide outstanding flexibility and scalability, allowing businesses to construct sophisticated
systems built of loosely connected, independently deployable services [1]. Within this paradigm,
JavaScript has become a common language for both frontend web development and backend
development, and its role has expanded to include microservices implementation. As the
implementation of microservices in JavaScript environments grows, it becomes increasingly
important to evaluate the architectural quality of these systems.

However, previous research on software architecture metrics primarily focused on object-
oriented programming (OOP) languages such as Java. For example, Panichella et al. (2021)
investigated structural coupling in 17 Java-based open-source projects that used docker in their
implementation [2]. Milić et al. (2022) assessed the quality of software architecture in Java-based
Jakarta EE monolithic and microservice software architectures for architecture optimization

ISE 2023: 2nd International Workshop on Intelligent Software Engineering, December 4, 2023, Seoul
∗Corresponding author.
Envelope-Open cc.primadani@gmail.com (C. C. Primadani); saleese@gnu.ac.kr (S. Lee)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:cc.primadani@gmail.com
mailto:saleese@gnu.ac.kr
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

[3]. Zhong et al. (2023) measured coupling in 15 Java-based open-source projects with a little
business function that used Spring Cloud and used the most recent version of each project [4].
Abadeh et al. (2023) introduced modularity vulnerability to assess the impact of module failure
on the modularity factor on 8 C# project designed as an object-oriented programming language
[5].

To narrow down the gap between the practices (e.g., implementation by Javascript) and the
metrics (e.g., metrics for Java), we propose a method for measuring coupling and cohesion
to evaluate architectural modularity, specifically in the context of JavaScript-based microser-
vices. Modularity is regarded as a property that influences software robustness [5]. Coupling
and cohesion indicate the modularity or independence of services or modules, as well as the
maintenance effort [2, 4, 6]. Measuring those factors will assist developers in determining
whether changes in specific modules will have an impact on other modules [1]. For cohesion,
we adopt the Chidamber and Kemerer Lack of Cohesion in Methods (LCOM). For coupling,
we measure abstractness and instability values. We then visualize the balance between those
values to understand whether the system is well-designed. We apply our metrics to an exampled
micro-service system, a so-called ticketing system, as a case study.

The rest of this paper is organized as follows: Section 2 introduces the background of
architectural styles and technology used. Section 3 describes the implementation of architecture
and the metric used to evaluate it. Section 4 reports the results. Finally, Section 5 concludes the
findings and discusses future work.

2. Background

In this section, we brief the architectural styles and technologies employed in this research.

2.1. Microservices

Microservices are an architectural concept that divides complicated software systems into
smaller, self-contained parts that can be deployed independently without impacting the rest of
the system, allowing for more flexibility and agility. Furthermore, because of the small size of
the units and the independence of the services, they can be deployed frequently and quickly to
gather input and make adjustments to create a better system [7, 8, 2]

The main characteristics of the Microservices Architecture (MSA) are:

1. Decomposition: A complicated system can be divided into more manageable compo-
nents, which facilitates development, maintenance, and scalability build based on business
capabilities [7, 8, 9].

2. Independence: Each microservice is self-contained, having its own code, data storage,
and, in certain cases, a database. The services may be replaced, upgraded, and scaled
without interfering with other services. This autonomy enables independent development,
deployment, and scalability [7, 8, 9].

These characteristics make microservices architecture appropriate for software systems with
complexity, dynamic requirements, and rapid scalability.

Microservices provide advantages but often create obstacles. As the system expands, it
becomes increasingly important to strike a balance between coupling and cohesiveness. Because
microservices are supposed to be loosely coupled, the complexities of maintaining low coupling
while retaining strong cohesion become increasingly apparent [10].

Microservices architecture also poses a cost management problem owing to higher infrastruc-
ture, operational, and development expenses. It is difficult to allocate expenses to services and
teams. Limiting expenditures while preserving system performance is a delicate balance [7, 10].

2.1.1. JavaScript

Because of its adaptability and widespread acceptance, JavaScript has become a popular choice
for deploying microservices in modern software development. JavaScript is an essential pro-
gramming language for modern software applications due to its flexibility in implementing
object-oriented or functional programming paradigms, a rich ecosystem of libraries, frameworks,
and tools, and widespread use in software development, including microservices and serverless
applications.

Object-Oriented Programming (OOP) and Functional Programming (FP) are two separate
paradigms in JavaScript. OOP is all about constructing objects that contain data and functionality,
and it frequently involves inheritance via prototypes. This method provides structure but can
result in complicated inheritance hierarchies. In contrast, functional programming stresses
pure functions and immutable data, increasing predictability and modularity. Because of the
adaptability of JavaScript, developers may combine various paradigms, selecting the optimal
technique for their project’s goals and coding tastes.

Versatility of JavaScript as an object-oriented or functional programming language makes
it perfect for implementing microservices. Developers can tailor their approach to meet the
demands of their services, ranging from standard object-oriented structures to data-driven
paradigms. This flexibility, however, can lead to compatibility concerns and complicated com-
munication across services, demanding well-defined interfaces and communication protocols
in order to preserve architecture integrity and cohesiveness. Therefore, measuring the cou-
pling and cohesion is really important to asses the adaptation of microservices and get insight
about maintenance effort, and warn the developer whether changes in service will harm the
other services. Furthermore, JavaScript processes incoming requests asynchronously, with a
single-thread processing model. For parallelized performance, many processes are required.
Microservices frequently employ many Docker containers for scaling up or scaling out, putting
additional strain on computers [11, 8]. Furthermore, the developer often orchestrates the con-
tainers using kubernetes which enables dynamic load balancing, self-healing, efficient resource
allocation, and resilience, facilitates application scalability, and lets developers work with diverse
programming languages and technology stacks [12].

3. Experimental Setup

3.1. Microservices Implementation

We employed a microservices architecture in our trial setup, with JavaScript as the major pro-
gramming language. Docker containers were used to encapsulate each microservice, providing
consistent and isolated settings. Kubernetes, a container orchestration technology, played a
critical role in managing, growing, and orchestrating these microservices.

3.1.1. Ticketing System

In our studies, we used a ticketing system1 as a case study to demonstrate the fundamentals
of microservices architecture. Figure 1 illustrates the architectural design, illustrating a clear
and comprehensive picture of the structure and component interactions of the ticketing system.
The system has five distinct services, and each service has its own set of functionality, as shown
in Table 1

JavaScript was used to develop the systems. We utilize express.js as the backend framework.
The system is built as a Docker container and is orchestrated using Kubernetes.

In this study, we manually analyze the code for each function or class to assess the additional
library use as well as the inter- and intra-service dependencies that will be counted as efferent
coupling. The sample of intra-service and inter-service dependencies from the ticketing system
is shown in Figure 2. As shown in Figure 2, the listener class or function from the services
is dependent on the publisher class or function from other services considering inter-service
dependency. The listener will be triggered to carry out their function if the publisher has an
execution function. The listener class will be impacted by modifications to the publisher’s
code or design. This coupling should be noticed by the developer. Consequently, even though
inter-services are not directly imported from the same class or function, they are nevertheless
computed as efferent couplings.

1https://github.com/primakashi/ticketing

Figure 1: Design Architecture Microservices: Ticketing System

Table 1
List of Services in Ticketing System

No. Name of Ser-
vices

Function / Class Number of Function
/ Class

1 Auth Signup, signin, signout, currentUser, password 5
2 Tickets indexTicket, createTicket, showTicket, updateTicket, Or-

derCancelledListener, OrderCreatedListener, TicketCre-
atedPublisher, TicketUpdatedPublisher

8

3 Payments createCharge, OrderCancelledListener, OrderCreatedLis-
tener, PaymentCreatedPublisher

4

4 Orders indexOrder, newOrder, showOrder, deleteOrder, Expi-
rationCompleteListener, PaymentCreatedListener, Tick-
etCreatedListener, TicketUpdatedListener, OrderCan-
celledPublisher, OrderCreatedPublisher

10

5 Expiration expirationQueue, OrderCreatedListener, ExpirationCom-
pletePublisher

3

3.2. Modularity Metric

We evaluated the microservices architecture using the modularity measure of the software
architecture. This metric was a critical indicator of the system design. By evaluating the
modularity of our microservices, we received significant insights into the architecture capability
to improve maintainability, reusability, and scalability. This metric also ensured that the system

Figure 2: Illustration inter- and intra-service dependencies

components were properly separate and were capable of operating independently [12].

3.2.1. Software Architecture Metrics

Software architecture metrics are critical elements of assessing and measuring the design
quality and performance of a software system. These metrics give objective assessments of
architectural characteristics like modularity, complexity, and connection. Developers and
architects may make knowledgeable judgments, uncover possible difficulties, and optimize
the design to fulfill particular goals and needs by examining these data. In essence, software
architectural metrics are critical for guaranteeing software system dependability, maintainability,
and scalability. Our primary focus in this study is on the modularity measure in the context of
software architecture. We carefully studied how effectively the system’s components could be
divided into self-contained modules and evaluated the degree of independence these modules
demonstrated. Modularity describes a logical grouping of similar code, such as classes in an
object-oriented language or functions in a structured or functional language. Most programming
languages have techniques for modularity [13, 14].

This study will specifically assess modularity by assessing the amount of coupling and
cohesion within the software architecture. Measuring coupling allows us to examine the
interdependence of distinct modules, whereas measuring cohesion determines the strength of
logical linkages inside specific modules.

3.2.2. Cohesion

Cohesion defines the degree to which a module’s elements are contained inside it, demonstrating
their relative connection. A coherent module should be packed together since splitting it up
would necessitate coupling it through calls across modules [14].

We assess cohesion using the LCOM metric. The Chidamber and Kemerer Lack of Cohesion
in Methods (LCOM) metric assesses the structural cohesiveness of a module, which is typically
a component [14]. The metric determines if a class breaches the single-responsibility principle
by constructing a dependency network between all methods and fields. It counts the number
of components that are not linked. In an ideal environment, this value would be 1, but if it
is greater, the class can be divided into smaller ones [15]. The LCOM is calculated using an
equation that is described in equation 1

𝐿𝐶𝑂𝑀 = { |𝑃| − |𝑄|, 𝑖𝑓 |𝑃 | > |𝑄|
0 otherwise

(1)

P is the number of methods that do not access shared variables while Q is the number of
shared variables.

3.2.3. Coupling

Coupling in software design refers to the degree of interdependence or connection between
distinct components or modules inside a system. It measures how tightly these components
rely on one another. Strong coupling indicates considerable dependency, while weak coupling

Figure 3: Optimal balance of distance metric

shows greater independence. Coupling can be measured by calculating abstractness, instability,
and distance from the main sequence.

Abstractness is defined as the ratio of abstract artifacts (classes, interfaces) to concrete objects
(implementation). It compares abstraction to implementation. No abstractions resulting in a
single function, while too many abstractions make it difficult for developers to comprehend
how things work together [14]. Abstractness is calculated by equation 2. In equation 2, 𝑚𝑎 is
the number of abstract element while 𝑚𝑐 is the number of concrete objects.

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
∑𝑚𝑎

∑𝑚𝑐 (2)

The instability metric assesses the volatility of a code base. High instability suggests a higher
likelihood of breaking pieces of code as a result of intense coupling, such as when a functionality
is distributed to numerous classes [8]. Instability measured by afferent coupling and efferent
coupling. Efferent coupling is the number of outside modules used by the current module, or it is
simply the number of outside modules or libraries imported by the current module. Meanwhile,
afferent coupling is the number of outside modules that use current module [10, 14]. Instability
scores are measured using equation 3.

𝐼 𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐸𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

𝐸𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 𝐴𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔
(3)

The distance metric expects an ideal balance of abstractness and instability, allowing devel-
opers to measure the distance from the main sequence metric for classes that are close to this
idealized line illustrated in Figure 3

In an ideal scenario, a well-structured module or service should indeed exist in the ”green
area” , which represents a state of optimal balance of abstractness and instability [14]. This
zone signifies that the module maintains just the right level of interconnection with other
components, neither overly entangled nor excessively isolated.

Figure 4: Result of LCOM evaluation

4. Experiment Result

4.1. Cohesion

As for cohesion metric, Figure 4 illustrates the result of cohesion evaluation by LCOM. Figure 4
shows a remarkable pattern in which all services earn an LCOM score of 1. This assessment
demonstrates that the services portrayed have a consistent and unified design. Services with
an LCOM score of 1 are frequently easier to understand, manage, and alter since they have a
concentrated and self-contained structure.

The framework utilized in this ticketing system emphasizes the Single Responsibility Principle
(SRP) while creating routing APIs to guarantee that each route handler function inside the
system is focused on a single, well-defined responsibility. This not only improves cohesiveness
but also simplifies maintenance and encourages reusability.

4.2. Coupling

We discovered that the efferent coupling exceeded the afferent coupling in our coupling measure
evaluation illustrated in Figure 5 (a), suggesting that there were more dependencies outside the
system components than within. The integration of external libraries into the codebase, which
naturally produced stronger efferent coupling by generating dependency on other resources,
was the fundamental cause of this difference. Despite the external dependencies, the overall
system instability remained substantial, emphasizing the importance of careful control of these
external dependencies.

However, in our coupling metric assessment, we received a 0 score in abstractness, according
to Express.js default design philosophy of simplifying web routing. This score indicates that
Express.js reduces the need for complicated abstraction layers, as its fundamental design handles
HTTP routing complexity efficiently. Rather than adding levels of abstraction, Express.js
encourages developers to create routes and associated handlers directly.

The overall performance of the ticketing system in coupling is remarkable, with a balanced
ratio between abstractness and instability shown in Figure 5 (a). Among all services, Orders

Figure 5: Result of coupling evaluation. (a) result of instability defines by efferent and afferent coupling,
(b) result of distance metric

and Auth services are visually closest to the green area.

5. Conclusion

Our studies employed the ticketing system as a real-world case study to evaluate the modularity
metric inside a JavaScript-based microservices architecture. We examined the subtle balance
of coupling and cohesion, evaluating the interdependencies among system components while
ensuring that each module remained self-contained and focused on specific tasks. This study
reinforces the relevance of modularity and coherent design in microservices, demonstrating
their potential to improve maintainability and flexibility in software systems.

In future studies, we plan to deepen our understanding of software architecture metrics and
investigate other assessment methodologies to improve decision-making abilities for maintain-
ing software architecture. We want to broaden our knowledge base by looking at other metrics
that might give more information about software architecture. Furthermore, we intend to
conduct research that will lead to the creation of practical and user-friendly tools for assessing
these metrics.

References

[1] D. R. Apolinário, B. B. de França, A method for monitoring the coupling evolution of
microservice-based architectures, Journal of the Brazilian Computer Society 27 (2021) 17.

[2] S. Panichella, M. I. Rahman, D. Taibi, Structural coupling for microservices, arXiv preprint
arXiv:2103.04674 (2021).

[3] M. Milić, D. Makajić-Nikolić, Development of a quality-based model for software architec-
ture optimization: A case study of monolith and microservice architectures, Symmetry 14
(2022). URL: https://www.mdpi.com/2073-8994/14/9/1824. doi:10.3390/sym14091824.

https://www.mdpi.com/2073-8994/14/9/1824
http://dx.doi.org/10.3390/sym14091824

[4] C. Zhong, H. Zhang, C. Li, H. Huang, D. Feitosa, On measuring coupling between mi-
croservices, Journal of Systems and Software 200 (2023) 111670.

[5] M. N. Abadeh, M. Mirzaie, An empirical analysis for software robustness vulnerability in
terms of modularity quality, Systems Engineering (2023).

[6] S. Silva, A. Tuyishime, T. Santilli, P. Pelliccione, L. Iovino, Quality metrics in software
architecture, in: 2023 IEEE 20th International Conference on Software Architecture (ICSA),
IEEE, 2023, pp. 58–69.

[7] D. Shadija, M. Rezai, R. Hill, Towards an understanding of microservices, in: 2017 23rd
International Conference on Automation and Computing (ICAC), IEEE, 2017, pp. 1–6.

[8] K. Bakshi, Microservices-based software architecture and approaches, in: 2017 IEEE
aerospace conference, IEEE, 2017, pp. 1–8.

[9] M. Waseem, P. Liang, M. Shahin, A. Di Salle, G. Márquez, Design, monitoring, and testing
of microservices systems: The practitioners’ perspective, Journal of Systems and Software
182 (2021) 111061.

[10] H. Vural, M. Koyuncu, Does domain-driven design lead to finding the optimal modularity
of a microservice?, IEEE Access 9 (2021) 32721–32733.

[11] T. Ueda, T. Nakaike, M. Ohara, Workload characterization for microservices, in: 2016 IEEE
international symposium on workload characterization (IISWC), IEEE, 2016, pp. 1–10.

[12] K. Sethi, Y. Cai, S. Wong, A. Garcia, C. Sant’Anna, From retrospect to prospect: Assessing
modularity and stability from software architecture, in: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software Architecture,
IEEE, 2009, pp. 269–272.

[13] N. Ford, R. Parsons, P. Kua, P. Sadalage, Building evolutionary architectures, ” O’Reilly
Media, Inc.”, 2022.

[14] M. Richards, N. Ford, Fundamentals of software architecture: an engineering approach,
O’Reilly Media, 2020.

[15] C. Ciceri, D. Farley, N. Ford, A. Harmel-Law, M. Keeling, C. Lilienthal, J. Rosa, A. von
Zitsewitz, R. Weiss, E. Woods, Software Architecture Metrics: Case Studies to Improve the
Quality of Your Architecture, O’Reilly, 2022.

	1 Introduction
	2 Background
	2.1 Microservices
	2.1.1 JavaScript

	3 Experimental Setup
	3.1 Microservices Implementation
	3.1.1 Ticketing System

	3.2 Modularity Metric
	3.2.1 Software Architecture Metrics
	3.2.2 Cohesion
	3.2.3 Coupling

	4 Experiment Result
	4.1 Cohesion
	4.2 Coupling

	5 Conclusion

