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Abstract
This paper discusses hyperparameter optimization within existing autonomous driving algorithms
used in autonomous racing competitions. Existing autonomous driving algorithms vary significantly
in performance depending on the setting of hyperparameters, making it important to find the right
hyperparameter. To address these issues, we propose the Leaky Piece and Conquer Fireworks method,
which improves the efficiency of hyperparameter optimization. Experimental results indicate that,
on average, the general Fireworks algorithm is approximately 35.5 times faster than Random Search.
Furthermore, the Piece and Conquer Fireworks algorithm and the Leaky Piece and Conquer Fireworks
algorithm are about 69.9 and 77.9 times faster, respectively.
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1. Introduction

Recently, the world’s top five automakers - Hyundai Motor, Volkswagen, GM, Stellantis Group,
and Toyota - have subsidiaries or subsidiaries that research autonomous driving. Even big
tech companies such as Google, Apple, and Amazon are conducting self-driving research. In
2010, the VIAC (VisLab International Autonomous Challenge) [1]competition was held, and in
2011, the European Grand Cooperative Driving Challenge (GCDC) [2]was held In line with this
trend, self-driving racing competitions such as Indy Autonomous Challenge[3], Roborace[4],
and F1TENTH[5] are also gaining popularity. Even ASPIRE, a program development agency
under the Abu Dhabi Advanced Technology Research Council (ATRC), will launch the Abu
Dhabi Self-Driving Racing League as a car racing competition in the second quarter of 2024,
representing the popularity of self-driving racing.

In this paper, we tried to reduce lap time by selecting the classic autonomous driving algorithm
FGM (Follow Gap Method), which is widely used in F1TENTH. Classical algorithms such as FGM
vary greatly in performance depending on the hyperparameter settings [6][7]. For this reason,
we want to reduce lap time, which makes FGM perform through hyperparameter optimization.
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FGM is an algorithm for autonomous driving by continuously adjusting the steering wheel
toward the largest gap. FGM has several hyperparameters, such as the minimum size gap
selected, speed in straight lines and curved sections. In this paper, six hyperparameters were
used to construct an autonomous driving algorithm.

Fireworks algorithm was used as an algorithm for hyperparameter search. Fireworks algo-
rithm is a sampling-based search algorithm and shows good performance even if the form of
the objective function is complex. In addition, Piece and Conquer (PnC) Fireworks algorithm,
Leaky Piece and Conquer (Leaky PnC) Fireworks algorithm was proposed and compared with
Random Search, general Fireworks algorithm.

2. Related Works

2.1. Follow Gap Method(FGM)

The Follow Gap Method (FGM)[8] is an algorithm that finds the largest and deepest gap in
the data received by LiDAR and performs autonomous driving. FGM can navigate the path in
a simple and effective way in a dynamic environment and is suitable for real-time operation.
However, sometimes inefficient routes can be chosen because they follow the largest intervals.

The hyperparameters of the FGM are as follows. PREPROCESS_CONV_SIZE is a hyper-
parameter that sets how many pieces of data should be converted during pre-processing.
BEST_POINT_CONV_SIZE is a hyperparameter representing the CONV value used to find
the maximum gap size. MAX_LIDAR_DIST is a hyperparameter indicating how far to look.
STRAIGHTTS_SPEED is a hyperparameter indicating a speed in a straight line section. COR-
NERS_SPEED is a hyperparameter indicating a speed in a curved section.

2.2. Fireworks Algorithm

Fireworks Algorithm[9] is one of the search algorithms for solving optimization problems.
This algorithm works by mimicking Firework, which models the process of finding solution as
various fireworks explode. Fireworks Algorithm is effective in finding global optimal solution
and can be applied to a variety of optimization problems.

The Fireworks Algorithm proceeds as follows. 1) Firework Concept: models the solution
search process as an object called "firework". Each firework indicates the location of the candidate
solutions. 2) Firework Explosion: The key idea of the algorithm is to divide fireworks into several
groups, share fireworks among the groups, and improve the solution of discovery. Furthermore,
if a better solution is found, more fireworks are dropped at that location, accelerating the process
of "exploding" and discovering the solution. 3) Grouping: Fireworks are divided into groups.
Each group performs a solution search independently of the other group, and when it finds a
new solution, it shares it with the other group. These grouping methods help to explore both
global and regional optimal solutions simultaneously. 4) Firework Update: After discovering
new solutions, update the location of the firework, and if a better solution is found, drop more
fireworks into that location to improve the solution. 5) Termination condition: The algorithm
terminates after meeting the termination condition or after a certain number of repetitions.



Figure 1: (Left) Piece and Conquer Fireworks Algorithm, (Right) Leaky Piece and Conquer Fireworks
Algorithm

3. Proposed Method

In this paper, the Piece and Conquer Fireworks Algorithm and Leaky Piece and Conquer
Fireworks Algorithm were proposed based on the existing Fireworks algorithm for explore
hyperparameters.

3.1. Piece and Conquer Fireworks Algorithm

The first algorithm proposed in this paper, Piece and Conquer (PnC) Fireworks Algorithm,
means to conquer by piece. A typical Fireworks algorithm finds the optimal hyperparameter
using only data that has completed 10 laps if the target lap is 10 laps.

In the PnC Fireworks algorithm, as shown in Figure 1 (Left), the optimal result 𝑛 end points
of the lap1 completion piece become the 𝑛 start points of the lap3 completion piece, and the
optimal result 𝑛 end points of the lap3 completion piece become the 𝑛 start points of the lap10
completion piece. This is used for navigation of lap10 targeting data fragments of lap1 and data
fragments of lap3. As such, the PnC Fireworks algorithm use more data fragments to perform
more efficient hyperparameter optimization.

3.2. Leaky Piece and Conquer Fireworks Algorithm

The second algorithm proposed in this paper, Leaky Piece and Conquer (Leaky PnC) Fireworks
Algorithm, takes the similar structure with PnC Fireworks Algorithm.

In the Leaky PnC Fireworks algorithm, as shown in Figure 1 (Right), the optimal result 𝑛
end points of the lap1 completion piece are the 𝑛 start points of the lap3 completion piece, and
the optimal result 𝑛 end points of the lap3 completion piece are the 𝑛 start points of the lap10
completion piece. This is used for navigation of lap10 targeting data fragments of lap1 and data
fragments of lap3. Unlike PnC, Leaky PnC searches for lap3, and even number searches for lap5
when searching for lap3.



Figure 2: Map image. (Left) Oschersleben, (Middle) Silverstone, (Right) Sochi

Table 1
FGM parameter setting range.

Name of Hyperparameters Range of Hyperparameter setting range

BUBBLE_RADIUS 90-240 (6 pieces) at 30 interval
PREPROCESS_CONV_SIZE 2-5 (4 pieces) at 1 interval
BEST_POINT_CONV_SIZE 70-120 (6 pieces) at 10 interval

MAX_LIDAR_DIST 2000000-5000000 (4 pieces) at 1000000 interval
STRAIGHTS_SPEED 7.0-11.2 (15 pieces) at 0.2 interval
CORNERS_SPEED 5.0-9.2 (15 pieces) at 0.2 interval

4. Experiments

In this paper, the driving of the autonomous driving algorithm used a python gym-based
F1TENTH simulator[10]. This simulator can customize various map and dynamics values. As
shown in Figure 2, Oschersleben, Silverstone, and Sochi were used for the map. And the basic
values of the simulator dynamics values were used for dynamics values.

In this paper, the number of FGM parameters was set to 6, and the range for each parameter
was set as shown in Table 1. The parameters of FGM can also be applied beyond the ranges
specified in Table 1, but we have defined the ranges and intervals as shown in Table 1 to enable
the determination of relative parameter quality rankings.

The experimental process is as follows: First, we record the performance results for all possible
combinations of FGM parameters corresponding to Table 1. In other words, we save 129,600
records of driving performance, given that there are 6× 4× 6× 4× 15× 15 = 129,600 possible
combinations of FGM parameters. This enables us to establish relative rankings for all 129,600
FGM parameter configurations. Next, based on the recorded performance data, we applied
Random search, general Fireworks, PnC Fireworks, and Leaky PnC Fireworks algorithms.



Table 2
Result of Random search, general Fireworks, PnC Fireworks, Leaky PnC Fireworks.

Map Algorithm
Median time(sec) of
30 samples

Comparison with
Random search (multiple)

Oschersleben Random search 5,265,512 -
Oschersleben general Fireworks 19,723 43.9
Oschersleben PnC Fireworks 58,361 90.2
Oschersleben Leaky PnC Fireworks 50,629 104

Map Algorithm
Median time(sec) of
30 samples

Comparison with
Random search (multiple)

Silverstone Random search 6,879,384 -
Silverstone general Fireworks 341,182 20.1
Silverstone PnC Fireworks 160,371 42.8
Silverstone Leaky PnC Fireworks 148,949 46.1

Map Algorithm
Median time(sec) of
30 samples

Comparison with
Random search (multiple)

Sochi Random search 4,614,436 -
Sochi general Fireworks 108,361 42.5
Sochi PnC Fireworks 60,158 76.7
Sochi Leaky PnC Fireworks 55,164 83.6

5. Result

The experiment was performed 30 times for each search algorithm, and the median value
of the results executed 30 times was used. This increases the statistical reliability of search-
based algorithm results. Median time(sec) of 30 samples means the time it took to find the
optimal parameter. The simulator shows the median value of the results executed when the
corresponding algorithm is tested 30 times, and if the simulator accelerates, it can be executed
8 to 10 times faster. Comparison with Random Search (multiple) is a value that indicates
how many times faster the corresponding algorithm is compared to Random Search.

Table 2 shows that the Leaky PnC Fireworks algorithm is the best for all three maps: Oscher-
sleben, Silverstone, and Sochi. In the Oschersleben map, the general Fireworks algorithm is 43.9
times faster, the PnC Fire-works algorithm is 90.2 times faster, and the Leaky PnC Fireworks
algorithm is 104 times faster than Random Search. In the Silverstone map, the general Fireworks
algorithm is 20.1 times faster, the PnC Fireworks algorithm is 42.8 times faster, and the Leaky
PnC Fireworks algorithm is 46.1 times faster than Random Search. In the Sochi map, the general
Fireworks algorithm is 42.5 times faster, the PnC Fireworks algorithm is 76.7 times faster, and
the Leaky PnC Fireworks algorithm is 83.6 times faster than Random Search.



6. Conclusion

In this paper, the objective was to enhance the performance of FGM through hyperparameter
optimization, in other words aiming to improve lap times. Overall, the PnC Fireworks algorithm
is about twice as fast as the general Fireworks algorithm, and the Leaky PnC Fireworks algo-
rithm is about 1.1 times faster than the PnC Fireworks algorithm. These experimental results
demonstrated that the two types of PnC Firework algorithms proposed in this paper efficiently
search for hyperparameters and achieve innovative results in simulations. Furthermore, it is
expected to provide important developments in the field of hyperparameter optimization and
contribute to the performance improvement of future autonomous driving systems and other
complex systems.
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