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Abstract
This paper presents an initial analysis of scientific misinformation from three areas of research: Computer Science, En-
vironmental Science, and Medicine. We investigate keywords in publication titles and abstracts from retracted scientific
publications, which we view as a proxy for misinformation publications. Using the Altmetric Attention Score as a signal of
publication popularity, we group articles into low-popularity and high-popularity subsets. We apply three modes of learning
(unsupervised, semi-supervised, and supervised), to identify main themes from scientific research publications and compare
the results between publication popularity sets. We find that while there is overlap among the terms identified by different
methods, they are not the same. However, general topic coverage using different words is similar, highlighting the difficulty
in identifying keyword “markers” for popular, poor-quality scientific information.
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1. Introduction
From vaccines to climate change, there are known con-
troversial scientific research areas that have discrepan-
cies surrounding their scientific validity, particularly in
politically-charged environments [1, 2, 3]. Recent studies
have shown a rise in public skepticism of scientists and
scientific research, with 35% of Americans believing that
the scientific method may be used to produce “any re-
sult a researcher wants” and less than 20% of Americans
believing that scientists are transparent in their work
and hold themselves accountable for mistakes in their
publications [4, 3, 5]. This scientific distrust and contro-
versy is a leading factor in research focusing on scientific
misinformation, as it undermines the public’s ability to
consume and trust scientific information [2].
While there is no universal set of steps that leads to

scientific discovery, there are particular characteristics of
research across all disciplines of science that distinguish it
from general inquiry, which make it rigorous and reliable.
Generally, the scientific method involves 1) developing
a theory or hypothesis, 2) conducting qualitative and/or
quantitative experiments to measure observations and
collect results, and 3) deriving conclusions from experi-
mentation [6, 7]. Thus, scientific research is considered to
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be principled, as it relies on reproducible experiments and
evidence-based conclusions. However, with the increase
of scientists, publication venues, and online platforms
for information sharing partnered with the “publish or
perish” reality, the challenge of preserving the rigour and
reliability of scientific research is magnified [8, 5].
Scientific misinformation is difficult to characterize,

and as a result, difficult to identify [9, 10, 3]. We adopt
the following scientific misinformation definition from
Southwell et al. [3]: “publicly available information that
is misleading or deceptive relative to the best available
scientific evidence and that runs contrary to statements
by actors or institutions who adhere to scientific princi-
ples.” Themajority of research onmisinformation focuses
on news articles and social media in the context of fake
news and propaganda campaigns and analyzes how these
stories disseminate through social networks. We found
that a critical limitation of this avenue of work is that
scientific misinformation is not yet well-researched and
there are no available ground-truth datasets.

In this paper, we link scientific misinformation content
to popularity. We are interested in understanding if it is
possible to tease out themes of those pieces of scientific
thought that are poor quality and popular from those
that are not. Here, we use retracted publications as a
proxy for identifying publications with a high potential
for misinformation and the Altmetic1 Attention Score as
a proxy for publication popularity. For this exploratory
analysis, we compare text analysis techniques that em-
ploy different modes of learning: unsupervised, semi-
supervised, and supervised. Each text analysis technique
is performed on retracted scientific publications with
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low popularity and high popularity in major research
domains: Computer Science, Environmental Science, and
Medicine. We find that all three methods produce compli-
mentary, non-overlapping, but not contradictory results,
highlighting the complexity of identifying “markers” for
popular, poor-quality scientific information.
To summarize, the main contributions of this paper

are as follows: 1) analyzing scientific misinformation
across different domains of research, 2) measuring the
prevalence of scientificmisinformation, and 3) comparing
learning text analysis techniques applied to scientific
research publications.

2. Experimental Design
We apply three modes of learning for text analysis on
our data. First, we use unsupervised learning methods
for traditional keyword extraction. Next, we employ a
semi-supervised, generative topic model that uses ex-
pert identified seed terms to guide the topic discovery
process.Lastly, we run an interpretable, supervised ma-
chine learningmodel that predicts popularity and identify
keyword features that are used to separate the classes.
Figure 1 shows the overview process. Each method uses
text from the titles and abstracts of scientific publications.
We normalize the text by setting all tokens to lowercase,
removing urls, digits, symbols, and the word retracted.
This normalized text is the input to all of our models.

Figure 1: The overview process of our experimentation.

Keyword Extraction Methods (unsupervised): We
use the three keyword extraction methods as shown in
Table 1: 1) term frequency-inverse document frequence
(TF-IDF), 2) YAKE [11], and 3) KeyBERT [12]. Each
method provides a different approach to keyword extrac-
tion (term frequency, unsupervised feature extraction,
and contextualized word embeddings), enabling us to
compare results across extraction methods. The last two
columns of the table show the Python package used and
the non-default parameters in cases where the default
parameters were not used.
Generative Modeling (semi-supervised): Be-

cause we have some domain knowledge, we test a
semi-supervised topic model, Guided Topic-Noise Model

(GTM) [14]. In addition to text, GTM takes a set of seed
words for topics as input and implements the General-
ized Polya Urn (GPU) sampling method to help keep seed
words within a single topic together during the genera-
tion process. We selected GTM because we have short,
noisy text, and GTM generates both a topic and noise dis-
tribution, removing words that are domain-specific but
appear across a large number of topics. It also identifies
other topics that domain experts may have missed. In
our implementation, we use the default parameters for
GTM.
Predictive Modeling (supervised): We train a De-

cision Tree on our datasets to test if we can identify
important n-gram features (key terms) in predicting if
a research publication is in the top or bottom 10% of
Altmetric Attention Scores. We use sklearn’s tree imple-
mentation and its default parameters.

3. Datasets
For our analysis, we use retracted publications as a proxy
for scientific research that could be scientific misinforma-
tion. By using these scientific publications in our study
we are not definitively labeling them as scientific misin-
formation. An example of a peer-reviewed, retracted (due
to misinformation) publication is Hydroxychloroquine or
chloroquine with or without a macrolide for treatment of
COVID-19: a multinational registry analysis [15]. This
publication is in the top 5% of all research outputs, from
any year, scored by Altmetric [16]. Figure 2 displays the
overview of attention found on Altmeteric for this pub-
lication, which received an Altmetric Attenion Score of
22,503. We are interested in the comprehensive Altmetric
Attention Score (displayed in the colorful circle), which
represents a combination of all the attention a publica-
tion receives (displayed in the category counts on the far
left).

1 3,244
Number of Tweeters

Figure 2: Altmertic.com overview of attention.



Method Description Tool Parameters

TFIDF

Calculates the frequency of a word in a document
and multiplies the logarithm of the number of doc-
uments divided by the number of documents con-
taining the word

TfidfVectorizer
[13]

[stop_words=‘english’]

YAKE
Uses statistical text features from single documents
without using term frequency

yake [11]

[language = “en”, dedupli-
cation_thresold = 0.9, dedu-
plication_algo = ‘seqm’, nu-
mOfKeywords = 20]

KeyBERT
Computes the cosine similarity between the sub-
phrases in a document that are the most similar to
the document itself using BERT-embeddings

KeyBERT [12] default

Table 1
Keyword extraction descriptions.

Retraction Watch Database: We used the publicly
available, manually curated Retraction Watch Database
[17]. Retraction Watch contains 22,614 articles with a
DOI, enabling us to link the articles to Dimensions, a
large scientific literature database, and obtain their titles
and abstracts for analysis. Because Retraction Watch is
manually curated, each retracted paper is labeled with
at least one reason for retraction; there are 105 unique
reasons, such as Investigation by Journal/Publisher, Con-
cerns/Issues About Data, and Unreliable Results. Table
2 provides the top five retraction reasons by number of
publications for the research areas that we analyze. There
is minimal overlap in the top five reasons across research
areas, but at least three of the five reasons are concerned
with scientific integrity related to data and methods.

Table 2
Top five retraction reason by research area.

Dimensions: Our dataset of paper titles and abstracts
is sourced from Dimensions, an inter-linked research in-
formation system provided by Digital Science [18]. We
have three sets of scientific research articles that we se-
lect from Dimensions: Computer Science, Environmental
Science, and Medicine. Each publication in Dimensions

Popularity Comp.
Science

Environ.
Science Medicine

Low 97 43 355
High 34 18 210

Table 3
Number of retracted publications in each popularity set across
the three broad areas of research.

is labeled with a broad area of research, which we use to
create our subsets of publications. Using the DOIs from
these three publication sets, we query the Altmetric API
to identify publications with Altmetric attention scores
[16]. The Altmetric Attention Score is a weighted count
of the online attention a research publication receives
from various groups, such as scientists, policy-makers,
news sources, and the general public. The Altmetric
Attention Score is not an indicator of scientific impact.

For each of the three subsets of research publica-
tions (Computer Science, Environmental Science, and
Medicine) with Altmetric scores, we generate two sub-
categories, low-popularity and high-popularity. We
select the publications with a bottom 10% Altmetric At-
tention Score as low-popularity and the publications with
a top 10% Altmetric Attention Score as high-popularity.
Table 3 displays the number of retracted publications in
each of the six categories we analyze. Medicine has signif-
icantly more publications with Altmertic data compared
to Computer and Environmental Science.

4. Empirical Evaluation
We perform our text analysis on the low-popularity and
high-popularity sets of scientific research publications
from our three domains. For all methods, except GTM,
the only input required is the input text; GTM also re-
quires a seed set of words organized by topics. We imple-
mented noiseless Latent Dirichlet Allocation on all sets
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Figure 3: Scientific publication themes and key terms by research area and publication popularity. The white box outline
highlights topics that appear in both the low and high popularity publication sets.

of publications to find candidate seed words that could be
organized into coherent topics and then manually select
the final list of seed words. Table 4 displays the seed
words selected for the GTM experiments.

We first compared our results across all five methods
for each subset of research and publication popularity
and found that no terms appeared in all five methods
for any subset of publications that we analyzed. How-
ever, we did find that different words related to the same
theme appeared across all five methods; for example the
high popularity, Medicine results has facemasks (TF-IDF),
adult exposure (KeyBERT), ivermectin (YAKE), pcr (deci-
sion tree), and covid (GTM).

While the keyword results across all five methods var-
ied, we find general themes for each research area and
popularity (see Figure 3). Under each theme we provide
a sample of keywords that appeared from at least one
of the methods. Computer Science and Medicine have
overlapping themes between the low popularity and high
popularity publications, whereas Environmental Science
does not. Additionally, Computer Science has a theme
relating to biology and medicine applications in both low
and high popularity subsets, which resulted in words
that are not directly related to computer science, such as
biomass and radiation.
We find that the Medicine subset of research publica-

tions produced the most coherent results, perhaps indi-
cating that these methods perform best on larger sets of
documents.

5. Conclusions
In this work, we investigate scientific research misinfor-
mation. As an initial analysis, we select publications from
three broad areas of research (Computer Science, Envi-
ronmental Science, and Medicine) and attempt to identify
keyword differences between low popularity and high
popularity scientific misinformation using unsupervised,
semi-supervised, and supervised modes of learning on
scientific research publication text. We find that across

Table 4
GTM seed words.

all experimental results, we are able to identify themes
of research topics in each research area using different
learning approaches, but some themes overlap in popular-
ity levels, highlighting the complexity of using keywords
as indicators for this task. Future work will consider
using network metrics to identify popular poor quality
scientific information.
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